
Astrophysical Fluid Dynamics

Assignment #1: due October 23

1 Validity of the fluid approximation

Astrophysical fluids, such as the gas in the interstellar medium or the plasma in stars, are
ultimately made of particles. When does it make sense to approximate this collection of
particles as a continuous fluid? We have seen in the lectures that the fluid approximation is
valid if the mean free path of a particle is small compared to the typical length over which
macroscopic quantities, such as the density, vary. In this problem, we check the validity of
the fluid approximation by estimating the mean free path in some astrophysical situations.

The mean free path in elementary kinetic theory is given by:

λ =
1

nσ
(1)

where n is the number of particles per unit volume and σ is the average cross section per
particle. Use this formula to estimate the mean free path of

(a) The Warm Neutral Medium (WNM), one of the possible phases of the Interstellar
Medium (ISM), for which n ∼ 0.1 cm−3.

Hint: the main constituents of the WNM are atomic hydrogen and atomic helium.
Since collisions between neutral atoms do not involve a strong long-range interaction,
the collision cross-section is given approximately by σ ' π(r21 + r22), where r1 and r2
are the radius of the two atoms involved in a collision.

(b) The Cold Neutral Medium, (CNM), another possible phase of the ISM, for which
n ∼ 100 cm−3.

Hint: the main constituent of the CNM is molecular hydrogen, H2.

(c) A protostellar accretion disk, for which n ∼ 1010 cm−3.

(d) Particles in the solar corona. In the solar corona, n ∼ 107 cm−3, T ∼ 106 K.

Hint: the solar corona is almost completely ionised. Charged particles interact via
the Coulomb force over distances much larger than atomic radii, which enhances the
cross section as compared to hard sphere collisions. Thus the formula that we used
in previous items to calculate cross sections for neutral particles is not valid, and you
need to come up (or find in some book) an appropriate formula.

(e) Particles in the solar wind at a distance of 1 AU from the Sun (i.e., at around the
location of the Earth). At this location, typical values are n ∼ 10 cm−3, T ∼ 105 K.

Note: remember this result when we will discuss the Parker wind!



(f) Gas in a galaxy cluster. Plausible values for the density and temperature of gas within
a galaxy cluster are n ∼ 10−3 cm−3 and T ∼ 108 K.

Hint: it follows from the high value of the temperature that the gas in a galaxy cluster
is highly ionised.

2 Estimating Reynolds numbers

(a) Suppose we have a gas with temperature T and particle number density n that is
composed of particles of mass m. This gas is flowing in the y direction with a bulk
velocity

v = v(x) êy (2)

that is a function of x only. Now consider a plane S located at x = x0 (see figure).
Since the gas is made of particles moving in random directions and colliding with each
other, some particles will cross this plane, transporting momentum, even if the bulk
velocity is completely in the y direction. We can assume that the particles that cross
the plane are coming from within a layer whose thickness is roughly the mean free path
λ.

Show that the amount of y component of momentum transported from left to right
per unit area and per unit time, apart from numerical coefficients of order unity, can
be estimated as

Ṗy '
1

6
nvthm

[
v(x0)− λ

∂v

∂x
(x0)

]
, (3)

where

vth =

√
3kT

m
(4)

is the thermal velocity of the gas particles. Show that the net flux, which can be
obtained by also considering the corresponding expression for the momentum transport
from right to left, is:

∆Ṗy =
1

3
nvthmλ

∂v

∂x
(5)

(b) Use your results from part (a) to show that we can estimate the coefficient of dynamic
viscosity as

η =
1

3
nvthmλ. (6)

which implies that

η ∼ mvth
σ

. (7)

(c) Estimate the Reynolds number of the gas in:

(i) A protostellar accretion disk

(ii) A giant molecular cloud
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Figure 1: The microscopic origin of viscosity.

(iii) Gas in a galaxy cluster

Hint: you can use the results of the previous exercise, but you will also need to search
(e.g. in books, or the internet) for typical values of some quantities.

3 Conservation of energy in an external gravitational potential.

We have seen that the following is a statement energy conservation for an adiabatic fluid
subject only to pressure forces:
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v

]
= 0. (8)

Show that the analogous statement in the presence of a given static external gravitational
field Φ(x) is
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]
= 0. (9)

Hint: start from the Euler equation

∂tv + (v ·∇)v = −∇P

ρ
−∇Φ. (10)

and follow the derivation in the lecture notes with the appropriate differences.

4 Lagrangian derivative of line and volume elements.

(a) Show that the Lagrangian derivative of a short line element is

D(dl)

Dt
= (dl ·∇)v (11)



which means that in a time dt it changes as dl→ dl + (dl ·∇)vdt.

Hint: consider how the endpoints move from t to t+ dt.

(b) Show that the Lagrangian derivative of a volume element is

D(dV )

Dt
= (dV )∇ · v (12)

which means that in a time dt the volume of a fluid element changes as dV → dV (1 +
(∇ · v)dt), and ∇ · v is its rate of change.

Hint: consider a parallelepiped whose edges are dx = dxêx, dy = dyêy, dz = dzêz

and use the result of the previous point and that the volume of a parallelepiped is
dV = |dx · (dy × dz)|.
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