
Appendix A

Fourier transforms

Fourier transforms (named after Jean Baptiste Joseph Fourier, 1768-1830, a French math-
ematician and physicist) are an essential ingredient in many of the topics of this lecture.
Therefore let us review the basics here. We assume, however, that the reader is already
mostly familiar with the concepts.

A.1 Fourier integrals in infinite space: The 1-D case

Let us start in 1-D. Given a function f(x) on the domain 〈−∞, +∞〉, where x is always
assumed to be real, the Fourier transform g(u) is

g(u) =

∫ +∞

−∞

f(x)e−2πiuxdx (A.1)

Note that there are several conventions taken here that may differ from other literature!
First, the sign of the exponent is chosen as negative for ux > 0. Secondly, there is a 2π in
the exponent, which is useful for the normalization of the Fourier transform, for with this
factor in the exponent, the Fourier transform of g(u) is again f(x):

∫ +∞

−∞

g(u)e−2πixudu =

∫ +∞

−∞

∫ +∞

−∞

f(x′)e−2πiu(x+x′)dudx′ (A.2)

=

∫ +∞

−∞

f(x′)

[
∫ +∞

−∞

e−2πiu(x+x′)du

]

dx′ (A.3)

=

∫ +∞

−∞

f(x′)δ(x + x′)dx′ (A.4)

= f(−x) (A.5)

The Fourier transform of a Fourier transform is again the original function, but mirrored in
x. A couple of properties (Pinski 2002, “Introduction to Fourier Analysis and Wavelets”):

• Linearity: The Fourier transform of f1(x)+f2(x) is the sum of the Fourier transforms
of f1(x) and f2(x).

• Translation in x leads to a winding in u: The Fourier transform of f(x − x0) is
e−2πiux0g(u).
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• Winding in x leads to a shift in u: The Fourier transform of e2πiu0xf(x) is g(u− u0).

• The Fourier transform of f(ax) where a is a non-zero real number is g(u/a)/|a|.

• The Fourier transform of f ∗(x) (the complex conjugate) is g∗(−u).

• If f(x) is real, then g(−u) = g∗(u) (i.e. the Fourier transform of a real function is
not necessarily real, but it obeys g(−u) = g∗(u)).

• If we have two functions f1(x) and f2(x) which we convolve: (f1∗f2)(x) ≡
∫ +∞

−∞
f1(x′)f2(x−

x′)dx′, then the Fourier transform is simply the product of the two Fourier trans-
forms: g1(u)g2(u).

Let us list a couple of elementary Fourier transforms in 1-D:

f(x) g(u)
δ(x − x0) exp(−2πiux0)
exp(2πiu0x) δ(u − u0)
box(ax) (1/a)sinc(u/a)
sinc(ax) (1/a)box(u/a)
exp(−πa2x2) (1/a) exp(−πu2/a2)

where box(x) = 1 for −1/2 ≤ x ≤ 1/2 and 0 elsewhere, sinc(x) = sin(πx)/(πx), and a > 0.

A.2 Fourier integrals in infinite space: The 2-D case

Fourier integrals in 2-D are simple extensions of those in 1-D:

g(u, v) =

∫ +∞

−∞

∫ +∞

−∞

f(x, y)e−2πi(ux+vy)dxdy (A.6)

Like before we have the Fourier transform of g(u, v) to be:
∫ +∞

−∞

∫ +∞

−∞

g(u, v)e−2πi(xu+yv)dudv = f(−x,−y) (A.7)

All the same properties hold in 2-D as in 1-D. Some particular examples:

f(x,y) g(u,v)
δ(x − x0)δ(y − y0) exp[−2πi(ux0 + vy0)]
exp[2πi(u0x + v0y)] δ(u − u0)δ(v − v0)
circ(

√

x2 + y2/a) aJ1(2πa
√

u2 + v2)/
√

u2 + v2

exp(−π[a2x2 + b2y2]) (1/|ab|) exp(−π[u2/a2 + v2/b2])

where circ(r) = 1 for r ≤ 1 and 0 for r > 1, and J1(u) is the Bessel function of the first
kind of order 1.

A.3 FT on a limited domain: The continuous case

Suppose we have a function f(x) but for some reason we can analyze only a limited domain
of this function. This is a common issue, because typically we do not have a measurement

2



of any physical quantity over an infinite domain (either in space or in time). So we
somewhat arbitrarily choose some domain, say x ∈ [−L/2, L/2], and wish to analyze this
with a Fourier integral. The Fourier transform g(u) of this function, limited to the domain
[−L/2, L/2] is then

g(u) =

∫ L/2

−L/2

f(x)e−2πuxdx (A.8)

Let us define the block function box(x) as 1 for |x| ≤ 1/2 and 0 for |x| > 1/2. We can
then rewrite the above restricted Fourier transform as:

g(u) =

∫ +∞

−∞

f(x)box(x/L)e−2πiuxdx = F [f ] ∗ Lsinc(Lu) (A.9)

where in the last step we used that the Fourier transform of the product of two functions
is the convolution of their Fourier transforms in Fourier space. We then also used that
the Fourier transform of the block function is the sinc function. In other words: if we
sample only a limited domain of the function f(x), we obtain the Fourier transform of the
function, convolved with the sinc function. This means we lost information, in particular
for |u| ! 1/L. So, as long as we take L large enough, the sinc function will be narrow
enough that we don’t lose too much information. This formulation of Fourier transforms
is closer to real applications.

A.4 FT on a limited domain: The continuous periodic

case

If a signal f(x) is periodic, then we automatically deal with a limited domain: that of
one period. We do not need to explicitly integrate over all of space, because the analysis
of one period is sufficient to know all there is to know about the function and its Fourier
transforms. Let us assume that a signal has a period L and take the domain [−L/2, L/2]
as the representative part. Let us define the complex Fourier coefficients gn as

gn =
1

L

∫ L/2

−L/2

f(x)e−2πinx/Ldx (A.10)

for any integer value of n (either positive or negative). The inverse can be shown to be

f(x) =
∞

∑

n=−∞

gn e2πinx/L (A.11)

This is called the Fourier series. One sees that a continuous function on a restricted domain
(assuming periodicity) can be uniquely described by an infinite discrete set of numbers.

A.5 FT on a limited domain: The discrete case

A special version of the periodic Fourier transform and the Fourier series is the discrete
Fourier transform. This is applicable if instead of a smooth function f(x) we have a
discretized (sampled) function fk for 0 ≤ k ≤ N − 1, where N > 0 is some number of
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sampling points. We encounter such situations often when we perform numerical analyses
of physical problems: We do not have infinite information. N denotes the amount of
information we have. We can define now the Fourier components gn as

gn =
1

N

N−1
∑

k=0

fke
−2πink/N (A.12)

where also 0 ≤ n ≤ N − 1 (both sets contain equal amount of information). The inverse is

fk =
N−1
∑

n=0

gne2πink/N (A.13)

Note that there are different conventions used. The normalization can be different in
different conventions. Some put the 1/N in the reverse Fourier transform (Eq. A.13), and
some use a unitary normalization (1/

√
N) for both equations. Also the domain can be

shifted, e.g. from −(N −1)/2 ≤ k ≤ (N −1)/2, which is the discrete version of the domain
choice in Section A.4.

Discrete Fourier transformations can be seen as the discrete version of the periodic
Fourier transform in Section A.4. One can see the values fk as samplings of a “true”
function f(x) at locations xk = x0 + k∆x, where ∆x is some sampling width. The points
xk can be seen as the grid points of a regular grid on which the function f(x) is sampled.
Since computers can seldom deal with analytic functions, such discretized representations
of these functions on such regular grids can be used to cast a physical problem into a
numerical problem that can be solved by a computer. A Fourier transform of the type
discussed in Section A.4 is then represented approximately as a discrete Fourier transform
(but be careful of the normalizations!).

Discrete Fourier transforms can be computed extremely efficiently using Fast Fourier
Transform (FFT) algorithms. The most common one is the Cooley-Tukey algorithm, which
is a divide and conquer type algorithm that recursively divides the domain into two sub-
domains to solve the problem. Usually this is “the” FFT algorithm. FFT subroutines are
available in many mathematical libraries, so they are in very broad use. When using such
a subroutine, it is important to know which conventions are used. Note that they work
best if N is a power of 2.

Important note: One drawback of FFT routines is that they assume periodicity.
Strictly speaking one cannot use FFT routines for computing the numerical equivalents of
the Fourier transforms of Sections A.1 and A.3. However, if the actual signal f is limited
to only a small fraction of the entire domain in k, and the rest is “padded to zero”, then
the effect of periodicity is negligibly small, and the FFT gives good results. But always
keep this caveat in mind!

A.6 Nyquist sampling and aliasing

As mentioned above, the discrete Fourier transform is often used for cases in which a
continuous function f(x) is sampled on a grid xk = x0 + k∆x, where ∆x is some sampling
width. By the process of sampling on a regular grid we throw away information about
the original function f(x). It is intuitively clear that we in fact lose “high frequency
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information”, i.e. information about “wiggles” in the function f(x) that have a wavelength
smaller than 2∆x. There is in fact a rigorous mathematical theory behind this: the
Nyquist sampling theory (named after Harry Nyquist, 1889-1976, a Swedish-American
engineer working for AT&T and Bell Laboratories).

Consider a function f(x), defined on the entire domain 〈−∞,∞〉. If this function is
band-limited to frequencies u smaller than the Nyquist frequency,

uc =
1

2∆x
(A.14)

(i.e. all Fourier components g(u) with |u| > uc are 0), then Nyquist’s sampling theorem
says that the function f(x) is entire determined by a sampling of f(x) at regular intervals
of ∆x. In other words, a function that is band-limited to below the Nyquist frequency
contains exactly the same amount of information as its sampled version.

One can reconstruct the function f(x) from fk with the formla

f(x) = ∆x
+∞
∑

k=−∞

fk
sin(2πuc[x − k∆x])

π[x − k∆x]
(A.15)

Just to verify: you can indeed see that at all sampling points you retrieve f(xk) = fk,
because limx→0 sin(x)/x = 1.

The Nyquist sampling theorem can also be applied to the Fourier transforms of periodic
functions. This shows the relation between the Fourier series and the discrete Fourier
transform.

What it also says is that if we have a function f(x) which is not band-limited to below
the Nyquist frequency, then any Fourier components with |u| above uc will be aliased to
smaller u. This is a stroboscope effect that leads to Moiré patterns. Examples are for
instance the seemingly backward rotating cartwheels in old movies, or the strange effects
when taking low-resolution digital photos of regular patterns.
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