
Astrophysical Fluid Dynamics

Assignment #2: due May 16

1 Estimating Reynolds numbers

(a) Suppose we have a gas with temperature T and particle number density n that is
composed of particles of mass m. This gas is flowing in the y direction with a bulk
velocity

v = v(x) êy (1)

that is a function of x only. Now consider a plane S located at x = x0 (see figure).
Since the gas is made of particles moving in random directions and colliding with each
other, some particles will cross this plane, transporting momentum, even if the bulk
velocity is completely in the y direction. We can assume that the particles that cross
the plane are coming from within a layer whose thickness is roughly the mean free path
λ.

Show that the amount of y component of momentum transported from left to right
per unit area and per unit time, apart from numerical coefficients of order unity, can
be estimated as

Ṗy '
1

6
nvthm

[
v(x0)− λ∂v

∂x
(x0)

]
, (2)

where

vth =

√
3kT

m
(3)

is the thermal velocity of the gas particles. Show that the net flux, which can be
obtained by also considering the corresponding expression for the momentum transport
from right to left, is:

∆Ṗy =
1

3
nvthmλ

∂v

∂x
(4)

(b) Use your results from part (a) to show that we can estimate the coefficient of dynamic
viscosity as

η =
1

3
nvthmλ. (5)

which implies that

η ∼ mvth

σ
. (6)

(c) Estimate the Reynolds number of the gas in:

(i) A protostellar accretion disk

(ii) A giant molecular cloud

(iii) Gas in a galaxy cluster
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Figure 1: The microscopic origin of viscosity.

Hint: you can use the results of the previous exercise, but you will also need to search
(e.g. in books, or the internet) for typical values of some quantities.

2 Rotating liquid

Consider a constant density, incompressible fluid rotating inside a container at a constant
angular speed ω in a constant gravitational field g (see figure). The gravitational field is
Φ = gz. Find the shape of the liquid surface.

Can you think of any application of this result?
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Figure 2: Rotating fluid in a container.

3 Bulging of the Earth

The radius of the Earth is slightly bigger at the equator than it is at the poles due to the
centrifugal force arising from the rotation of the Earth around its axis. The goal of this



problem is to find the shape of the Earth, first incorrectly, and then correctly. We assume
that the Earth is made of an incompressible fluid of constant density.

1. A common incorrect method assumes that the gravitational potential of the Earth can
be approximated by that of a sphere. One can then find the shape of the Earth by
finding the equipotential surfaces in Earth’s rotating frame (including the centrifugal
potential). Show that this method leads to a surface whose height is given by

R = R0

[
1−

(
R0ω

2

3g

)
P2(cos θ)

]
(7)

where

P2(cos θ) =
1

2

(
3 cos2 θ − 1

)
(8)

is the second Legendre polynomial, R0 is the radius of the Earth if it were spherical,
θ is the angle measured from the poles (θ = 90◦ is the equator), g = GM/R2

0 is the
gravitational potential at R0 and ω is the angular velocity of the Earth.

2. The above method is incorrect, because the distortion of the Earth slightly changes
its gravitational potential, which changes the equipotential surfaces. Turns out that
this effect is of the same order of the one found in the previous item and cannot be
neglected. Assuming that answer is of the form

R = R0

[
1− β

(
R0ω

2

3g

)
P2(cos θ)

]
(9)

Calculate the correct value of β. What is the difference between the radius of the Earth
at the equator and at the poles?
Hint: the gravitational potential of a thin spherical shell of radius R0 and surface
density

σ(θ) = σ0P2(cos θ) (10)

where σ0 is a constant, is given by (can you prove this?)

Φ2(r, θ) = 4πGσ(θ)×

{
−1

5
R−1

0 r2 if r ≤ R0

−1
5
R4

0r
−3 if r ≥ R0
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Figure 3: Schematic illustration of the bulging of the Earth. The dashed circle is the shape
of the Earth if it were not spinning. The solid line represents the actual shape.



Solutions

1 Estimating Reynolds numbers

(a) We can assume that roughly one third of the particles are moving in the x direction,
and half of these will be moving from in the positive x direction and the other half in
the negative x direction. We can also assume that the mean speed of these particles is
given by vth. The flux of particles across the plane x = x0 will therefore be

Flux ' 1

6
nvth. (11)

The average value of the y component of momentum of each of these particles at a
position x0 − λ is equal to

p̄y = m [v(x0 − λ)] ' m

[
v(x0)− λ∂v

∂x
(x0)

]
, (12)

where we have assumed that the characteristic length scale over which v changes is
much greater than λ (which is required if the fluid approximation is valid). The flux
of the x component of momentum from left to right is therefore

Ṗy =
1

6
nvthp̄x =

1

6
nvthm

[
v(x0)− λ∂v

∂y
(x0)

]
. (13)

Similarly, for particles moving from right to left we have

Ṗy =
1

6
nvthp̄x,− =

1

6
nvthm

[
vx,0 + λ

∂v

∂x
(x0)

]
. (14)

The net flux of momentum across the boundary is then

∆Ṗy =
1

3
nvthmλ

∂v

∂x
(15)

(b) The flux of momentum is the same thing as the rate of change of momentum per unit
area, or in other words the force per unit area. We therefore have:

Fx
A

= ∆Ṗy. (16)

Finally, the shear viscosity is defined by the expression

Fx
A

= η
∂vx
∂y

, (17)

and so it follows that

η =
1

3
nvthmλ. (18)

Using that λ = (nσ)−1 we have

η ∼ 1

3

vthm

σ
∼ vthm

σ
(19)



(c) (i) For the outer part of the disk, plausible numbers are L = 100 AU, v = 3 km s−1,
T = 30 K and n = 1010 cm−3. Using these values, we get

vth =

√
3kT

mH

∼ 105 cm s−1, (20)

η =
vthmH

σ
∼ 1.5× 10−4 g cm−1 s−1, (21)

ν =
η

ρ
∼ 1010 cm2 s−1, (22)

and so

Re =
vL

ν
∼ 4.5× 1010. (23)

which is fairly high, indicating that the disk will be turbulent.

(ii) From Larson’s first “law”, we know that v ∼ 1 (L/1 pc)1/2 km s−1 within a typical
molecular cloud. If we take L = 10 pc as a sensible order of magnitude estimate
for the size of a GMC, we have v ∼ 3 km s−1 = 3 × 105 cm s−1. The coefficient
of shear viscosity is approximately η ∼ mvtσ

−1, the thermal velocity within the
cold molecular gas is ∼ 0.2 km s−1, and σ ∼ 10−15 cm2. Therefore,

η =
vthmH

σ
∼ 3.5× 10−5 g cm−1 s−1. (24)

If we adopt n ∼ 1000 cm−3 as a typical number density for the gas inside a GMC,
then we have

ν = η/ρ ' 2× 1016 cm2 s−1, (25)

from which it follows that

Re =
vL

ν
∼ 5× 108. (26)

(iii) Using n ∼ 10−3 cm−3 and T ∼ 108 K and the same expression for the cross-section
derived in the solution of exercise ??

σ ∼ πr2
e ∼

e4

(kT )2
∼ 10−5T−2 cm2. (27)

For T = 108 K we find σ = 10−21 cm. A more precise calculation gives a larger
value by a factor of log Λ ∼ 40, where log Λ is the Coulomb logarithm. The
thermal velocity of the electrons at this temperature is vth ∼ 4× 109 cm s−1, and
the electrons therefore have a dynamic viscosity

η =
vthme

σ
∼ 100 g cm−1 s−1. (28)

A similar analysis for the ions gives a value that is larger by a factor of (mH/me)
1/2 ∼

40, so for the plasma as a whole we have η ∼ 4000. The kinematic viscosity is
then

ν =
η

ρ
∼ 1030 cm2 s−1. (29)



Finally, to compute the Reynolds number, we need characteristic numbers for v
and L. If we take L = 1 Mpc and v = 1000 km s−1 as reasonable values, then

Re =
vL

ν
=

108 × (3× 1024)

1030
∼ 300. (30)

The Reynolds number for the hot plasma in a galaxy cluster is therefore fairly
small.

2 Rotating liquid

After transients have been dissipated away, we can assume that the fluid will be stationary
in the rotating frame of the vessel. The shape of the fluid will then follow equipotential
surfaces of the total effective potential, which is the sum of the gravitational potential plus
the centrifugal potential

Φeff = gz − 1

2
ωR2 (31)

where R is the distance from the axis of rotation in polar coordinates. If the surface of a fluid
at rest in the rotating frame did not follow the equipotential surfaces, then fluid elements
on the surface would feel a net force, putting it in motion. Solving for z, we see that the
surfaces Φeff = constant are of the form

z = z0 +
1

2
ωR2 (32)

which means that the fluid surface is a parabola. Alternatively, one can obtain the same
result by using the Euler equation in a rotating frame. Assuming steady state, one obtains:

0 = −∇P

ρ
+ ω2RêR − gêz (33)

Solving for P gives:

P =
1

2
ρω2R2 − gz + constant (34)

The liquid surface is a surface of constant pressure. Imposing this, we obtain the same result
as before.

There is an interesting application of this result. Parabolic mirrors have the characteristic
that they reflect all parallel rays coming from infinity into a single point, the focus. This is
exactly the property one is looking for when building telescopes! Thus, we can build telescope
mirrors by spinning liquids and make them solidify while spinning, for example putting them
in big ovens. Or, we can even have liquid mirror telescopes, which are telescopes with mirrors
made with a reflective liquid such as mercury. Very large telescopes can also be constructed
(and controlled) by using many small mirrors, and these mirrors segments can be constructed
by spinning small portions of fluid.



3 Bulging of the Earth

1. Equipotential surfaces in the rotating frame of the Earth are defined by

GM

r
− 1

2
ω2r2 sin2 θ = A (35)

where A is a constant to be determined. Substituting r = R0 + R1 and keeping only
first order terms in the small quantities R1/R0 and in R0ω

2/g we find

R1 ' B +
1

2

ω2R2
0

g
sin2 θ (36)

where B is another constant which includes A and all the constant terms coming from
the expansion. We can determine B by requiring that the total volume of the Earth is
unchanged. The extra volume due to R1 is approximately given by

∆V = R2
0

∫
R1dΩ (37)

= R2
0

∫
R1d sin θdθdφ (38)

= 2πR2
0

∫ π

0

(
B +

1

2

ω2R2
0

g
sin2 θ

)
sin θdθ (39)

= 4πR2
0

(
B +

ω2R2
0

3g

)
(40)

where integral is extended over the whole solid angle. Requiring ∆V = 0 we find

B = −ω
2R2

0

3g
(41)

Using this result and sin2 θ = 1− cos2 θ we can find the result given in the text

R1 = −ω
2R2

0

3g

[
1

2

(
3 cos2 θ − 1

)]
(42)

2. Let us define

R1 = R−R0 = −βR0

(
R0ω

2

3g

)
P2(cos θ) (43)

We model the Earth as the sum of a sphere of constant density plus a thin shell with
positive or negative mass, depending on the sign of R1 at a given location. The surface
density of this shell is

σ(θ) = ρR1 (44)

= −βρR0

(
R0ω

2

3g

)
P2(cos θ) (45)



where ρ is the density of the Earth, which we assume constant, hence

ρ =
M

V
=

M

(4/3)πR3
0

(46)

and we can rewrite the surface density as

σ(θ) = − 3M

4πR2
0

β

(
R0ω

2

3g

)
P2(cos θ) (47)

This shell gives rise to a quadrupole potential whose functional form is given in the
hint in the text. For r ≥ R0 it is:

Φ2(r, θ) = −4πG

5
σR4

0r
−3 (48)

=
3

5
βg

(
R0ω

2

3g

)
R4

0r
−3P2(cos θ) (49)

This already contains the small parameter (R0ω
2/3g), hence at the Earth surface we

can approximate it by putting r ' R0, hence

Φ2(r, θ) ' 3

5
βgR0

(
R0ω

2

3g

)
P2(cos θ) (50)

To find the shape of the Earth we need to find the equipotential surfaces of the full
potential that includes Φ2:

GM

r
− 1

2
ω2r2 sin2 θ + Φ2(r, θ) = A (51)

where A is a constant to be determined. Using R = R0 + R1 and expanding and
neglecting small terms, we can rewrite this as

gR1 +
1

3
ω2R2

0P2(cos θ) + Φ2(r, θ) = B (52)

where B is another constant. Note that we have manipulated the centrifugal term
to make P2(cos θ) appear by adding and subtracting a constant, which then ends up
inside B. Now substituting (50) and (43) we obtain[

−βgR0

(
R0ω

2

3g

)
+

1

3
ω2R2

0 +
3

5
βgR0

(
R0ω

2

3g

)]
P2(cos θ) = B (53)

The left hand side depends on θ, while the right hand side doesn’t. The only way this
equation can be satisfied is if the left hand side vanishes. This is also consistent with
requiring that the volume of the Earth remains unchanged, which requires B = 0. We
find

β =
5

2
(54)



The difference between the Earth radius at the equation and at the poles is

h =
3

2
β

(
R0ω

2

3g

)
' 27 km (55)

The true value is h = 21.5 km. The fact that this is smaller than our value makes
sense for the following reason. In reality, the Earth’s density is not constant as we
assumed, but decreases with radius and it is higher deeper inside the Earth and smaller
at the surface. In the extreme case that all the Earth’s mass were concentrated at
the centre, then the thin distortion shell at the surface would have no effect on the
potential, because it would be massless. So the naive calculation in the first part of
the problem would in fact be correct, and we would obtain h = 11 km. In the real
case the density lies somewhere between the case of a concentrated centre and the case
of uniform density. The actual value of h should therefore lie somewhere between the
corresponding h values of 11 km and 28 km. And 21.5 km indeed does.

This calculation was performed for the first time by Newton in the first edition of the
Principia, where he obtained the value we found in the second part of the calculations!
At the time, this lead to a dispute between Newton and Cassini, because the latter
believed that the Earth radius was greater at the poles, the opposite of the actual
result.
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