
Chapter 3

Interferometry: The basic principles

We have seen that the size of the telescope sets a limit on the spatial resolution of our
images. There is a practical limit to telescope sizes, which would mean that we would never
be able to achieve resolutions beyond that limit. The solution to this technical problem is
to use the technique of interferometry.

In this chapter we will discuss the basic concepts of interferometry and its various
incarnations. We will also discuss some of the basics of coherence of light. The topic of
interferometry is, however, too broad to be covered entirely in one chapter. We therefore
refer to the literature in the list below for further details.

I (CPD) owe thanks to Tom Herbst (MPIA) for his extremely fruitful and eye-opening
15 minute coffee-break explanation of interferometry with the LBT on 19 May 2010, which
resulted in Sections 3.12 and 3.13.

Literature:
Lecture notes of the IRAM summer school on interferometry: http://iram.fr/IRAMFR/IS/school.htm.
Lecture notes about interferometry from NRAO: http://www.cv.nrao.edu/course/astr534/PDFnew.shtml.
Högbom, J.A., Aperture Synthesis with a Non-Regular Distribution of Interferometer Baselines, 1974,

Astronomy & Astrophysics Supplements Vol. 15, p. 417
Book by Thompson, A.R., Moran, J.M. and Swenson, G.W. Jr., Interferometry and synthesis in radio

astronomy, 1986, John Wily and Sons. ISBN 0-471-80614-5

3.1 Fizeau interferometry

Perhaps the most basic technique of interferometry is Fizeau interferometry, named after
Hippolyte Fizeau (1819-1896), a French physicist who first suggested to use interferometry
to measure the sizes of stars. The idea is simple: Just take the light of all your telescopes
and project them, using a series of well-placed mirrors, all on the same image plane, as if
the mirrors were all part of one huge mirror. If this is done such that the light from each
of the telescopes arrives at the image plane exactly at the same time, the beams of light
from all telescopes combined produce a point-spread-function (PSF) that is the Fourier
transform of the combined apertures of the telescopes. This is as if we actually have a huge
mirror, but put black paint on it everywhere except for two or more circular regions.

We know from chapter 1 (see Fig. 1.7) that one can compute this “combined PSF” easily
using a Fast Fourier Transform (FFT) algorithm applied to the “image” of the aperture.
Let us, for now, take the example of a pair of telescopes next to each other, like the Large
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Figure 3.1: The PSF of a pair of two apertures next to each other, computed in exactly the
same way as in Fig. 1.7. Left: The aperture pair. Right: The PSF of this pair, computed
as the amplitude-squared of the Fourier transform of the pair of apertures (brightness is
plotted logarithmically). This is the principle of a Fizeau interferometer, and this example
is inspired by the LINC-NIRVANA interferometer to be installed on the Large Binocular
Telescope.

Binocular Telescope (LBT) on Mount Graham in Arizona, which has participation from
the Max-Planck-Institute for Astronomy in Heidelberg. Instead of having a single circular
aperture, we have two circular apertures next to each other. If we compute the Fourier
transform of this pair of apertures we get a PSF that is a product of the PSF of each
single telescope and a wave-shaped modulation on top, called fringes. This is shown in
Fig. 3.1. The result of such an interferometer is an image of the sky with a PSF which
has the shape shown in Fig. 3.1. Each star on the image thus looks like an Airy disk
multiplied by a fringe pattern (wavy modulation). Since the light from the two mirrors is
combined on the image plane, Fizeau interferometers are called focal plane interferometers.
At the Max-Planck-Institute for Astronomy in Heidelberg they are currently building the
LINC-NIRVANA instrument for the LBT, which will do exactly this kind of interferometry.

If we would join more than just two mirrors, more modulations of the original single-
mirror PSF would appear, and the PSF gets more and more centrally concentrated with
fewer “sidelobes”. It starts to look more and more like a PSF of a single huge mirror. This
technique has been used on the Multi-Mirror Telescope (MMT) in Arizona, which featured
six 1.8-meter mirrors on a single mounting. Note however that today the MMT no longer
has six mirrors: it now features a single 6.5 m mirror. However, the experience gained
with the MMT is now put to use for the LBT and for the design and future operation of
the LINC-NIRVANA interferometer.

Let us now, as a Gedankenexperiment, add so many mirrors that they all touch each
other, and we fill also the space in between with mirror. We have then created one single
huge mirror. The modulations now all conspire to produce the Airy pattern for the huge
mirror, i.e. much smaller in angular scale than the single-telescope PSF. This is what it
should be, because we have now indeed created a true huge mirror.

Now let us go back to the case of the LBT with its future LINC-NIRVANA interfer-
ometer: the PSF has this unusual shape of a single-mirror PSF multiplied by a wave. If
we would use such a camera to image a field on the sky with extended sources (like e.g. a
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galaxy or a spatially resolved image of a solar system planet), then we would still get image
degradation (smearing) over a typical scale of the original single-mirror PSF, though with
a central peak. It seems that we have gained only partially in terms of angular resolution.
The solution lies in the following:

1. Make multiple images over one night, to allow the field-rotation caused by the Earth’s
rotation to rotate the baseline of the LBT over your object so that the wavy modu-
lation (fringe pattern) occurs in different directions for each image.

2. Use computer software to “deconvolve” the combined set of images into a single high
spatial resolution image. The trick here is to ask the computer to find the image
which, when convolved with each of the PSFs of each of the observed images, yields
the best match to the actual observed images1.

Fizeau interferometers are particularly useful for cases where the telescope mirrors are
close together. This is because in that way a relatively large part of the hypothetical huge
mirror is accounted for by the real mirrors. The PSF fringes are, in this case, just a factor of
two or three times as narrow as the single-mirror PSF, which helps the computer software
very much to find the high-resolution image. If one would use Fizeau interferometry for
mirrors that are very far away from each other (measured in units of the mirror size),
then each single-mirror PSF would be modulated by a very fine fringe pattern. While
this formally yields an angular resolution of a single fringe bump, it contains too little
information for computer software to “deconvolve” the image to the sharpness of the single
fringe bumps. This is not surprising since the two mirrors, even when accounting for field
rotation, would cover only a fraction of the surface area of the hypothetical huge mirror.
One can thus not reasonably expect to be able to create images anywhere near what one
would obtain with the huge mirror.

The solution would lie in using many such mirrors, each subjective to field rotation. In
fact, this is what is done in radio interferometry and in many areas of infrared interferom-
etery. However, the above computer technique to retrieve the high-resolution image would
then quickly become impractical: one would have to work with thousands of images, and
the methods becomes prohibitively slow. Instead, for such cases one resorts to different
techniques. But to understand those, we will have to have a closer look at the concept of
coherence.

3.2 Coherence in time

In reality astrophysical radiation rarely behaves as a perfect monochromatic wave front.
With the exception of laser/maser emission, most astrophysical emission is incoherent:
radiation emitted at one location does not care about radiation that has been emitted at
another location. Yet, the fact that light behaves as a wave shows that even if astrophysical
radiation is largely incoherent, some degree of coherence must automatically arise.

Let us do a simple thought experiment which is not mathematically strict, but illustra-
tive. Consider a long tube of hot gas. At the leftmost end an atom emits radiation through
the tube. This radiation is a wave, the electric field of which we denote by E1(x, t). In this

1A nice paper describing such computer methods to be used for LINC-NIRVANA is: Bertero & Boccacci
(2000) A&A Suppl. 144, 181.
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analysis we ignore the vector character of the electromagnetic field: we assume that it is
perpendicular to the direction of propagation (!E!̇k = 0, where !k is the wave vector), and
we focus on just one of the two polarization components. Next to it another atom emits
radiation, given by E2(x, t), and next to that E3(x, t) etc., until we reach atom N , the final
atom, which emits EN(x, t). We assume that all these radiation sources emit radiation of
the same amplitude A, but mutually non-coherent, so therefore all these waves have com-
pletely arbitrary phase compared to each other. In the complex plane this means we add
N vectors of equal length but arbitrary direction. Assume now also that over a long time
the phases of all these emitting particles gradually shift randomly, so that the sum vector
assumes various incarnations of the sum of N randomly oriented vectors of length A. Ac-
cording to standard statistics we know then that the average length of the resulting vector
√

〈E∗E〉 =
√

NA. The intensity I = 〈E∗E〉 = NA2. The intesity therefore scales linearly
with N , precisely what one would expect for incoherent emitters, and precisely what one
would expect for the particle-description of radiation: Each atom emits its own photons,
not caring about any other photons around; the photon chain obeys Poisson statistics2.
This is an example of how incoherent radiation still produces a wave which, in itself, has
some degree of coherence.

The above thought experiment only works, however, if the phases of the emitting
particles gradually drift, so that on average we get the

√
N behavior of the resulting

radiation. The question is: for how long will a wave keep its phase? In other words: what
is the distance along a wave for which one can assume phase stability? To study this, let
us introduce the autocovariance Γ(τ) of the wave, as measured at a given location for time
τ :

Γ(τ) ≡ 〈E∗(t)E(t + τ)〉 ≡
1

T

∫ T

0

E∗(t)E(t + τ)dt (3.1)

where t is time and T is sufficiently large that it can be considered “semi-infinite”, i.e. a long
time compared to one wave period. For visible light a measurement of one second already
amounts to about 1015 wave periods – “infinitely many” for most practical purposes. The
flux F in units of erg cm−2s−1, for the case of a (nearly) plane wave, is then

F =
c

4π
〈E∗(t)E(t)〉 =

c

4π
Γ(0) (3.2)

This is a real quantity, because Γ(0) has no imaginary component. However, Γ(τ) is in
general a complex quantity. Define the autocorrelation R(τ) as

R(τ) =
Γ(τ)

Γ(0)
(3.3)

Its amplitude tells how much the signal stays correlated over a time span of τ , i.e. how
much “phase memory” the signal has over that time span. The autocorrelation function
therefore allows us to define a typical coherence time τc for which |R(τ < τc)| ≥ 1/e.

Now coming back to our original question: What is the value of this coherence time?
Interestingly, the answer lies as much in the technique of observation as it does in the
process of emission. This is because the minimal coherence time is inversely proportional

2Keep in mind, however, that this example breaks down if the medium becomes optically thick, since
then stimulated emission becomes important even if no masering occurs.
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to the wavelength bandwidth at which we observe our astronomical signal. And for an
emission line it is also inversely proportional to the line width.

To see this, let us start with the utopic case of a perfectly monochromatic wave. In such
a case the phase memory is by definition perfect, and the amplitude of the autocorrelation
function R(τ) is 1 for all values of τ . This is because the Fourier transform of a delta
function is a perfect wave. However, if we would modify the wave slightly by introducing
a gradual loss of phase memory over the coherence time scale τc, the Fourier transform is
no longer a perfect delta-function. It will be a slightly broadened peak with a width:

∆ν &
1

τc
. (3.4)

In other words: a certain degree of incoherence is automatically related to a certain degree
of non-monochromaticness. By using a narrow wavelength filter in our telescope detector
we automatically increase the minimal coherence time. However, if we measure an emission
line which is narrower than our filter, then the actual coherence time is longer than that
set by our filter: it is set by the line width.

3.3 Coherence in time and space

Let us now generalize the notion of coherence to time and space. Consider two spatial
locations !r1 and !r2 where we measure the radiation field. We can now define the quantity

Γ12(τ) ≡ 〈E∗
1(t)E2(t + τ)〉 (3.5)

where E1 is a shorthand for E(!r1). Let us further define

R12(τ) =
Γ12(τ)

√

Γ11(0)Γ22(0)
(3.6)

If !r1 and !r2 lie along the wave vector !k (i.e. along the propagation of the light), then
the spatial coherence and the time coherence are in fact the same thing. Let is, in this
particular case, write R12(τ) as R(l, τ). We then have

|R(cτ, 0)| = |R(0, τ)| (3.7)

One can therefore, in this case, define the coherence length lc directly from the coherence
time τc: lc = cτc.

However, if !r1 and !r2 are not along the !k vector, then things become more complicated
and we need to visit the van Cittert-Zernike theorem.

3.4 Van Cittert - Zernike theorem

The van Cittert - Zernike theorem is named after Pieter Hendrik van Cittert (1889-?)
and Frits Zernike (1888-1966). Zernike was a professor in Groningen, the Netherlands,
and obtained the Nobel prize for physics in 1953 for the invention of the phase contrast
microscope. In its simplified version we will focus on here, the van Cittert - Zernike theorem
addresses the question of the degree of spatially coherence of emission from some object(s)
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Figure 3.2: Pictograms used for the derivation of the van Cittert - Zernike theorem. Left:
a source of a size smaller than the wavelength emitting pseudo-monochromatic radiation,
which is detected at two positions on the screen: position 1 and 2. Right: same setup, but
with the source moved away to very large distance so that the rays are effectively parallel.

on the sky impinging on a screen. The situation is pictographically shown in Fig. 3.2-left.
In this pictogram a small area located at the point marked “a” emits radiation, which
is received at locations “1” and “2”. We assume that the size of the emitting region
at “a” is roughly one wavelength of the emitted radiation. Later we will integrate over
zillions of regions “a”, but for now we just take a single emitting region. Let us write the
distance between the source and point “1” as d1 and define d2 likewise. We assume that
d1,2 ' |!r2 − !r1|, so that for many (but not all!) purposes we can use the average distance
d = (d1 + d2)/2.

Let us now assume that the emitting region “a” emits perfectly monochromatic radia-
tion at wavelength ν. The electric field at the location “a” can then be written as

Ea(t) = Aae
−2πiνt (3.8)

where Aa is a complex number that does not change in time. The electric field emerging
from this source falls off, as we know from electrodynamics theory, as |E| ∼ 1/d, i.e.
inversely proportional to the distance from “a”. In addition, there is a phase lag between
points “a” and “1” (or equivalently “2”) because of the fact that light emitted at time t
at point “a” will reach point “1” at time t + d1/c. The electric field at point “1” can thus
be written as

E1(t) &
√
∆Sa

d
Aa exp

[

−2πiν

(

t −
d1

c

)]

(3.9)

and likewise for E2(t). Here ∆Sa is the surface area of the emitting region at “a”. We used
d1 & d in the denominator of the above expression, but in the exponent we kept d1. But
why did we use the square-root of ∆Sa? This is because when we later integrate over many
emitting regions, we must account for the fact that these emitting regions are mutually
non-coherent. Analogous to the description in Section 3.2, when we add the emission of N
non-coherent regions, we get – on average – an electric field amplitude of

√
N times that

of a single region. The field in Eq. (3.9) therefore scales with
√
∆Sa.

Our purpose was to study the spatial coherence between points “1” and “2”, so let us
compute

〈E∗
1(t)E2(t)〉 =

1

T

∫ T

0

∆Sa

d2
A∗

aAa exp

[

2πiν

(

d2 − d1

c

)]

dt (3.10)

=
∆Sa

d2
A∗

aAa exp

[

2πiν

(

d2 − d1

c

)]

(3.11)
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For the special case of !r2 = !r1 we obtain the flux emerging from this emitting region and
measured at the screen:

F =
c

4π
〈E∗

1(t)E1(t)〉 =
c

4π

∆Sa

d2
A∗

aAa (3.12)

But if !r1 *= !r2 we must find a useful expression for the distance difference d2−d1. For this,
let us remind ourselves that d1,2 ' |!r2 − !r1|, so that the two rays are essentially parallel,
as shown in Fig. 3.2-right. The quantity L shown in the figure is the value of d2 − d1 that
we need. It is given by L = d1−d2 = |!r2−!r1| sin θ, where θ is the angle toward the source,
measured from the normal of the screen (see figure). We can write this more practically
using vector notation. The vector !n shown in the figure is a unit vector pointing toward
the source. We then have

d1 − d2 = !n · (!r2 − !r1) (3.13)

so that we can write the coherence as

〈E∗
1(t)E2(t)〉 =

∆Sa

d2
A∗

aAa exp

[

−2πiν

(

!n · (!r2 − !r1)

c

)]

(3.14)

The inner products are taken in 3-D. But if the screen is purely 2-D, we can cast this
inner product into a 2-D version. Let us take the z-axis to be perpendicular to the screen.
If we define !r ≡ !r2 − !r1 we thus have

!n · (!r2 − !r1) ≡ !n · !r = nxrx + nyry (3.15)

because rz = 0 as !r lies in the plane of the screen. We can now interpret (nx, ny) as a 2-D
vector describing the angular position of our emitting object on the sky and (rx, ry) as a
2-D baseline on the screen. We obtain

〈E∗
1(t)E2(t)〉 =

∆Sa

d2
A∗

aAa exp

[

−2πiν

(

nxrx + nyry

c

)]

(3.16)

This is, for the case of a single emitting area “a”, our final result for the moment. It shows
that the radiation fields between points “1” and “2” on the screen are perfectly correlated,
but have a phase shift of

δφ(rx, ry) = ν
nxrx + nyry

c
(3.17)

So far this is not really surprising, as it is what one would expect from a plane-parallel
wave impinging on the screen at an orientation !n.

But now let us integrate this result over an entire region on the sky, i.e. a continuous
series of regions “a”. To do this, we have to relate steps in nx and ny to the surface area
∆S:

dSa = d2dnxdny (3.18)

We thus get

〈E∗
1(t)E2(t)〉 =

∫

A∗(nx, ny)A(nx, ny) exp

[

−2πiν

(

nxrx + nyry

c

)]

dnxdny (3.19)

where A(nx, ny) now depends on nx and ny, as we now integrate over different regions on
the sky. Looking carefully at the above equation you may notice that this is in fact a
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2-D Fourier integral with rx/λ and ry/λ as the wave numbers in x and y direction (with
λ = c/ν). The integrand that is Fourier transformed is A∗(nx, ny)A(nx, ny), which is in
fact the intensity I(nx, ny). The correlation between points “1” and “2” is therefore the
Fourier transform of the image on the sky. This is the van Cittert - Zernike theorem, and
stands at the basis of interferometry.

3.5 Delay lines and the uv-plane

To reconstruct the image on the sky from interferometry measurements we must, according
to the van Cittert - Zernike theorem, measure the correlation of the electric field between
between as many pairs of points in the “pupil plane” as possible. With “pupil plane”
is meant the plane parallel to the wave front of the object we wish to observe. In Fig.
3.3 this is indicated with the dotted line. However, in practice our telescopes are usually
not located in the same plane, except for the LBT where both mirrors are on the same
mounting. One can solve this problem by effectively delaying the signal received by the
telescope closest to the source (the right one in Fig. 3.3) in a delay line. For optical
interferometers this is simply a tunnel with mirrors where the light is diverted into, such
that the path length of the light from both telescopes to the instrument (correlator) is
equal. Since the Earth is rotating and thus the relative projected distance between the
telescopes (called the projected baseline) changes accordingly, the length of the required
delay path in the delay line must be continuously adapted. At the VLT this is done with
mirrors mounted onto a “train” that moves steadily along a rails at a very precisely tuned
velocity. This must be a very high-precision device, since the delay path must be accurate
to within 1 µm over projected baselines of up to 200 m!

If we have N telescopes, then we need N − 1 delay lines to bring them all effectively
into the same pupil plane.

One may ask: why do we have to shift all telescopes into the same pupil plane? If
we have a perfect plane wave hitting our telescopes, we would have interference also if
the telescopes are several periods of the wave out of phase. A perfect plane wave always
interferes with itself since sin(φ) = sin(φ+ 2πn), even if n = 100000 or more. The answer
is related to the coherence length. As we saw in Section 3.2, if you measurement is done in
a finite-width wavelength band, then there is a finite coherence time τc, corresponding to
a finite coherence length along the direction of propagation lc = cτc. If two telescopes are
not brought to withing a distance lc from their mutual pupil plane, then the signals of the
two telescopes become decoherent, and interferometry is not possible. Taking too narrow a
band would mean that you receive a very weak signal, which could kill your interferometry
attempt. But the broader your band, the smaller lc becomes and the closer you have to
bring the two telescopes into their common projected plane.

Let us now define a common pupil plane for all N telescopes. The precise position of
this plane along the pointing direction (the direction perpendicular to the plane) is not
important (and in fact does not affect our measurements), so we just choose one.

Now define a coordinate system in this plane: (x′, y′). Again, the precise location of
their zero-points are not important. We now want to measure 〈E∗

1(t)E2(t)〉 in the entire
pupil plane, and thus obtain a two-dimensional function

CorrE(x′
1, y

′
1, x

′
2, y

′
2) = 〈E∗

1(t)E2(t)〉 (3.20)
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Figure 3.3: Principle of an interferometer with delay lines to effectively “shift” the tele-
scopes into a common “pupil plane”. In this example the right telescope is, by the delay
line, effectively shifted back to the dotted plane.

Since 〈E∗
1(t)E2(t)〉 will depend not on the absolute positions of our telescopes, but only on

the relative positions x′
12 = x′

2 − x′
1 and y′

12 = y′
2 − y′

1:

CorrE(x′
12, y

′
12) = 〈E∗

1(t)E2(t)〉 (3.21)

It will turn out to be more convenient to measure these coordinates in units of the
wavelength:

u :=
x′

2 − x′
1

λ
and v :=

y′
2 − y′

1

λ
(3.22)

This is what is called the uv-plane. It is actually nothing else than the pupil plane, scaled
such that one wavelength corresponds to unity.

If we want to be able to reconstruct an image of an object on the sky, then we must
measure

CorrE(u, v) = 〈E∗
1(t)E2(t)〉 (3.23)

at as many (u, v) points as possible. In other words, we must have a good uv-coverage.
If we have N telescopes measuring simultaneously, then we have N(N − 1)/2 indepen-

dent baselines. Note that the projected baseline corresponding to (u, v) is the same as the
one corresponding to (−u,−v). Now, the projected baseline on the sky changes with time,
because the Earth rotates. This means that each baseline describes an elliptic curve in
the uv-plane, and therefore you get multiple (u, v)-points (multiple projected baselines)
for a single two-telescope baseline on the ground. If you measure over a substantial part
of the night, you therefore get a much better uv-coverage as when you do a single short
measurement.
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Ideally we must cover the uv-plane perfectly, but this is never possible. We will discuss
how to make sense out of measurements with imperfect uv-coverage in Section 3.9. But
let us first have a look at how to measure 〈E∗

1(t)E2(t)〉 in the first place.

3.6 Measuring “fringes”: The “visibility” of an inter-

ferometric signal

Once we have, using delay lines, effectively shifted a pair of telescopes into their common
pupil plane, we can try to measure the correlation of their signals. While in optical
interferometry each telescope receives a full image, in radio interferometry a telescope
typically receives just a single analog signal (i.e. one single “pixel”). Let us, in this section
and the next, focus on the case where we are dealing just with a single pixel and we have
to measure the correlation between these signals, as they are received by two or more
telescopes.

Strictly speaking we could record the exact wave pattern of E1(t) and E2(t), where 1
and 2 stand for telescope 1 and telescope 2, and t is such that they are measured in the
same pupil plane (i.e. with delay included). Having both signals, we could then calculate
〈E∗

1E2〉 directly using Eq. (B.38) with τ = 0. If we would do this (which is impractical, and
for optical interferometry even physically impossible), then we would have at any given
time t absolute phase information: we know the exact value of E1 and E2 at time t. This
information is, however, useless, because with time the phase changes rapidly (it changes
2π for each time interval ∆t = 1/ν). We are more interested in the relative phase between
the two telescopes. This gives information about the exact position of a source on the sky.
In fact, this is exactly one of the two pieces of information in the complex number 〈E∗

1E2〉:
writing this as Aeiφ the φ is this relative phase. If one can measure this, then one can do
astrometry at ultra-high precision.

In practice one never records the precise wave functions E1(t) and E2(t). One uses
other techniques. One often used technique (in particular in radio interferometry, but
also in infrared interferometry sometimes) is the technique of heterodyne interferometry,
which we will deal with in Section 3.11. But to understand the principles of long-baseline
interferometry (here defined as interferometry with telescopes that are not on the same
mounting), we keep it a bit more simple for the moment.

The simplest way to measure the correlation between the two signals is to simply let
them interfere: We redirect both signals onto a single device that measures the square
amplitude of the sum of the signals:

S12 = 〈[E∗
1(t) + E∗

2(t)][E1(t) + E2(t)]〉 (3.24)

This is what you would get in optical interferometry if you simply let the two signals
interfere on a CCD camera: you measure the intensity of the signal, i.e. the amplitude-
squared of the sum of the signals. It is also what you get if you measure the energy output
of two electric signals from two radio telescopes linked together. We can measure such a
signal with standard technology (e.g. a CCD for optical interferometry). Note that Eq. 3.24
can be regarded as the spatial structure function of E(x′, y′, t) where (x′, y′) are the two
spatial coordinates in the pupil plane, and E1(t) ≡ E(x′

1, y
′
1, t) and E2(t) ≡ E(x′

2, y
′
2, t).
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To get from the measured quantity S12 to the desired quantity 〈E∗
1E2〉, we write:

S12 = 〈[E∗
1(t) + E∗

2(t)][E1(t) + E2(t)]〉
= 〈E∗

1(t)E1(t)〉 + 〈E∗
2(t)E2(t)〉 + 〈E∗

1(t)E2(t)〉 + 〈E∗
2(t)E1(t)〉

(3.25)

The first two terms are simply the intensity of the object measured by each telescope:
S1 = 〈E∗

1(t)E1(t)〉, S2 = 〈E∗
2(t)E2(t)〉. If both telescopes have the same diameter, these

are the same, and we simply write S = 〈E∗E〉. We can measure this quantity simply by
shutting out one of the telescopes and measuring the signal, which is then S. Eq. 3.25
thus becomes

S12 = 2S + 〈E∗
1(t)E2(t)〉 + 〈E∗

2(t)E1(t)〉 (3.26)

The last two terms are the correlation and its complex conjugate. This is the quantity we
need. So if we evaluate S12 − 2S we obtain 〈E∗

1(t)E2(t)〉 + 〈E∗
2(t)E1(t)〉 which is nearly

what we need. To obtain exactly what we need (the complex number 〈E∗
1(t)E2(t)〉, not

just its real part) we can write

〈E∗
1(t)E2(t)〉 =: A12e

iφ12 (3.27)

where A12 is a real number (the amplitude of the correlation) and φ is the relative phase.
We obtain

〈E∗
1(t)E2(t)〉 + 〈E∗

2(t)E1(t)〉 = 2A12 cos(φ12) (3.28)

We see that Eq. 3.26 becomes

S12 = 2S + 2A12 cos(φ12) (3.29)

If the two signals are totally decoherent, then A12 = 0, and we measure S12 = 2S. If they
are perfectly coherent (if we measure a point source on the sky), then A12 = S. In that
case we measure S12 = 2S[1 + cos(φ12)].

So how do we get from Eq. 3.29 to the complex number 〈E∗
1(t)E2(t)〉 that we need?

This is a bit subtle. If we do a single measurement of S12 and S, then we have one real(!)
equation (Eq. 3.29) for two real unknowns (A12 and φ12). So we do not have enough
information to fully reconstruct the complex value of 〈E∗

1(t)E2(t)〉.
To solve this impasse, we can do a trick: we slightly change the length of the delay line

to induce an extra phase difference between the two telescopes. Let us call this artifically
induced phase difference δφ. If we scan over a few wavelength by changing δφ smoothly,
we will see that S12(δφ) will follow a cosine-like curve with an offset:

S12(δφ) = 2S + 2A12 cos(φ12 + δφ) (3.30)

From this so-called fringe pattern we can read off the offset (which should be, and will be
exactly 2S) and the amplitude of the cosine, which is the value of 2A12. In formulae: we
read off the maximum value of S12(δφ), and call it Smax, and the minimum of S12(δφ), and
call it Smin, and we then have

A12 =
Smax − Smin

4
(3.31)

Strictly speaking, we can now go back to the real pupil plane (δφ = 0), and then we
obtain the relative phase φ12 by solving

cos(φ12) =
S12/2 − S

A12
(3.32)
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For any given domain of length 2π this has two solutions, but since we have, by varying
δφ, scanned the fringe pattern, we can figure out which of these two we must take. In this
way we have, at least in principle, found the phase difference between telescopes 1 and 2.
But in most practical circumstances in infrared interferometry this an extremely unreliable
quantity. One reason is that it is hard to calibrate an interferometer so accurately that we
can find the exact pupil plane, or in other words: to find the exact length of the delay line
required to bring both telescopes exactly to a known projected distance from each other.
Remember that for IR interferometry we would have to do this to within a fraction of a
micron, while the telescopes have distances of up to 200 meters for the VLT! In principle
this would be not impossible, but in practice this is very hard. But an even more dramatic
problem is the turbulence of the atmosphere: as we have seen in Chapter 2, turbulence
induces phase shifts. These will be different (and mutually uncorrelated) for the different
telescopes, because the telescope separation is usually larger than the Fried length r0.

For radio interferometry one can measure the phase difference φ12 between two tele-
scopes if the relative positions of the telescopes are known to an accuracy well within a
wavelength distance.

In most circumstances, when observing a source with an interferometer, one tries to find
the pupil plane (i.e. find the right delay length) by making an initial good guess and then
tuning it (i.e. moving δφ12 over many, many wavelengths) until you find a fringe pattern.
Once you found a fringe pattern, you know that you are within one coherence length from
the pupil (see Section 3.3). That is usually the best you can do. Keeping this (unknown)
distance from the pupil plane fixed can be done much more accurately. Special devices
that continuously fine-tune the mirrors in the delay line (using piezo-electric element) are
called fringe trackers.

In conclusion: what we have measured is A12, but not φ.
The quantity A12 is what is called the correlated flux and obeys

0 ≤ A12 ≤ S (3.33)

One can thus split the flux S into a correlated part (A12) and an uncorrelated part (S−A12).
Professional interferometrists also often use what they call the visibility V12 (nevermind the
confusing name), which is

V12 =
Smax − Smin

4S
=

A12

S
(3.34)

(see Eq. 3.31). All these quantities can be directly measured in the manner described
above.

Also often the complex visibility is used, which is defined as

V12 =
〈E∗

1(t)E2(t)〉
S

=
A12eiφ12

S
(3.35)

which is, as we now know, not directly measured with the techniques in this section: Only
its amplitude A12 is measurable in that way. So for optical and infrared interferometry typ-
ically only the visibility amplitude (and the closure phases, see Section 3.8) are measured.
In radio interferometry, on the other hand, the phase φ12 is measureable since we can know
the positions of the telescopes accurately enough and (for not too long wavelength) the
atmospheric phase shifts are manageable.
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3.7 Examples of visibility signals of simple objects

TO BE DONE

3.8 The “Closure phase”

By comparing predicted visibilities (more precisely: visibility amplitudes) of simple models
with measured visibilities at different (u, v) we can already obtain some information about
what the object on the sky looks like (Section 3.7). But can we also reconstruct an entire
image on the sky from measurements of the visibility in the uv-plane? The answer is: no.
We would need the full complex visibility V(u, v) instead of only its amplitude V (u, v).
The amplitude information V (u, v) tells us which Fourier components are in our image,
but not their position (phase), and thus we cannot do the inverse Fourier transform unless
we have phase information.

For radio interferometry we measure the complex visibilities (amplitude and phase), but
for infrared interferometry we typically only know their amplitudes. So how to solve this
problem? Remember that we can measure some phase for each baseline using Eq. 3.32,
but that we rejected it because it was fraught with uncertainty. But if we study this
uncertainty more carefully, we can do a trick to overcome this problem at least partially.

Suppose we have three telescopes (1, 2 and 3). Let us quantify the (unknown) phase
error of each telescope with ε1, ε2 and ε3, respectively. If we measure the phases φ12, φ23

and φ31 using e.g. Eq. 3.32 we obtain the following measurements:

φmeasured
12 = φ12 + ε1 − ε2 (3.36)

φmeasured
23 = φ23 + ε2 − ε2 (3.37)

φmeasured
31 = φ31 + ε3 − ε1 (3.38)

where φ12, φ23 and φ31 are the real phases (assuming no atmosphere and no instrument
errors). If we would know ε1, ε2 and ε3, then we would be able to retrieve these real phases
from the measured phases. But since we do not know these phase errors, we cannot do
this. This is in fact what we concluded in Section 3.6 and was the reason why we rejected
the use of Eq. 3.32 to find the phases.

However, if we take the sum of Eqs. 3.36, 3.37, 3.38, then we obtain

φ123 ≡ φ12 + φ23 + φ31 = φmeasured
12 + φmeasured

23 + φmeasured
31 (3.39)

This is called the closure phase. As one can see: all unknown errors have dropped out,
so it is a reliable quantity. The closure phase contains information about depature from
point-symmetry. Any object on the sky that is perfectly point-symmetric (e.g. an ellipse)
will have zero closure phase.

The closure phase has a very important property: It is not affected by phase shifts due
to turbulence in the atmosphere or tiny inaccuracies in the positions of the telescopes.

For an interferometer with N baselines, we can determine the closure phase φijk between
each triple of telescopes i, j and k. Now suppose we assume the phase between 1 and 2
and between 1 and 3 to be zero (assuming that the telescopes 1, 2 and 3 are not aligned
along the same line as projected on the sky), then by measuring the closure phase φ123 we
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can calculate φ23 = φ123. Now add one telescope, number 4, and measure φ124 and φ234.
Since we know φ12 and φ23 we obtain the equations

φ12 + φ24 + φ41 = φ124 (3.40)

φ23 + φ34 + φ42 = φ234 (3.41)

which is two equations with two unknowns (φ41 and φ42). So we now know again the
relative phases at all baselines. In fact, since we now have N = 4 telescopes, we have 6
baselines, and for all these baselines we have the amplitude and phase information, albeit
that we made an assumption for two of the phases. This assumption for these two initial
relative phases amounts to an assumption for the position of our object on the sky (which
is two coordinates). So apart from this freedom to shift our image anywhere on the sky, we
have now obtained all amplitude and phase information we need. In other words: we have
(excluding the two assumed phases): N(N −1)/2 visibility amplitudes and N(N −1)/2−2
pieces of phase information.

Since the value of S is the same for each baseline pair, we can say that an interferometer
array of N telescopes gives N(N − 1)/2 values of the complex visibility V (of which two
of the phases have been chosen ad-hoc) and one value of the total flux F (which is S
divided by the telescope aperture size). Of course, in this calculation it is assumed that
none of the baselines are duplicates of each other, which is not generally guaranteed. For
instance, the Westerbork telescope or the VLA have telescopes arranges in regular spacing.
If you have for instance three telescopes in a row, and the distance between telescope 1
and 2 is the same as that between 2 and 3, then in effect you have not 3, but just 2
independent baselines. Also, keep in mind that V(u, v) = V∗(−u,−v), so that when you
obtain N(N − 1) complex visibilities, you get the ones oppose of the origin for free. In
that sense one has in fact N(N − 1) complex visibility points, but only half of them are
independent.

3.9 Image reconstruction: Aperture synthesis and the

CLEAN algorithm

When we do interferometry in the above described way, by measuring visibilities and
closure phases, and thus constructing a set of N(N − 1)/2 independent complex visibility
points V(u, v) plus their mirror copies V(−u,−v), we may have the information we need
in order to apply van Cittert-Zernike theory to reconstruct the image, but in practice this
is not so trivial. The problem is that we never have a perfect coverage of the uv-plane.
And in order to perform the integrals of the Fourier transformation, we would in fact need
a full coverage.

If we would have a nice and regular uv-coverage, for instance a perfectly rectangular
grid in (u, v), then we could use the Fast Fourier Transform algorithm (see Section A.5) to
obtain our image on the sky. But we rarely have the complex visibilities measured on such
a regular grid in the uv-plane. In practice we have irregular spacings and certain uv-areas
where there is little or no sampling at all. The complex visibility in these “holes” could be
anything; we simply have no information about that. We could put the complex visibility
in these “holes” to zero and linearly interpolate between nearby measurements in regions
with sufficient sampling. What we then get, after Fourier transformation, is an image of
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the sky that is quite messy. Such an image is called a dirty image. It is in fact the true
image convolved with the PSF corresponding to the uv-coverage. This PSF is called the
dirty beam, because this PSF, due to the “holes” in the uv-coverage, has many sidelobes.
A single point source on the sky will thus appear as a point source surrounded by weaker
point sources, some of which can actually be rather far away from the actual point source.
For reasonable uv-coverage these sidelobes are usually substantially weaker than the main
peak, but they still mess up the image pretty much.

People have tried many different ways to “guess” the visibility between measurement
points in order to get the best possible image out of it after Fourier transformation. But
in practice most of these methods have drawbacks that can be substantial. A radically
different approach was proposed in 1974 by Högbom (see literature list). In this paper
it was proposed to make a dirty image using one’s best guess of the inter-measurement
complex visibility values. Call this image A. Also make an image B which we initially
make empty. Now do the following procedure, which is called the CLEAN algorithm:

1. Find the highest peak in the image A

2. Fit the peak of the dirty beam to this peak

3. Subtract this properly normalized dirty beam from the image A

4. Add a clean beam with the same strength at the same position in image B

5. Go back to 1 until we hit the noise level

The clean beam is a simple Gaussian-shaped peak with the same width as the main peak
of the dirty beam. Also the shape of the clean beam can be made elliptic so as to account
for the different spatial resolution one typically has in different directions (e.g. if a source
is near the horizon). The above scheme is a slightly simplified version of the actual CLEAN
algorithm, but it shows the principle.

The CLEAN algorithm works very well if the object on the sky is a collection of point
sources. If it is, on the other hand, a rather smooth configuration it may work less well.

Also note that the typical lengths of the projected baselines determines to which typical
sizes of features of your object on the sky you are sensitive to. If you have only very long
baselines, then you may see small-scale details, but you miss large scale structures. The
CLEAN procedure, by adding one clean beam at a time to your image until you reach noise
level, will thus simply not add any large scale structure to your image. If the object
does have large scale structure, then the integrated flux of the image the CLEAN procedure
produces will be less than the measured integrated flux (measured from the single telescope
signal S). By comparing the flux retrieved in the clean image with the single telescope
flux you can estimate how much large scale structure is missing.

The full cycle of observing the complex visibilities, filling the uv-plane and reconstruct-
ing the image in the image plane using e.g. the CLEAN algorithm is called aperture synthesis
or synthesis imaging.

3.10 Primary beam and coherent field of view

If we point our interferometer at the sky we have a spatial resolution of θi = λ/L, where L
is our largest projected baseline. However, we cannot know for sure that we are measuring
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exactly a single object: the object we want to observe. We may be accidently picking up
also another nearby object or objects. We must therefore go a bit more into detail of what
we are actually seeing with our interferometer.

First of all, we have the field of view of each of the telescopes individually. Let us define
the radius of this field of view as θf . For infrared or optical telescopes this is typically much
larger than the telescope resolution, θb = λ/D, though this may vary between instruments
used on that telescope, and even between different modes of the same instrument on the
same telescope. At any rate: the field of view is larger than the size of the PSF: θf ' θb.

With radio telescopes, on the other hand, the PSF of a single telescope (here often
called the “primary beam”, hence our use of the index b in θb) is usually so wide, that
not more than a single “pixel” is in an “image”. That is: each telescope simply measures
one signal, not an image with multiple pixels. For millimeter-wave telescopes we are in
an intermediate regime where a single telescope still has a small enough primary beam
that low-resolution “images” can be made. For instance, the SCUBA-2 instrument on the
15-meter James Clerk Maxwell telescope (JCMT) has a 32x40 detector array, sensitive to
450 µm and 850 µm radiation. Each pixel on the detector has a size of 0.11 cm, not much
more than the wavelength of the radiation it is measuring. However, for radio telescopes
with much longer wavelengths the “pixels” get also proportionally larger. For instance, for
λ =21 cm (the neutral hydrogen hyperfine structure line) the minimum size of a resolution
element on the focal plane is of the order of 21 cm, but in practice even larger. For
that reason, rather than trying to make multi-pixel images with a single radio telescope,
an image is usually obtained through scanning: each pointing of the telescope delivers a
single “pixel” of the image. The field of view of each individual pointing is then in fact
the same as the beam size: θf & θb.

In the analysis of Sections 3.6, 3.8 and 3.9 we measured the interference between the
primary beam of telescope 1 with the primary beam of telescope 2. Both beams must
be pointing at the same object to within an accuracy of at least θb, of course, otherwise
no interference can be expected. But in addition the the object we are interested in, any
other objects in this primary beam may also participate in the interference. The question
is: will the flux from some additional source at an angular distance θ from our source of
interest (with θ smaller than the beam size) constructively interfere with our object, or
will it simply dilute the coherence? Or equivalently: if we have two point sources A and
B, separated by θ but both inside the primary beam, will they still interfere with each
other, or are they too far apart to interfere? This is a concrete question, because there
is an angular distance θc beyond which no interference is possible: the signals become
decoherent. This is related to the fact that if we have a projected baseline length of L and
we use e.g. source A to define our “pupil plane” (phase difference 0), then the wave front
from source B has an angle with respect to the pupil plane that translates into a distance
difference of l = Lθ. If that distance is larger than the coherence length, then the two
sources A and B cannot interfere with each other. Thus θc = lc/L. With Eq. (3.4) and
lc = cτc we thus obtain

θc =
c

L∆ν
=
λ

L

ν

∆ν
=

λ2

L∆λ
≡ θi

λ

∆λ
≡ θb

D

L

λ

∆λ
(3.42)

Let us call this the coherent field of view. According to Eq. (3.42) this coherent field of
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view can be smaller than the primary beam if:

∆ν

ν
≡

∆λ

λ
!

D

L
(3.43)

For sufficiently narrow bandwidth and sufficiently large dishes (or small baselines) we need
not worry about the coherent field of view, as long as our source (or multi-source object)
is smaller than the primary beam. But for very broad bandwidth or very large baselines
we may need to worry about this. We can also see from Eq. (3.42) that the coherent field
of view θc is larger than the interferometer resolution θi by a factor

θc
θi

=
ν

∆ν
=

λ

∆λ
(3.44)

So if we, for example, wish to perform interferometery in the N band, and taking the full
N band (from 8 to 13 µm roughly) for our interferometry to gain sensitivity, then we have
λ/δλ &2, meaning that our coherent field of view is just twice as large as the resolution of
our interferometer!

3.11 Heterodyne receivers

In radio interferometry the technology of heterodyne receivers is usually used. The idea
is to convert the frequency of the incoming signal to a lower frequency that can be bet-
ter handled, more easily amplified etc. This technique is also common in everyday life:
typically radio or television receivers use this technology.

So how do we convert a signal at frequency νs to some intermediate frequency ν0 , νs?
We follow the discussion in the book by Thompson here (see literature list). Let us write
the source signal at frequency νs as Vs(t), which stands for the electric voltage in our
receiver induced by the source on the sky that our antenna is receiving. This is obviously
a very tiny voltage, as we wish to observe weak sources on the sky. Let us assume that
this is a cosine wave:

Vs(t) = Vs,0 cos(2πνst + φs) (3.45)

where φs is simply some offset phase.
Now introduce a local oscillator: a device that produces a voltage Vlo(t) at some (dif-

ferent) frequency νlo:
Vlo(t) = Vlo,0 cos(2πνlot + φlo) (3.46)

Typically this voltage is much larger in amplitude than Vs(t). But it has (or better:
should have) a very high phase stability. Typically νlo is chosen to be fairly close to νs, i.e.
|νlo − νs| , νs.

If we now add Vlo(t) to our source signal Vs(t) (this is called mixing) we get a signal
that behaves like a modulated cosine: A cosine with an amplitude “envelope” that changes
at a beat frequency νbeat = |νs − νlo|. While this beat frequency is now much smaller (and
thus much more easily managable) than the original νs, this does not yet help us much,
because this modulation is only an apparent wave, not a real one. To get a real signal at
this beat frequency one must introduce some non-linearity in our electric circuit.

Suppose we put our mixed voltage signal on one end of a diode for which we know that
the resulting current I is a highly non-linear function of the input voltage V (in its most
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extreme case I = 0 for V < 0 and I = V/R for V > 0, where R is some resistance in front
or behind the diode). Let us use a power series to model this non-linearity:

I(t) = a0 + a1V (t) + a2V (t)2 + a3V (t)3 + · · · (3.47)

The first two terms are simply the linear response, and will just yield the amplitude-
modulated cosine wave of the mixed signal. This is not interesting for us. But the quadratic
term is interesting:

V (t)2 = [Vs(t) + Vlo(t)]
2 (3.48)

= [Vs,0 cos(2πνst + φs) + Vlo,0 cos(2πνlot + φlo)]
2 (3.49)

= V 2
s,0 cos2(2πνst + φs) + V 2

lo,0 cos2(2πνlot + φlo) + (3.50)

2Vs,0Vlo,0 cos(2πνst + φs) cos(2πνlot + φlo) (3.51)

(3.52)

The first two terms are signals at the original νs and νlo frequencies and are not interesting
in our quest for an intermediate frequency conversion of our source signal. But the last
term contains the multiplication of our two waves, and here something interesting happens.
Let us write out this last term:

last term = 2Vs,0Vlo,0 cos(2πνst + φs) cos(2πνlot + φlo) (3.53)

= Vs,0Vlo,0 cos
[

2π(νs + νlo)t + φs + φlo

]

+ (3.54)

Vs,0Vlo,0 cos
[

2π(νs − νlo)t + φs − φlo

]

(3.55)

So here we see that we now obtain the sum of two cosine waves at frequencies νs + νlo and
νs − νlo respectively. These are not modulations, but actual signals at these frequencies. If
|νlo−νs| , νs, then only the second of these terms (the one with νs−νlo) will be interesting
to us, because this gives a signal at a much lower frequency than the original frequency νs.

We now put this signal through a frequency filter that selects the frequency ν0 = |νs−νlo|
(which is traditionally called the intermediate frequency) with some bandwidth ∆ν0 and
damps out all other modes (including the local oscillator and the signal itself, as well as
the νs + νlo frequency signal and any other signal not falling in the range ν0 ±∆ν0/2). We
then obtain the desired frequency-reduced signal:

I0 = a2Vs,0Vlo,0 cos
[

2π(νs − νlo)t + φs − φlo

]

(3.56)

For interferometry this equation has a very important property: The phase φs of the input
signal is still conserved. If we later want to interfere this signal with a signal from another
telescope that has a phase φt, then the phase difference between the signals, φt−φs, is still
the original one, in spite of the mixing with the local oscillator and the down-grading of the
frequency from νs to the intermediate frequency ν0 , νs, provided that our local oscillator
has a very high phase stability so that we can remove the phase difference in φlo from this
final phase difference. The conservation of phase means that if we do interferometry with
the intermediate frequency signal, we still get the same interference! We can thus safely
use the intermediate frequency signal for any further interferometry dealings.

We are now almost there, but there is one more thing we have to clarify. Typically
we do not receive a single-frequency signal from the sky. We receive a spectrum. The
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question is now: given some local oscillator frequency νlo and some filter at frequency ν0
and bandwidth ∆ν0, which signal frequencies νs are we going to be sensitive to? The
answer is: any νs for which ν0 = |νs − νlo|. This gives two solutions:

νs = νlo ± ν0 (3.57)

each with bandwidth ∆νs = ∆ν0. Since ν0 , νlo this creates two sensitive bands that are
close together in frequency. These are called the lower sideband and the upper sideband.
This means that the intermediate frequency signal we work with is a mixture of the signals
at two nearby frequencies. This is usually not what we want. Thus we need to filter out
one of the sidebands before the mixer, so that we are only sensitive to the other sideband.

From here on, everything we learned about long baseline interferometry can now be
applied to his intermediate frequency signal.

3.12 When telescope size is not negligible compared

to the baseline

If we perform true long baseline interferometry, where b ' D, we can ignore the finite
size of the individual telescope apertures, and regard our visibility measurement as a
measurement at a single (u, v) position. If, however, we put our telescopes so close to each
other that b is only a few times their diameter (possibly even down to b = D where the
mirrors touch each other, but typically at somewhat larger distance), then we have to have
a closer look at what we are doing. We already saw in Section 3.1 an example of such a
situation: The LBT in Arizona, where two 8.4 meter telescope are arranged in a baseline
of 14.6 meters, i.e. there is merely 6.2 meters between the edges of the mirrors. If we
combine the light of the two telescope at the image plane (Fizeau interferometry), we have
already seen that we get a PSF which is a single-mirror PSF with a fringe pattern on top.
We obtained this pattern simply by Fourier transforming a wave front passing through our
double-pupil:

Image = |F [E](!x)|2 (3.58)

where E(x, y, pupil) = 0 there where (x, y) is not part of the double-pupil. If the wave
passing through the double-pupil is a plane wave, the function E(x, y, pupil) depicts the
shape of the double-pupil (see Fig. 3.1-left), and the image is the PSF (see Fig. 3.1-right).

We can now link this “Fizeau inteferometry language”, where we think in terms of the
PSF in the image-plane, to “long baseline interferometry language”, where we think in
terms of measuring the autocorrelation of the radiation field in the pupil-plane. We do
this by using the spatial version of the Wiener-Khinchin theorem (Eq. B.10 of Appendix
B.1), applied to the wave:

Image = |F [E](!x)|2 = F [Corr[E, E]](!x) (3.59)

In other words: the image on the image plane is in fact the Fourier transform of the
autocorrelation function in the pupil plane! If we compare this to what we learned from
the van Cittert-Zernike theorem, this makes perfect sense: the image plane is indeed a
projection of the sky, and we already knew that the Fourier transform of the autocorrelation
function in the pupil plane represents the image on the sky.

43



Figure 3.4: Left: the PSF of the Large Binocular Telescope (identical to Fig. 3.1-right).
Right: The Fourier transform of this PSF back to the pupil plane.

By applying an inverse Fourier transform to Eq. 3.59 we get

Corr[E, E](!u) = F
[

|F [E](!x)|2
]

= F [Image] (3.60)

If we have a plane wave hitting our pupil, then the “Image” is the PSF, so the above
equation then gives the autocorrelation of the pupil. This function is called the modulation
transfer function (MTF). Remember, by the way, the telescope transfer function, Eq. 2.54.
It is the same thing. Here we just apply it to the two-mirror system as a whole.

Let us apply Eq. 3.60 to the PSF we obtained for the LBT (Fig. 3.1-right). So we Fourier
transform the PSF (which itself is the absolute-value-squared of the Fourier transform of
the pupil) to the pupil plane. What we get is shown in Fig. 3.4. Note that we Fourier
transform the image-plane electric field squared 〈E∗E〉, not the image plane field E itself,
otherwise we would have obtained Fig. 3.1-left back. Instead, we now obtain a triplet
of blobs, partly overlapping each other, and each being the “brightest” in their center
and dropping off toward their edge. The middle blob corresponds to all possible vectors
!r connecting two points on the same mirror, while the two sidelobes correspond to all
possible vectors !r connecting one point on one of the mirrors with another point on the
other mirror.

Contrary to the pupil shape function shown in Fig. 3.1-left, the autocorrelation function
in Fig. 3.4-right is not a constant function over some area and dropping to zero outside of
that area. Instead, the blobs are centrally bright and fade toward their periphery. This
has a simple explanation: some vectors !r connecting two points on the double-pupil may
“fit” to a much more limited set of pairs of points on the pupils than others. For instance
for a single LBT mirror (8.4 meter diameter) a separation of 8.4 meter (|!r| = 8.4m) is
only represented by pairs of points on the telescope edge that are diametrically opposite,
while if (|!r| = 1cm) almost every point !x on the mirror has a point !x + !r that is also on
the mirror. This means that the autocorrelation function is much better sampled at small
!r than at large !r. A similar reasoning holds for the !r vectors that link a point !x on one
mirror to a point !x + !r on the other mirror: hence also the “sidelobes” in Fig. 3.4-right
fade toward their periphery.

Now here we see a difference between the Fizeau-style measurements of Corr[E, E] and
the long-baseline-style measurements of Corr[E, E]; a difference that becomes apparent
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when the mirrors are close together. For Fizeau interferometry for closeby telescopes
the true Corr[E, E] function (before entering the aperture of our pair of telescopes) is
strongly modulated by the finite size of the telescope. For ideal long-baseline interferometry
(zero telescope diameter) we actually measure the true Corr[E, E] function without this
modulation. In principle the measurement of the fringes of the image-plane image of our
Fizeau interferometer represent a measurement of Corr[E, E] in the pupil plane, but instead
of measuring a single (u, v) point, we measure a non-trivial integral of Corr[E, E] values
modulated by the modulation transfer function shown in Fig. 3.4-right. If we now push the
telescopes apart (of course keeping their diameter fixed), then the blobs in Fig. 3.4-right
also move apart (while staying the same size). By measuring the fringes, we in fact measure
the Corr[E, E] in the two “side-lobes” of Fig. 3.4-right, which now become more and more
point-like compared to their distance from the origin. We thus approach the long-baseline
interferometry-style measurement of Corr[E, E].

3.13 Pupil-plane versus image-plane interferometry

The modulation of the autocorrelation function with the MTF, discussed in Section 3.12,
applies to the case when we combine the light of the two telescopes directly on the image
plane. However, one can also combine the light of the two telescopes at the pupil plane.
The idea is to create an exit pupil for each telescope, which is a miniature version of the
telescope entry pupil (aperture), and now overlay the two exit pupils of the two telescope
precisely over each other by using a beam combiner. The result is a wave at the combined
exit pupil that is the direct sum of the waves in the two entry pupils.

Ecombined(!x
′) ∝ E(!x) + E(!x + !r) (3.61)

where !x′ is the scaled-down exit-pupil version of the !x on the primary mirror (entry pupil)
and !r is the baseline vector connecting the two telescopes. In other words: by combining the
beams in the pupil plane instead of in the image plane, you get interference always between
a position on one primary mirror with the equivalent position on the other primary mirror.
This means that we are now measuring interferometry truly at a single (u, v) point, in spite
of the non-negligible size of the telescope. And since both mirrors are of the same shape
and size, there is no modulation of the correlation function by the telescope system. If we
observe a single unresolved point source on the sky, what we observe on the image plane is
that the entire PSF fades and brightens as you make slight changes of the delay between
the two telescopes. This is indeed the fringe pattern we encountered in the long-baseline
interferometry and we can thus measure the visibility.

Pupil-plane beam combining and image-plane beam combining both have their advan-
tages and disadvantages. The nice thing about image-plane interferometry is that one gets
true images, if one manages to “deconvolve” the measured images with the Fizeau PSF. It
does not suffer from the field-of-view limitation due to decoherence. But it requires very
good adaptive optics to work, and it only works well for telescope pairs that are close, i.e.
the gain in spatial resolution is moderate. The nice thing about pupil-plane interferometry
is that it does not suffer from the non-trivial MTF of the pair of telescopes, and it can
handle very large baselines and thus obtain incredible spatial resolution. But the field of
view is limited by decoherence if the wavelength band δλ is large (which is usually only a
concern in infrared and optical interferometry, less so in millimeter/radio interferometry).
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And also each measurement is just a single (u, v) point, and one needs many baselines to
construct a decent image.
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