
Chapter 2

Atmospheric turbulence: “Seeing”

The Earth’s atmosphere can be regarded as a dielectric medium which affects the radia-
tion that passes through it. Not only does it absorb and emit radiation, it also refracts
radiation. The air at 0 Celcius at 1 bar has in the optical a refractive index of about
n = 1.00029. It is very close to 1, so air is almost as good as vacuum, but not quite.
Patches of air of different temperature can lead to slight under- or over-densities of the
air, leading to slight refraction. Since these patches of air move, the refraction changes
all the time. This leads to slight variations of the position of stars on the sky, often the
appearance of multiple “copies” of the same star close together (called speckles) and to
slight variations in the brightness, (called scintillation). The latter is what we know as the
“twinkling” of stars at night. All these phenomena also are wavelength-dependent, which
is why the twinkling of stars is also often accompanied by variations in their color. In this
chapter we will discuss atmospheric turbulence and the effects it has on imaging with a
telescope. The lecture material in this chapter is heavily based on lecture PPT slides of
A. Quirrenbach and on the literature below.
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P. Léna, F. Lebrun, F. Mignard, “Observational Astrophysics”
D.L. Fried, in “Adaptive optics for Astronomy”, p. 25
F. Roddier, in Progress in Optics XIX, p. 281
F. Roddier, in Diffraction-Limited Imaging with Very Large Telescopes, p. 33
V.I. Tatarski, “Wave Propagation in a Turbulent Medium”

2.1 The theory of turbulence in the Earth’s atmo-

sphere

The turbulence in the Earth’s atmosphere is always subsonic. To a very good degree one
can regard the velocity fields to be divergence-free. That means that the turbulence in the
Earth’s atmosphere is entirely carried by solenoidal motions: i.e. vorticity. It is caused by
many different phenomena:
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• Convection: If the lower parts of the atmosphere heat up, the atmosphere can be-
come convectively unstable, leading to convective bubbles of gas rising to higher
altitudes. Often these bubbles produce cumulus clouds, the strongest of which, the
cumulonimbus clouds, cause lightning storms. But not all convection leads to clouds,
and convection happens on all scales. For instance, if an asphalt road gets heated up
by intense sunlight, the few centimeter thick layers of air above it convectively rise,
while cooler air sinks. This leads to “seeing” effects one can often observe in those
conditions.

• Wind shear: Different layers of the atmosphere may have different horizontal ve-
locities. If the vertical gradient of this horizontal velocity dvx/dz is strong enough,
the Kelvin-Helmholtz instability can set in, leading to a turbulent layer. For this to
happen, the Richardson number Ri≡ g/[∆h (dvx/dz)2], where g is the gravitational
acceleration and ∆h is the altitude difference between the adjacent layers, must obey
Ri" 1.

• Wind over objects: If a wind flows over objects, such as a mountain or the telescope
dome, then turbulence can also be induced.

In this chapter we will discuss the nature of this turbulence and how it affects images of
celestial objects.

2.2 Kolmogorov turbulence

Turbulence is a very complex phenomenon. A precise simulation of turbulence still often
exceeds the capacities of modern supercomputers, although much progress has been made
over the last decades. However, certain statistical properties of turbulence can be derived
and understood without much computational effort.

The basic idea is that we start from some large scale stirring, inducing solenoidal
motions of wave number k0 = 2π/L0 where L0 is the spatial scale of these large scale
motions. Now, as we know from stirring milk in a cup of coffee: the large motions tend to
break up in ever smaller-scale motions. In fact, it is this property of turbulence that leads to
the quick dissolution of sugar in a cup of tea. This down-scaling of the turbulence is called
a turbulent cascade. Energy is transferred from large-scale motions to ever smaller scale
motions, until one reaches a spatial scale Lν " L0 which is the viscous dissipation scale:
the spatial scale where the viscosity of the gas/fluid starts to prohibit further cascading.
At this scale the kinetic energy of the gas motions is converted into heat. An important
dimensionless number characterizing the turbulence is the Reynolds number:

Re =
L0V0

ν
(2.1)

where V0 is the typical turbulent velocity at the largest scale and ν (in units of cm2/s for
CGS units) is the kinematic viscosity of the gas or fluid. For air at 0 degrees Celsius this is
ν = 0.132cm2/s, and at -40 degrees Celcius it is ν = 0.104cm2/s. We can define a turbulent
viscosity

νturb ≡ L0V0 (2.2)
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so that νturb = Re ν. For Re# 1 the ratio L0/Lν # 1, though Re and L0/Lν are not
linearly related.

If we assume that there is a constant random stirring at the scale L0, then this input
energy cascades down to Lν where it is dissipated. The turbulent cascade is thus char-
acterized by an energy input rate per gram of gas ε in units of erg gram−1 sec−1 which
in this stationary state is the same as the energy dissipation rate. In k-space this is the
energy flow rate from small k to large k. Let us now try to characterize the energy stored
in each mode k per gram of gas, written as E(k). The quantity E(k)dk has the dimension
erg gram−1. Since k has the dimension cm−1, E(k) has the dimension erg cm gram−1.

Using these dimensions we can start a dimensional analysis. If we write erg = gram
cm2 sec−2 then we get the following dimensions:

k =
1

length
ε =

length2

time3 E(k) =
length3

time2 (2.3)

If kν # k0 then there is a large region in k-space, k0 " k " kν where the function E(k)
must be independent on what is happening at k0 or kν. The only “information” that it
has in this intermediate-k region is k itself and the energy flow ε. Somehow we must be
able to write E(k) ∝ εαkβ . Using the above dimensionalities you can see that this only
makes dimensional sense if α = 2/3 and β = −5/3, i.e.

E(k) = Cε2/3k−5/3 (2.4)

where C is a dimensionless constant. This is Kolmogorov’s law for turbulence. It describes
self-similar isotropic turbulence, and is valid for k0 " k " kν. The constant C is usually
close to unity.

Note that k ≡ |&k|, so E(k)dk is the energy for all modes &k with k ≤ |&k| < k + dk. In
this way one could say that E(k) = 4π|&k|2E(&k), or

E(&k) ∝ |&k|−11/3 (2.5)

Let us continue our use of dimensional analysis to determine the typical magnitude of
velocity excursions belonging to some scale l = 1/k.

l = length ε =
length2

time3 v(l) =
length

time
(2.6)

The only combination of l and ε that gives the right dimensions is:

v ∝ (εl)1/3 ∝ (ε/k)1/3 (2.7)

Let’s do a consistency check: we know how E(k) as well as v(k) scale with k. Are they
mutually consistent? The dimension of E(k)dk is cm2/s2, i.e. E(k)dk must be proportional
to v(k)2.

E(k)dk ∝ ε2/3k−5/3dk ∝ ε2/3k−2/3 ∝ (ε/k)2/3 ∝ v2 (2.8)

which indeed shows that it is self-consistent. In other words: we could also have derived
Kolmogorov’s energy scaling law via the expression for v(l).

The above scaling of v(l) also leads directly to a typical time scale for eddy motions at
spatial scale l:

τeddy(l) = l/v(l) ∝ ε−1/3 l2/3 (2.9)
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This means that, as expected, the time scale of small-scale eddy motions is shorter than
that of large scale eddies.

Let us, finally, find a scaling law for the dissipation scale Lν = 2π/kν . Using the same
type of dimensional analysis we find:

Lν =

(

ν3

ε

)1/4

(2.10)

Also here we can do a self-check: The scale Lν must be such that if l = Lν the Reynolds
number Re of that scale is unity:

1 = Re(l) =
l v(l)

ν
∝

ε1/3 l4/3

ν
(2.11)

which gives l ∝ (ν3/ε)1/4 as the scale at which Re=1, which is the definition of Lν .

2.3 Turbulence structure function

In Appendix B we defined and derived some statistical tools to describe stochastic signals.
Let us apply these to turbulence. The structure function of the velocity field in turbulence
is

D$v(&x1, &x2) = E[|&v(&x1) − &v(&x2)|2] (2.12)

where, compared to the appendix, we use here the position &x instead of time t as the
arguments. We can in fact use time to compute an estimate of this based on an average
over a time span T :

D$v(&x1, &x2) ' 〈|&v(&x1, τ) − &v(&x2, τ)|2〉T =
1

T

∫ T/2

−T/2

|&v(&x1, τ) − &v(&x2, τ)|2dτ (2.13)

Let us now do another dimensional analysis, again with the Kolmogorov idea in mind. The
dimension of D$v is cm2 sec−2. For isotropic turbulence it must depend on |&x2 − &x1|. So let
us write D$v as

D$v(&x1, &x2) = αf(|&x2 − &x1|/β) (2.14)

where the function f() is a dimensionless function to be specified by our dimensional
analysis (α and β are different here from the previous section). The dimension of α must
be that of D$v, that is: cm2 sec−2. The argument of the dimensionless function f() must
also be dimensionless, so β must have dimension cm. Our problem as a whole is defined by
two quantities: the molecular kinematic viscosity ν (dimension cm2 sec−1) and the energy
dissipation rate per gram of matter ε (dimension cm2 sec−3). The only combination with
the right dimensions is clearly: α ∝ ν1/2ε1/2 and β ∝ ν3/4ε−1/4. The next question is, what
is the functional form of the function f()? The argument goes that in the intermediate scale
regime the structure function should not depend on the viscosity ν. Only if f(h) ∝ h2/3

will ν drop out of the expression for D$v, as you can verify. Therefore we have proven that
D$v(&x1, &x2) ∝ |&x2 − &x1|2/3, or quantitatively we can write

D$v(&x1, &x2) = C2
$v |&x2 − &x1|2/3 (2.15)
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The quantity C2
$v determines the strength of the turbulence. It is called the structure

constant for the velocity &v. In a way, Eq. (2.15) is a mathematically more elegant way of
expressing what we already derived for the velocities v(l) belonging to scale l in Section
2.2, namely that v ∝ l1/3. Likewise we can define the structure function and structure
constant for the density

Dρ(&x1, &x2) = C2
ρ |&x2 − &x1|2/3 (2.16)

and for the temperature
DT (&x1, &x2) = C2

T |&x2 − &x1|2/3 (2.17)

They are all related, but we will not go into this here.

2.4 Wave front distortion by the atmosphere

If we would have turbulence, but without any temperature differences between the turbu-
lent eddies, then the turbulence would have no influence at all on our observations1. After
all, gas motion does not induce refraction. Only if you have pockets of gas at slightly differ-
ent temperatures in the turbulent flow will you get the effect of seeing. This is not created
by the temperature itself. But since the atmosphere is in approximate pressure equilib-
rium, a lower temperature means automatically a higher density and vice-versa. This leads
to inhomogeneities in the refractive index n(&x, t) which vary also in time, because

n(&x, t) ' 1 + 0.00029
ρ(&x, t)

1.3 × 10−3g cm−3
(2.18)

which is valid at 1 bar and 0 degrees Celcius. Here 1.3 × 10−3g cm−3 is the density of
air at 1 bar and 0 degrees Celsius. The structure function for the refractive index is, not
surprisingly,

Dn(&x1, &x2) = C2
n|&x2 − &x1|2/3 (2.19)

One can then derive, assuming isobaric perturbations,

Cn =
8 × 10−5P [mb]

T 2[K]
CT (2.20)

(Léna, Lebrun & Mignard, page 58).
Now let us look at a wave of light at some instant t

E ∝ ψ(&x) ≡ eiφ($x) (2.21)

where φ(&x) is the phase. Let us suppose that this wave travels vertically downward through
the atmosphere with a wave number k. Now let us have a look at a turbulent layer between
z = z0 and z = z1 with z1 − z0 " z0, where z = 0 is the location of our telescope. The
phase shift δφ(x, y) as a result of this layer of inhomogeneities is:

δφ(x, y) = k

∫ z1

z0

(n(x, y, z, t) − 1)dz (2.22)

with k = 2π/λ. We ignore the fact that k in air is not exactly equal to its value in vacuum.

1Assuming we have only solenoidal turbulence, i.e. no compressional components of the turbulence.
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We can now define the coherence function of the wave front B(r), which is the auto-
correlation function of ψ(&x, t):

Bψ(&r) = 〈ψ(&x + &r)ψ∗(&x)〉 (2.23)

If we assume that ψ(&x) is a Gaussian signal, then we can write:

Bψ(&r) = 〈ψ(&x + &r)ψ∗(&x)〉 (2.24)

= 〈exp[i(φ(&x) − φ(&x + &r))]〉 (2.25)

= exp

[

−
1

2
〈|φ(&x) − φ(&x + &r)|2〉

]

(2.26)

= exp

[

−
1

2
Dφ(&r)

]

(2.27)

where we have made use of the results of Appendix B.4 on Gaussian signals. We have
thus expressed the coherence function of the wave in terms of the structure function of the
phase! So our next goal is to find an expression for Dφ(&r).

Since Dφ(&r) = 2Bφ(0) − 2Bφ(&r) (Eq. B.9), we now compute Bφ(&r):

Bφ(&r) = 〈φ(&x)φ(&x + &r)〉 (2.28)

= k2

∫ z1

z0

∫ z1

z0

〈n(&x, z′)n(&x + &r, z′′)〉dz′dz′′ (2.29)

= k2

∫ z1

z0

∫ z1−z′

z0−z′
〈n(&x, z′)n(&x + &r, z′ + z)〉dz′dz (2.30)

where k is the wave number of the radiation field and n the refractive index. We take here
&x and &r to be pointing in the horizontal 2-D plane. We now assume that z1 − z0 is much
larger than the correlation length of the refractive index, so that we can effectively assume
the integrals in z to be infinite and the other integral to yield simply the length z1 − z0

Bφ(&r) = k2(z1 − z0)

∫ +∞

−∞

Bn(&r, z)dz (2.31)

Now use, as already announced above, Eq.(B.9) to find an expression for Dφ(&r):

Dφ(&r) = 2[Bφ(0) − Bφ(&r)] (2.32)

= 2k2(z1 − z0)

∫ +∞

−∞

[Bn(0, z) − Bn(&r, z)]dz (2.33)

= 2k2(z1 − z0)

∫ +∞

−∞

[Bn(0, 0) − Bn(&r, z) − Bn(0, 0) + Bn(0, z)]dz (2.34)

= k2(z1 − z0)

∫ +∞

−∞

[Dn(&r, &z) − Dn(0, z)]dz (2.35)

= k2(z1 − z0)C
2
n

∫ +∞

−∞

[(r2 + z2)1/3 − z2/3]dz (2.36)

= 2.914 k2(z1 − z0)C
2
n r5/3 (2.37)

where in the last step you can perform a numerical integral to find the constant 2.914,
though it must be said that this value is only obtained when (z1 − z0) is really thousands
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of correlation lengths large. In general this number will be anywhere between 1 and 2.914
for less extreme limits.

Now that we know Dφ(&r) we can insert this back into Eq. (2.27) to obtain

Bψ(&r) = exp

[

−
1

2

(

2.914 k2(z1 − z0)C
2
n r5/3

)

]

(2.38)

This is still only for a single layer. Integrating over the entire atmosphere, and taking now
also the zenith-angle ζ into account, we obtain

Bψ(&r) = exp

[

−
1

2

(

2.914 k2 r5/3 sec ζ

∫ ∞

0

C2
n(z)dz

)]

(2.39)

where we define z such that the observatory is at z = 0.
We now arrived where we wanted to be: we have expressed the autocorrelation (or auto-

covariance) of the phase function ψ(&x, t) in terms of an integral of the turbulence structure
constant C2

n over height in the atmosphere. To get from here to a full understanding of
how turbulence affects imaging is still more work. But it turns out (without proof) that
many of the effects of turbulence on observations can be expressed in terms of moments
of turbulence:

µm =

∫ ∞

0

C2
n(z)zmdz (2.40)

where m can be any real number. For our expression of Bψ(&r) we use the 0-th moment
(m = 0). But the moment of m = 5/3 is used for anisoplanatic and temporal errors, m = 2
for tilt errors and m = 5/6 for scintillation (see below).

2.5 Fried parameter r0 and “seeing”

The zeroth moment of turbulence is usually given in terms of the Fried parameter r0, which
is defined as

r0 ≡
(

0.423 k2 sec ζ

∫ ∞

0

C2
n(z)dz

)−3/5

(2.41)

It has the dimension of length, so it defines an important length scale of the theory of
“seeing”: the scale length over which phase errors in a wave front are of the order of 1
radian. We can write:

Bψ(&r) = exp

[

−3.44

(

r

r0

)5/3
]

(2.42)

and

Dφ(&r) = 6.88

(

r

r0

)5/3

(2.43)

If we make a long exposure of some object on the sky with seeing conditions charac-
terized by Fried parameter r0, then we obtain an image with the same quality (angular
resolution) as a telescope of diameter r0. The phase variance over an aperture of diameter
r0 is approximately 1 rad2. The Fried parameter depends on the turbulence profile C2

n(z),
the zenith angle ζ and the wavelength λ. The wavelength dependence is:

r0 ∝ λ6/5 (2.44)
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which leads to an image size (“seeing disc” or “seeing PSF”) of

αseeing ∝
λ

r0
∝ λ−1/5 (2.45)

Note that if we have a telescope of diameter D, we have a PSF size proportional to λ.
That means that, relative to the diffraction limited PSF, the seeing-PSF becomes less and
less important for longer wavelengths.

Typical values for r0 at 500 nm are 10 to 20 cm, corresponding to PSF sizes of 0.5”
to 1”. But r0 changes strongly from day to night, and varies on all time scales during the
night. In fact, one can encounter brief moments where it is very large, i.e. the seeing is
very small. If one can make a brief exposure during this moment, your image looks pretty
sharp. For bright sources, which allow brief exposures, this allows for an observing strategy
called “lucky imaging”, which means that of a large number of brief exposures you only
take the “best” ones, which (after correcting for possible shifts) are then co-added to result
in a fairly sharp image.

But mostly one does not have the luxury of bright sources, and one must expose your
image including the seeing effects. The Strehl ratio S is defined as the peak intensity of a
point source divided by the peak intensity of a diffraction-limited image (no seeing). For
phase errors ! 2 radian, S ' exp(−σ2

φ).

2.6 Image motion, speckles

The effects of seeing for small telescopes is different from that of large telescopes. Important
is the ratio D/r0. If this ratio is smaller than 1, then the Airy PSF is broader than the
seeing disc. For D ! 0.5 r0 this effect is so strong, that the seeing smearing is unimportant
compared to the diffraction limit of the telescope. For 0.5 r0 ! D ! 3, however, the
seeing can still shift the centroid of the Airy PSF in a way as to degrade the image
beyond the diffraction limit. This “image motion” effect of the seeing simply moves the
diffraction-limited PSF around (by roughly λ/r0) in a random fashion. If the exposure
time is much less than τ0 ' 20 milliseconds, one captures this motion as a still snapshot.
Longer exposures mean that this motion simply smears out a star image over the seeing
disc. For telescopes of this intermediate size (0.5 r0 ! D ! 3) one can obtain substantially
improved images if one can adjust the position of the image using tip-tilt adaptive optics:
a real-time adjustment of one of the mirrors such that the image motion is compensated.
This is the simplest form of adaptive optics.

For large telescopes, with D/r0 " 10, the seeing is not just an image motion, but a
diffraction pattern of interfering wave fronts. If we make a “short exposure” (much shorter
than τ0) then this interference pattern originating from the distorted wave function ψ(&x)
entering the aperture yields a semi random set of dots called speckles, each having a width
of about the telescope diffraction limit. The speckles are distributed over an area the
size of the seeing disc. Simple tip-tilt adaptive optics will thus not work to improve long
exposures. For such large telescopes true adaptive optics, in which the entire wave front
is corrected, is mandatory.

The time scale τ0 of the “seeing” is often not so much related to the time scales of the
turbulent motions themselves, but by the passage of a turbulent layer over the observatory
by a macroscopic wind. Suppose that the time scales of turbulent eddies is of the order of
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seconds or (much) more, but an entire layer of turbulent atmosphere at an altitude of, say,
4 km moves with, say, 10 m/s in one direction. The turbulence scale is r0 = 10 cm. This
means that a single line of sight to a star passes through 100 uncorrelated turbulent cells
of size r0 per second. This thus sets the time scale τ0 at 10 milliseconds. In such situations,
where wind motions are the dominant source of time scales, one can regard turbulence as
frozen-in.

2.7 From Bψ(&r) to image distortion

In Section 2.4 we ended with an expression of the autocovariance Bψ(&r) of the phase
function, and we then qualitatively looked at how seeing affects images. But we can also
be more mathematically rigorous. Here we appeal to what we learned in Chapter 1. We
learned that, for a plane wave entering an aperture, the PSF on the image plane is the
Fourier transform of the aperture function. Let us write the aperture function as P (&u),
where &u = &x/λ in the aperture plane, and let it be 1 where radiation is let through, and 0
where it is blocked. The image on the image plane is then the Fourier transform:

A(&α) = F [P (&u)] (2.46)

where &α is the location on the image plane measured in angle from the aperture to the
image plane. This is for a plane wave.

Now if we have a distorted wave ψ(&u) then we would obtain

A(&α) ∝ F [ψ(&u)P (&u)] (2.47)

The flux measured on the image plane is then

S(&α) = AA∗ ∝ |F [ψ(&u)P (&u)]|2 (2.48)

We can now use the Wiener-Khinchin theorem (see Appendix B.1, Eq. B.10) to write this
as

S(&α) ∝ |F [ψ(&u)P (&u)]|2 (2.49)

= F
[
∫

ψ(&u)ψ∗(&u + &f)P (&u)P ∗(&u + &f)d&u

]

(2.50)

Or, if we look at the expectation value of the Fourier transform of S:

〈S(&f)〉 = 〈
∫

ψ(&u)ψ∗(&u + &f)P (&u)P ∗(&u + &f)d&u〉 (2.51)

=

∫

〈ψ(&u)ψ∗(&u + &f)〉P (&u)P ∗(&u + &f)d&u (2.52)

= Bψ(&f)T (&f) (2.53)

where we have defined the telescope transfer function

T (&f) ≡
∫

P (&u)P ∗(&u + &f)d&u (2.54)
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and Bψ(&f) is the autocorrelation function of the wave at the aperture plane, given by

Eq.(2.42) with &f = &r/λ:

Bψ(f) = exp

[

−3.44

(

λf

r0

)5/3
]

(2.55)

If we have no turbulence, then Bψ(f) = 1.
The resolving power R is defined as

R ≡
∫

B(&f)T (&f)d&f (2.56)

The resolving power without turbulence, for a circular aperture, is

Rdiffract =
π

4

(

D

λ

)2

(2.57)

For strong turbulence, T = 1 in the region where Bψ(f) is non-zero, and we obtain

Rturb =
π

4

(r0

λ

)2
(2.58)

2.8 Angular anisoplanatism

As mentioned above, short-term exposures yield speckle patterns that, for long term ex-
posures, average out to a seeing disc. The question that is addressed now is, will two
stars that are very close together, yield the same instantaneous speckle pattern (of course,
slightly shifted with respect to each other)? Let us look at a single layer of turbulence at a
hight h above the telescope. A stellar separation of θ radian means that the optical paths
from the stars to the telescopes pass through the layer at a distance of r = θh sec ζ , where
ζ is again the zenith angle. Now evaluate

Dφ(r) = 〈|φ(0) − φ(r)|2〉 = 2.914 k2 sec ζ δhC2
nr5/3 (2.59)

If we now insert r = θh sec ζ and integrate over all layers we obtain

〈σ2
φ〉 = 〈|φ(0) − φ(r)|2〉 (2.60)

= 2.914 k2(sec ζ)8/3θ5/3

∫ ∞

0

C2
nz

5/3dz (2.61)

= 2.914 k2(sec ζ)8/3θ5/3µ5/3 (2.62)

Because of the 5/3-moment, angular anisoplanatism is dominated by high layers in the
atmosphere. If we define θ0 as

θ0 ≡
[

2.914 k2(sec ζ)8/3µ5/3

]−3/5
(2.63)

then we can write

〈σ2
φ〉 =

(

θ

θ0

)5/3

(2.64)

A pair of stars separated by more than θ0 have different PSFs at short exposures, even
though their PSFs at long exposures are the same.
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2.9 Diffraction and scintillation

Most of the above analysis follows the light along rays: the geometric optics approximation.
This is valid if the turbulent layers are not higher than the Fresnel length dF belonging to
the correlation length r0. This is the length for which the Fresnel number F is unity (see
Section 1.1, Eq.1.13).

dF =
r2
0

λ
(2.65)

For r0 = 10 cm and λ = 500 nm we have dF = 20 km. This means that we are mostly
in good shape with geometric optics. But diffraction can play a role, especially at short
wavelengths (recall that r0 ∝ λ6/5), large zenith angles and poor observing sites.

One effect of diffraction is scintillation, the stochastic variation in brightness of stars.
This is given by

σ2
ln I = 2.24 k7/6(sec ζ)11/6µ5/6 (2.66)

This shows that scintillation is dominated by turbulence at high altitude.
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