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A first simple advection program

The goal of this exercise is to program a simple first order advection method. We will
numerically solve the following advection equation

∂tq(x, t) + u∂xq(x, t) = 0 (5)

with u = 1. We discretize this between x = 0 and x = 10 on M grid points with spacing
∆x = 10/(M − 1), with x0 = 0 and xM−1 = 10 (in programming languages in which array
indices start at 0). As a left boundary condition we simply set q0 = 1, and only update
q1 · · · qM−1 every time step. As an initial condition let us take:

q(x, 0) =

{

1 for x ≤ 3
0 for x > 3

(6)

1. The analytic solution
Give the analytic solution for q(x, t) at time t = 4.

2. Centered differencing
Let us discretize this equation using the centered differencing scheme:
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Note: This algorithm will be unstable, but let us try anyway.

(a) Write yn+1
i explicitly as a function of yn

i−1, yn
i and yn

i+1.

(b) On the left side (i.e. for i = 0) we already decided to impose the boundary
condition q = 1; but what should we do with the gridpoint i = M − 1 (i.e. the
right-most one)? Hint: There is no perfect solution; just explain why this point
has to be treated separately, and give a solution that you think is reasonable.

(c) How many time steps must we do in order to integrate from t = 0 to t = 4 when
we specify a fixed time step ∆t? Think carefully about what you should do if
4/∆t is not an integer (e.g. if ∆t = 0.3): How can we make sure to end up still
exactly at t = 4 and not at t > 4? Note that there are various possible ways:
any method that works is fine.

(d) Write a computer program that integrates the equations from time t = 0 to
time t = 4 for a pre-defined ∆t, using the centered differencing discretization
scheme. Make a plot for the case M = 100, ∆t = 0.04 after 100 time steps (i.e.
at exactly t = 4).

(e) Try out different time steps ∆t and show that they all produce oscillations that
grow exponentially in time.
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3. One-sided differencing: The upwind method
Let us now discretize the equation using the upwind differencing scheme:
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(a) Program this in a computer program.

(b) Do we need to treat the gridpoint i = M − 1 specially?

(c) Make again a plot for the case M = 100, ∆t = 0.04 after 100 time steps (i.e. at
exactly t = 4). Overplot the analytical solution.

(d) Make another plot for the same problem, but after only 50 time steps (i.e. at
exactly t = 2). Compare the smearing out of the jump: what do you see?

(e) Experimentally find out at which ∆t the algorithm becomes unstable.

(f) Try out ∆t = 0.101. You’ll be surprised! Explain what happens.

4. One-sided differencing: The downwind method
Let us now discretize the equation using the downwind differencing scheme:
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(a) Program this in a computer program.

(b) Make again a plot for the case M = 100, ∆t = 0.04 after 100 time steps (i.e. at
exactly t = 4). What do you see?

(c) Explain why no signal is transported to the right at all.

5. A non-constant velocity
Now let us assume that the velocity u is a function of x, and that the advection
equation is conservative:

∂tq(x, t) + ∂x[u(x)q(x, t)] = 0 (10)

Let us take for the velocity profile:

u(x) =

{

1 for x ≤ 4
2

3
exp(4 − x) + 1

3
for x > 4

(11)

Let us take the following form of upwind discretization scheme:
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(a) Program this in a computer program.

(b) Make a plot for the case M = 100, ∆t = 0.04 after 100 time steps. Explain
what you see.

For all exercises, please always do the following:

• Make an electronic document (DOC or PDF) which includes your text concerning
the exercises, as well as figures belonging to it.

• Upload your document and your computer program to the Moodle.
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