Exercises for Numerical Fluid Mechanics (WS2012/13)

Volker Springel & Cornelis Dullemond Exercise sheet 4 (duration: 1 week) Shock tube test

We now add the energy equation to our solver and apply this to solving a shock tube test.

1. Adding the energy equation

- (a) Extend your hydrodynamics program by the energy equation. Also here advect the ρe_{tot} using the gas velocity at the interfaces, and add the pressure term as a source term. See the lecture script for the recipe. Take $\gamma = 5/3$.
- (b) Apply this now to the exact same problem as before, but now with $e_{\text{therm}} = 1$. In other words, the initial condition for $\rho e_{\text{tot}} = \rho$, because the velocity is zero.
- (c) Make a plot of the density at x = 0 as a function of time between $0 \le t \le 60$. Overplot the density at x = 50 as a function of time. If all goes well you should notice that the density at x = 0 is on average higher than the density at x = 50. Why is that?

2. Shock tube test

Set up the following shock tube test: $-50 \le x \le 50$. For x < 0 we have $\rho = 2$, $e_{\text{therm}} = 1$ and u = 0. For $x \ge 0$ we have $\rho = 1$, $e_{\text{therm}} = 1$ and u = 0. We take again $\gamma = 5/3$. As boundary conditions simply copy the values of ρ , ρu and ρe_{tot} from cell 1 into cell 0 (the left ghost cell) and from cell M into cell M + 1 (the right ghost cell).

- (a) Plot the $\rho(x)$ at time t = 18.
- (b) Where is the rarefaction wave, where the contact discontinuity and where the shock?
- (c) Plot the $e_{\text{therm}}(x)$ at t = 18. Explain what you see: what physics causes the increase/decrease of $e_{\text{therm}}(x, 18)$ compared to $e_{\text{therm}}(x, 0) = 1$?