Exercises for
 Numerical Fluid Mechanics (WS2012/13)

Volker Springel \& Cornelis Dullemond
 Exercise sheet 2 (duration: 2 weeks)
 A first simple advection program

The goal of this exercise is to program a simple first order advection method. We will numerically solve the following advection equation

$$
\begin{equation*}
\partial_{t} q(x, t)+u \partial_{x} q(x, t)=0 \tag{5}
\end{equation*}
$$

with $u=1$. We discretize this between $x=0$ and $x=10$ on M grid points with spacing $\Delta x=10 /(M-1)$, with $x_{0}=0$ and $x_{M-1}=10$ (in programming languages in which array indices start at 0). As a left boundary condition we simply set $q_{0}=1$, and only update $q_{1} \cdots q_{M-1}$ every time step. As an initial condition let us take:

$$
q(x, 0)= \begin{cases}1 & \text { for } x \leq 3 \tag{6}\\ 0 & \text { for } x>3\end{cases}
$$

1. The analytic solution

Give the analytic solution for $q(x, t)$ at time $t=4$.

2. Centered differencing

Let us discretize this equation using the centered differencing scheme:

$$
\begin{equation*}
\frac{y_{i}^{n+1}-y_{i}^{n}}{\Delta t}+u \frac{y_{i+1}^{n}-y_{i-1}^{n}}{2 \Delta x}=0 \tag{7}
\end{equation*}
$$

Note: This algorithm will be unstable, but let us try anyway.
(a) Write y_{i}^{n+1} explicitly as a function of y_{i-1}^{n}, y_{i}^{n} and y_{i+1}^{n}.
(b) On the left side (i.e. for $i=0$) we already decided to impose the boundary condition $q=1$; but what should we do with the gridpoint $i=M-1$ (i.e. the right-most one)? Hint: There is no perfect solution; just explain why this point has to be treated separately, and give a solution that you think is reasonable.
(c) How many time steps must we do in order to integrate from $t=0$ to $t=4$ when we specify a fixed time step Δt ? Think carefully about what you should do if $4 / \Delta t$ is not an integer (e.g. if $\Delta t=0.3$): How can we make sure to end up still exactly at $t=4$ and not at $t>4$? Note that there are various possible ways: any method that works is fine.
(d) Write a computer program that integrates the equations from time $t=0$ to time $t=4$ for a pre-defined Δt, using the centered differencing discretization scheme. Make a plot for the case $M=100, \Delta t=0.04$ after 100 time steps (i.e. at exactly $t=4$).
(e) Try out different time steps Δt and show that they all produce oscillations that grow exponentially in time.

3. One-sided differencing: The upwind method

Let us now discretize the equation using the upwind differencing scheme:

$$
\begin{equation*}
\frac{y_{i}^{n+1}-y_{i}^{n}}{\Delta t}+u \frac{y_{i}^{n}-y_{i-1}^{n}}{\Delta x}=0 \tag{8}
\end{equation*}
$$

(a) Program this in a computer program.
(b) Do we need to treat the gridpoint $i=M-1$ specially?
(c) Make again a plot for the case $M=100, \Delta t=0.04$ after 100 time steps (i.e. at exactly $t=4$). Overplot the analytical solution.
(d) Make another plot for the same problem, but after only 50 time steps (i.e. at exactly $t=2$). Compare the smearing out of the jump: what do you see?
(e) Experimentally find out at which Δt the algorithm becomes unstable.
(f) Try out $\Delta t=0.101$. You'll be surprised! Explain what happens.

4. One-sided differencing: The downwind method

Let us now discretize the equation using the downwind differencing scheme:

$$
\begin{equation*}
\frac{y_{i}^{n+1}-y_{i}^{n}}{\Delta t}+u \frac{y_{i+1}^{n}-y_{i}^{n}}{\Delta x}=0 \tag{9}
\end{equation*}
$$

(a) Program this in a computer program.
(b) Make again a plot for the case $M=100, \Delta t=0.04$ after 100 time steps (i.e. at exactly $t=4$). What do you see?
(c) Explain why no signal is transported to the right at all.

5. A non-constant velocity

Now let us assume that the velocity u is a function of x, and that the advection equation is conservative:

$$
\begin{equation*}
\partial_{t} q(x, t)+\partial_{x}[u(x) q(x, t)]=0 \tag{10}
\end{equation*}
$$

Let us take for the velocity profile:

$$
u(x)=\left\{\begin{array}{cc}
1 & \text { for } x \leq 4 \tag{11}\\
\frac{2}{3} \exp (4-x)+\frac{1}{3} & \text { for } x>4
\end{array}\right.
$$

Let us take the following form of upwind discretization scheme:

$$
\begin{equation*}
\frac{y_{i}^{n+1}-y_{i}^{n}}{\Delta t}+\frac{u_{i} y_{i}^{n}-u_{i-1} y_{i-1}^{n}}{\Delta x}=0 \tag{12}
\end{equation*}
$$

(a) Program this in a computer program.
(b) Make a plot for the case $M=100, \Delta t=0.04$ after 100 time steps. Explain what you see.

For all exercises, please always do the following:

- Make an electronic document (DOC or PDF) which includes your text concerning the exercises, as well as figures belonging to it.
- Upload your document and your computer program to the Moodle.

