
4.3 Hydrodynamical shocks

4.3.1 Steepening of sound waves

• Up to this point, we have assumed that the perturbations that we are dealing with are
small, justifying our use of perturbation theory. What happens when this is not the
case?

• For simplicity, we will start by considering the 1D case. In one dimension, the conti-
nuity equation can be written as
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and the Euler equation becomes
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• We can eliminate ⇢ from these equations by using the fact that
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which follows directly from the definition of the adiabatic sound speed. We find that
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Adding these two equations together then yields


@

@t
+ (v + cs)

@

@x

�✓

u+
2

� � 1
cs

◆

= 0, (354)

while subtracting them yields
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• Using the method of characteristics, one can show that the first of these equations
implies that the quantity
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is conserved along trajectories that satisfy
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while the second implies that the quantity
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is conserved along trajectories that satisfy
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Lines in the (x, t) plane along which Equation 357 or Equation 359 hold are known as
characteristics. They represent the trajectories along which our perturbations move
in the (x, t) plane – we simply have the bulk velocity v, plus or minus the speed of
sound.

• We have therefore recovered a similar result to the one which we derived using pertur-
bation theory: perturbations to a flow of gas propagate at the speed of sound in the
local rest frame of the flow. Note, however, that in the derivation above, we have made
no assumption regarding the size of the perturbations or the nature of the background
flow.

• Why does this matter? In our perturbation theory analysis, we found that our small
perturbations propagated at a velocity

cs =

✓

@p

@⇢

◆1/2

' �p0
⇢0

, (360)

where p0 and ⇢0 are the pressure and density of the unperturbed fluid, and where
the second (approximate) equality follows from the fact that we are considering only
small perturbations and expanding to first order. Therefore, in the perturbation theory
analysis, all sound waves propagate at the same velocity.

• In the analysis that we have carried out in this section, however, we have not assumed
that the perturbations are small, and hence the second equality above does not apply.
Instead, we know that for an adiabatic gas, p = K⇢� and hence
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Therefore, in general, the speed of sound depends on the density: sound waves propa-
gate faster in denser gas.

• Now consider a sinusoidal density perturbation propagating with respect to a uniform
background. At t = 0, there are three points in this profile that have a density that
is the same as the background medium, ⇢ = ⇢0. For a wave propagating to the right,
these points subsequently propagate along plus characteristics defined by
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where v is the initial bulk velocity of the flow and cs,0 ⌘
p

�p0/⇢0. However, points
in the wave that have densities ⇢ > ⇢0 propagate at velocities v + cs > v + cs,0.
Similarly, points on the wave that have initial densities ⇢ < ⇢0 propagate at velocities
v + cs < v + cs,0.



• The result of this di↵erence in velocities is that our sinusoidal perturbation steepens
as it propagates. This steepening continues until we reach a point at which this analysis
predicts that the density, velocity etc. become double-valued. Of course, physically,
this is impossible. Instead, the flow becomes discontinuous and a shock forms.

4.3.2 Non-radiative shocks – jump conditions

• A shock wave is a region of small thickness over which the properties of the flow change
rapidly. For the time being, we will ignore what is going on within the shock wave
itself, and treat it simply as a true mathematical discontinuity in the flow.

• Consider a stationary shock separating an upstream flow with density ⇢1, pressure p1
and velocity v1 and a downstream flow with density ⇢2, pressure p2 and velocity v2.
If we treat the shock as a discontinuity, then no mass or momentum can accumulate
within the shock itself, and hence the flow of mass into the shock must equal the flow
out of the shock. Similarly, if the shock is non-radiative6, then the flow of energy into
the shock must balance the flow of energy out of the shock.

• These considerations allow us to derive three equations linking the upstream and down-
stream properties of the flow. In the simple case in which the upstream velocity is
perpendicular to the shock, we have

⇢1v1 = ⇢2v2, (363)
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This set of equations are known as the shock jump conditions or the Rankine-
Hugoniot conditions.

• As an example of the power of these equations, let us suppose that we want to know
the density ratio ⇢2/⇢1. We can rearrange the third jump condition to give us the
following expression for p2:
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Substituting this into the second of the jump conditions then yields
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To eliminate p1 from this equation, we use the fact that
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6Such shocks are often referred to as “adiabatic” shocks, although this name is actually rather misleading,
as we will see later.



where cs,1 is the sound speed in the upstream gas, giving us
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Dividing both sides by ⇢1c
2
s,1 and using the first jump condition to write v2 = ⇢1v1/⇢2,

we find that
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where M ⌘ v1/cs,1 is the Mach number of the upstream flow. Some rearrangement
of terms then gives
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Finally, this quadratic equation can be solved to yield
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• If the upstream velocity is subsonic, so that M2
1 < 1, then this equation implies that

⇢2 < ⇢1, i.e. the gas becomes rarefied. However, we know from the jump conditions
that
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so this would also imply that the gas would accelerate at the shock. However, this is
consistent with energy conservation only if we convert energy from heat into ordered
kinetic energy, but as we will see later, doing so would violate the second law of
thermodynamics. We can therefore conclude that this is not a physical solution –
so-called rarefaction shocks do not, in reality, exist, and we will recover physically
meaningful values for the density ratio only when M2

1 � 1.

• In the case where M1 = 1, we see immediately that ⇢1 = ⇢2, from which it follows that
v1 = v2 and p1 = p2; i.e. this is a trivial solution in which there is no discontinuity in
any of the flow variables.

• In the most common case, where M1 > 1, we have ⇢2 > ⇢1, which immediately implies
that v2 < v1. Therefore, one e↵ect of the shock is to compress the gas, and to slow it
down.

• We can also use the shock jump conditions to determine the pressure ratio p2/p1. For
brevity, I do not give the derivation here, but instead simply quote the result:

p2
p1

=
2�M2

1 � (� � 1)

� + 1
. (375)

If M1 > 1, then we see that p2 > p1, and so the other important e↵ect of the shock is
to raise the gas pressure.



• By combining the expressions for the pressure jump and the density jump, we can
derive an expression for the change in the temperature of the gas. If the chemical
composition of the gas is unaltered by its passage through the shock, then

p2
p1

=
⇢2
⇢1

T2

T1

. (376)

It follows from this that
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and hence if M1 > 1, the post-shock temperature is higher than the pre-shock temper-
ature, T2 > T1.

• It is also informative to look at how the expressions for the density, pressure and
temperature jumps behave in the high M1 limit, i.e. when we have a very strong
shock. As M1 ! 1, we have
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for the temperature jump.

• If the gas is monatomic, so that � = 5/3, we therefore have
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for shocks where M1 � 1.

4.3.3 Non-radiative shocks – behaviour inside the shock

• What is responsible for the sudden change in ⇢, ~v, p and T that occurs within a shock?
If we describe shocks only using the Euler equation, then we have no good answer: we
are forced to treat them purely as discontinuities in the flow, with zero thickness, and
so in this description in makes no sense to talk about the properties inside a shock.



• In reality, of course, the behaviour of our gas is governed by the Navier-Stokes equation,
rather than the Euler equation, and it is the additional terms corresponding to the
e↵ects of viscosity that provide the answer to our question.

• In general, astrophysical fluids have high Reynolds numbers, justifying our neglect of
viscous dissipation. In a shock, however, the velocity of the flow changes rapidly over
a distance that is comparable to the mean free path of the particles making up the
fluid. The Reynolds number of the flow through the shock is therefore
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where � is the mean free path. Since ⌫ ⇠ vth�, it follows that
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Therefore, even in highly supersonic flows, the Reynolds number of the flow through
the shock is relatively small, demonstrating that on these scales viscous dissipation
cannot be neglected.

• The e↵ect of the viscous dissipation occurring within the shock is to convert some
fraction of the ordered kinetic energy of the inflowing gas into random kinetic energy,
i.e. heat. This explains why the bulk velocity drops and the temperature rises. The
density jump then follows as a consequence of the decrease in the velocity of the gas:
in a steady shock, gas does not build up within the shock layer and hence must flow
out of the downstream side with the same mass flux as is flowing into the upstream
side.

• The fact that shocks are fundamentally dissipative events can be seen quite clearly if
we compute the di↵erence in the entropy of the pre-shock and post-shock gas. This is
given by the expression:
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where s1 and s2 are the pre-shock and post-shock values of the specific entropy, and c
p

is the specific heat at constant pressure.7
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If M1 = 1, then we already know that T1 = T2 and p1 = p2, and so it follows that
s1 = s2; i.e. if there is no shock, then there’s no change in entropy.

7To see where this expression comes from, note that the first term on the right hand side corresponds
to the specific entropy change due to a change in the temperature occurring at constant pressure, while the
second term corresponds to a change in the pressure at constant temperature. Since s is a state variable, the
change in its value due to changes in both p and T is independent of the path taken from p1, T1 to p2, T2.



• If M1 > 1, then we can substitute in the expressions we derived previously to get an
expression for the entropy change. However, the full form of this equation is rather
lengthy, so it is more convenient to look at the limiting case when the shock is weak.
For a very weak shock, it is convenient to write our expression for the pressure jump
as
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and that for the temperature jump as
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where we have dropped all terms of order (M2
1 � 1)2 and higher. Our expression for

the entropy change therefore becomes
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We can then use the fact that ln(1 + x) ' x for x ⌧ 1 to eliminate the logarithms,
allowing us to write the entropy jump as

s2 � s1
c
V

= � ln 2 +



�(� � 1)

� + 1

�

M2
1 � 1

�

�

�


2�(� � 1)

� + 1

�

M2
1 � 1

�

�

, (392)

= � ln 2� �(� � 1)

� + 1

�

M2
1 � 1

�

. (393)

The first term in this expression is of order unity, while the second term is much
smaller, since M2

1 � 1 ⌧ 1. We therefore see that the entropy of the gas is increased
by the shock, confirming its dissipative nature. It is also possible to show (although
we will not do so here) that s2 � s1 is a monotonically increasing function of M1, and
so if it is positive in the case of a weak shock, then it is positive for any shock.

• The fact that shocks involve jumps in entropy demonstrates why rarefaction shocks
are impossible. A rarefaction shock with the same strength as the compressive shock
considered above would produce a change in entropy equal to s1�s2, which is negative.
Therefore, rarefaction shocks involve a decrease in the entropy, and hence are forbidden
by the second law of thermodynamics.

4.3.4 Non-radiative shocks – moving and oblique shocks

• So far, we have implicitly been working in a frame in which the shock is at rest.
However, it is often convenient to work in a frame in which the shock is moving. In



this case, the shock jump conditions take a slightly di↵erent form:
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where vs is the velocity of the shock.

• The other important simplification that we have made so far is that the pre-shock gas is
flowing in a direction perpendicular to the shock. Although there are many situations
in which this is a reasonable approximation, there are also many situations in which it
is not, notably whenever we are dealing with strongly curved shock fronts.

• If the flow of gas into the shock front is not perpendicular to the shock front, then we
refer to it as an oblique shock. As with a normal shock, the jump conditions for an
oblique shock follow directly from the conservation of mass, momentum and energy. If
the pre-shock gas has velocity v1, and is flowing at an angle � relative to the plane of
the shock front, then we can write the velocity component that is perpendicular to
the shock front as v1,? = v1 sin�, and the velocity component that is parallel to the
shock front as v1,k = v1 cos�.8

• The velocity component parallel to the shock is una↵ected by the passage through the
shock front: v1,k = v2,k, and so

v2,k = v1 cos�. (397)

For the component perpendicular to the shock, we simply have the standard jump
conditions, only now instead of using v1 as the pre-shock velocity and v2 as the post-
shock velocity, we instead us v1,? and v2,?. Therefore,
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• Note that in order for a shock to be possible at all, v1,? must be supersonic. This
implies that

v1 sin� > cs,1, (401)
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8Note that there are two di↵erent conventions in the literature for which direction is the “perpendicular”
direction and which the “parallel” direction. The convention that we adopt here is the same as in Shu’s book
on Gas Dynamics. However, Draine & McKee, in their review article on the Theory of Interstellar Shocks

(1993, ARA&A, 31, 373) adopt the other convention – flow which is parallel to the normal vector of the
shock is “parallel” and flow perpendicular to the normal (i.e. parallel to the shock front) is “perpendicular”.
Personally, I think Shu’s convention makes more sense, but you should be prepared to encounter both...



There is therefore a minimum degree of obliqueness for which a shock solution is
possible, which depends on the Mach number of the upstream flow.

• One important consequence of these jump conditions is that the post-shock gas flows
in a di↵erent direction from the pre-shock gas: the gas is refracted by the oblique
shock. To see this, note that the angle that the flow makes with the plane of the shock
front is given by
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For the pre-shock flow, we have
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For the post-shock flow, we have instead
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For a compressive shock, ⇢1 < ⇢2, and so � < �, demonstrating that the flow turns
towards the plane of the shock.

• Using the oblique shock jump conditions, one can derive an expression for � in terms
of the upstream Mach number and the inflow angle �:
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For a weak shock, sin� ⇠ 1, M1 ⇠ 1, and hence tan� ⇠ tan�; i.e. there is almost no
refraction of the flow by the shock. For a strong shock, on the other hand, tan� tends
to a limiting value given by
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� + 1
tan�. (408)

• Another useful expression is the relation between the upstream and downstream Mach
numbers for an oblique shock. This is given by
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In a planar shock, we know already that M2 < 1, i.e. that the post-shock flow is
subsonic. For an oblique shock, this is no longer the case: shocks with M2 > 1 are
possible, provided that � is su�ciently small. Note, however, that even in this case,
the Mach number of the component of the downstream flow that is perpendicular to
the shock, M2,? ⌘ v2,?/cs,2, satisfies M2,? < 1, regardless of the Mach number of the
upstream flow.



4.3.5 Radiative shocks

• Up to this point, we have assumed that any radiative heat losses from the gas passing
through the shock are negligible, implying that the total thermal plus kinetic energy
is conserved across the shock. This is a reasonable assumption if the cooling length of
the post-shock gas (i.e. the distance travelled by the flow during the time that it takes
to radiate away a significant fraction of its thermal energy) is long compared to any
other length scales of interest.

• When dealing with interstellar shocks, however, particularly those in dense environ-
ments such as molecular clouds, we often find ourselves in a regime where the cooling
length is short compared to other dynamical length scales of interest, while still being
much longer than the particle mean free path.9

• In this regime, the extremely narrow shock region, with width comparable to the
particle mean free path, is immediately followed by a narrow cooling-dominated zone,
often referred to as a radiative relaxation layer. If we are only interested in the
behaviour of the flow on scales that are much larger than the width of this radiative
relaxation layer, then it is useful to write down jump conditions that relate the pre-
shock conditions to the conditions at the end of this layer (i.e. once the gas temperature
has reached equilibrium).

• If we denote the density, pressure and velocity of the cooled gas as ⇢3, p3, and v3,
respectively, then we can immediately write down two of the necessary jump conditions:

⇢1v1 = ⇢3v3, (410)

p1 + ⇢1v
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These have the same form as for a non-radiative shock, because despite the radiative
cooling that occurs in the radiative relaxation layer, the flow must still conserve mass
and momentum.

• The change in the internal energy in the radiative relaxation layer is governed (in 1D)
by the equation
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where ✏ is the internal energy and ⇤ is the radiative cooling rate per unit mass, which,
if the gas is optically thin, will depend only on local gas properties such as the density,
temperature and chemical composition.

• For an ideal, chemically inert gas, ✏ and p are related by
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9The extreme case where the cooling length is comparable to the mean free path cannot be treated using
a fluid description, but instead requires a full kinetic treatment, as in this case one cannot, for instance,
assume a thermal distribution of velocities.



and so we can rewrite the energy equation as
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where we have used the fact that ⇢v = constant within the radiative relaxation layer
to take it inside the di↵erential. This equation can then be further rearranged to give

v

� � 1

dp

dx
+

�

� � 1
p
dv

dx
= �⇢⇤(⇢, T ). (415)

• The fact that p+ ⇢v2 is also conserved throughout this region the allows us to write
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and hence the energy equation can be put into the form
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• In the immediate post-shock gas, at the start of the radiative relaxation layer, we know
that v2 < cs,2, and hence c2s,2 � v22 > 1. Since ⇤ is positive if the gas is cooling, then it
follows that within the radiative relaxation layer, the gas velocity will fall: dv/dx < 0.

• One important consequence of this derives from mass conservation: since ⇢v = constant,
a fall in the velocity implies an increase in the density. A second important consequence
derives from momentum conservation: since p + (⇢v)v = constant and ⇢v = constant,
a decrease in v implies an increase in the pressure p.

• Therefore, within the radiative relaxation layer, the velocity of the gas decreases, but
the pressure and density both increase. The behaviour of the temperature is governed
by the equation of state

p =
⇢kT

m
, (418)

but since the fractional increase in p is typically much smaller than the fractional
increase in ⇢, it is usually the case that T decreases substantially.

• The details of these changes depend on the form of the cooling function ⇤(⇢, T ), as do
the final density, pressure etc., which correspond to the values in the flow at the point
when the gas reaches thermal equilibrium, ⇤(⇢, T ) = 0.

• In some circumstances (e.g. within dense molecular clouds), the equilibrium temper-
ature is relatively insensitive to the density of the gas. In this case, an isothermal
approximation is often appropriate, i.e.

T1 = T3. (419)



By combining this with the other two jump conditions, it is relatively straightforward
to show that

v1v3 = c2I , (420)

where cI = p/⇢ is the isothermal sound speed. This also implies that the density jump
for an isothermal shock is
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Radiative shocks can therefore produce much larger density contrasts than non-radiative
shocks.

• Finally, whenever we have a radiative shock, we need to consider what happens to the
photons produced in the radiative relaxation layer. Often, the surrounding gas will be
optically thin to these photons, and they will simply escape from the vicinity of the
shock without a↵ecting the gas in any way. However, if the shock is very strong, so that
the post-shock temperature is very large, then the gas in the radiative relaxation layer
will produce a significant number of ionizing photons as it cools. If the pre-shock gas
is largely neutral, it will typically have a high optical depth to these ionizing photons,
and the post-shock emission will therefore ionize and heat the pre-shock gas, creating
a region known as a radiative precursor.

• In order to account for the e↵ects of this radiative precursor, one typically needs to
make use of iterative methods, as by changing the temperature of the pre-shock gas,
the radiation from the radiative relaxation layer changes its sound-speed, and hence
the strength of the shock. This in turn e↵ects the temperature of the post-shock gas,
and hence the details of the emission. It is therefore necessary to iterate until one finds
a consistent solution for both the pre-shock and post-shock temperatures.

• For reference, detailed modeling of very fast shocks show that the minimum shock
speed for which enough ionizing photons are produced in order to create a significant
radiative precursor is around 100 km s�1. Velocities of this order of magnitude are
uncommon in much of the ISM, but can be encountered in protostellar outflows or
young supernova remnants, for example.


