
Astrophysical Fluid Dynamics

Assignment #1: due May 2nd

1 Validity of the fluid approximation

Astrophysical fluids, such as the gas in the interstellar medium (ISM) or the plasma in stars,
are ultimately made of particles. When does it make sense to approximate this collection of
particles as a continuous fluid? We have seen in the lectures that the fluid approximation is
valid if the mean free path of a particle is small compared to the typical length over which
macroscopic quantities, such as the density, vary. In this problem, we check the validity of
the fluid approximation by estimating the mean free path in some astrophysical situations.

The mean free path in elementary kinetic theory is given by:

λ =
1

nσ
(1)

where n is the number of particles per unit volume and σ is the average cross section per
particle. Use this formula to estimate the mean free path of

(a) The Warm Neutral Medium (WNM), one of the possible phases of the ISM, for which
n ∼ 0.1 cm−3.

Hint: the main constituents of the WNM are atomic hydrogen and atomic helium.
Since collisions between neutral atoms do not involve a strong long-range interaction,
the collision cross-section is given approximately by σ ' π(r21 + r22), where r1 and r2
are the radius of the two atoms involved in a collision.

(b) The Cold Neutral Medium (CNM), another possible phase of the ISM, for which n ∼
100 cm−3.

Hint: the main constituent of the CNM is molecular hydrogen, H2.

(c) A protostellar accretion disk, for which n ∼ 1010 cm−3.

(d) Particles in the solar corona. In the solar corona, n ∼ 107 cm−3, T ∼ 106 K.

Hint: the solar corona is almost completely ionised. Charged particles interact via
the Coulomb force over distances much larger than atomic radii, which enhances the
cross section as compared to hard sphere collisions. Thus the formula that we used
in previous items to calculate cross sections for neutral particles is not valid, and you
need to come up (or find in some book) an appropriate formula.

(e) Particles in the solar wind at a distance of 1 AU from the Sun (i.e., at around the
location of the Earth). At this location, typical values are n ∼ 10 cm−3, T ∼ 105 K.

Note: remember this result when we will discuss the Parker wind!



(f) Gas in a galaxy cluster. Plausible values for the density and temperature of gas within
a galaxy cluster are n ∼ 10−3 cm−3 and T ∼ 108 K.

Hint: it follows from the high value of the temperature that the gas in a galaxy cluster
is highly ionised.

2 Conservation of energy in an external gravitational potential.

We have seen that the following is a statement energy conservation for an adiabatic fluid
subject only to pressure forces:
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Show that the analogous statement in the presence of a given static external gravitational
field Φ(x) is
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Hint: start from the Euler equation

∂tv + (v ·∇)v = −∇P

ρ
−∇Φ. (4)

and follow the derivation in the lecture notes with the appropriate differences.

3 Lagrangian derivative of line and volume elements.

(a) Show that the Lagrangian derivative of a short line element is

D(dl)

Dt
= (dl ·∇)v (5)

which means that in a time dt it changes as dl→ dl + (dl ·∇)vdt.

Hint: consider how the endpoints move from t to t+ dt.

(b) Show that the Lagrangian derivative of a volume element is

D(dV )

Dt
= (dV )∇ · v (6)

which means that in a time dt the volume of a fluid element changes as dV → dV (1 +
(∇ · v)dt), and ∇ · v is its rate of change.

Hint: consider a parallelepiped with edges dx = dxêx, dy = dyêy, dz = dzêz and
use the result of the previous point and that the volume of a parallelepiped is dV =
|dx · (dy × dz)|.



Solutions

1 Validity of the fluid approximation

(a) The radius of a hydrogen atom is of the order of the Bohr radius, a0 = 5.29× 10−9 cm.
Hence the cross section is approximately given by σ ' π(2a0)

2 ' 5 × 10−16 cm2. The
mean free path in the WNM can then be estimated as

λ =
1

nσ
' 2× 1016 cm ' 1000 AU (7)

which is much smaller than typical length-scales of interest, such as the scale-height of
the gaseous Galactic disk (∼ 100 pc) or the size of typical atomic clouds (∼ 10 pc).

(b) The size of an H2 molecule can be (very roughly) approximated as twice the size of an
H atom, hence the cross section is approximately σ ' 10−15 cm2. This gives a mean
free path of

λ =
1

nσ
' 1013 cm ' 1 AU. (8)

(c) Using the same cross section estimated in the previous item, we find

λ =
1

nσ
' 105 cm ' 10−8 AU. (9)

This is much smaller than the typical size of a protostellar disk (& 1 AU).

(d) To determine the mean free path, we need to know the collision cross-section for ions,
which interact via the Coulomb force. An accurate calculation of σ for e.g. electron-
electron collisions can be found in standard textbooks, but can be estimated (very
roughly) as follows. We define an effective interaction radius by equating the potential
energy of one electron in the field of the other with the kinetic energy of the electron.
Ignoring unimportant numerical factors, we have

e2

re
∼ mev

2
e . (10)

Since the kinetic energy of the electron is comparable to kT , we can also write this as

e2

re
∼ kT, (11)

and hence

σ ∼ πr2e ∼
e4

(kT )2
∼ 10−5T−2 cm2. (12)

Using T = 106 K and n = 107 cm−2 leads to a mean free path of

λ =
1

nσ
' 1010 cm ' 0.1 R�. (13)



A more precise calculation gives a larger value by a factor of log Λ ∼ 20, where log Λ
is the Coulomb logarithm. The more precise calculation takes into account that i)
most of the exchange of momentum happens cumulatively through many small distant
interactions rather than few close strong encounters ii) electric forces are screened at
large distances, and the interaction is cut off at the Debye length.

(e) Repeating the calculations of the previous item with T = 105 K and n = 10 cm−2 gives

λ =
1

nσ
' 1014 cm ' 5 AU. (14)

Even with the correction factor of log Λ ∼ 20, this is quite large compared to the
typical scale of interest (∼ 1 AU).

(f) Using the formula for the cross section (12) we find

λ =
1

nσ
' 1024 cm ' 300 kpc. (15)

which is short with respect to the typical distances of interest in clusters (∼ 1 Mpc),
especially if we add the Coulomb logarithm correction factor.

2 Conservation of energy in an external gravitational potential.

Taking the dot product of v with the Euler equation, the LHS becomes

v · [∂tv + (v ·∇)v] =
1
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]
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2
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(17)

Putting this back together with the RHS we find
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After multiplying by ρ on both sides, we obtain:
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we can rewrite the LHS as follows
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where in the second step we have used the continuity equation. Now let us take care of the
RHS. The first term on the RHS of (19) can be rewritten as:

− (v ·∇)P = −∇ · (Pv) + P (∇ · v) (23)

and the second term

−ρ (v ·∇) Φ = −∇ · (Φρv) + Φ[∇ · (ρv)] (24)

and using the continuity equation we have

Φ[∇ · (ρv)] = −Φ∂tρ = −∂t(ρΦ). (25)

Putting all together into (19) and rearranging we find

∂t

[
ρv2

2
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]
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]
= P (∇ · v) (26)

From this point the derivation proceeds exactly as in the lecture notes, where it is shown
that for an adiabatic gas the term on the RHS can be rewritten as

∇ · v = − 1

P (γ − 1)
[∂tP + ∇ · (Pv)] (27)

Substituting this into (26) and rearranging we finally find:
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3 Lagrangian derivative of line and volume elements.

(a) Consider how the end points A and B of a line element dl move during a time dt (see
figure). It is clear that

D(dl) = dl(t+ dt)− dl(t) (29)

= [B(t+ dt)− A(t+ dt)]− [B(t)− A(t)] (30)

= [B(t+ dt)−B(t)]− [A(t+ dt)− A(t)] (31)

= v(B)dt− v(A)dt (32)

= v(A+ dl)dt− v(A)dt (33)

' (dl ·∇)vdt (34)

which is the result given in the text.

(b) During a time dt, each of the edges change as follows:

dx′ = dx + (dx ·∇)vdt = dxêx + dx · (∂xv)dt (35)

dy′ = dy + (dy ·∇)vdt = dyêy + dy · (∂yv)dt (36)

dz′ = dz + (dz ·∇)vdt = dzêz + dz · (∂zv)dt (37)

(38)



A(t)
A(t+ dt)

B(t+ dt)
B(t)

Figure 1: Evolution of a line element during an interval dt.

where v can be evaluated with negligible error at the center of the parallelepiped. By
direct calculation we find that the new volume is

dV ′ = |dx′ · (dy′ × dz′)| (39)

' |dxdydz {1 + dt [(∂xv) · (êy × êz) + (∂yv) · (êz × êx) + (∂zv) · (êx × êy)]} |
(40)

= |dxdydz {1 + dt(∇ · v)} | (41)

= dV (1 + dt(∇ · v)) (42)

which is the wanted result.
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