Astrophysical Fluid Dynamics

Assignment #8: due December 18th

1. Flow parallel to an MHD shock

Derive an expression for the change in the parallel component of the gas velocity, v_{\parallel} , through an MHD shock. Show that if the parallel and perpendicular components of the magnetic field are both non-zero $(B_{\parallel} \neq 0, B_{\perp} \neq 0)$ then v_{\parallel} remains unchanged only in the trivial case where there is no change in the velocity, density or magnetic field strength through the shock.

2. Rotational discontinuities

Consider an MHD shock in which $v_{1,\perp} = v_{2,\perp}$. Derive expressions for ρ_2/ρ_1 and P_2/P_1 in this case, and show that a non-trivial shock solution exists only if $v_{1,\perp}$ satisfies:

$$v_{1,\perp} = \frac{B_{1,\perp}}{\sqrt{4\pi\rho_1}}.\tag{1}$$

Draw a sketch of what happens to the magnetic field structure as we pass through such a shock. [Note: you may assume that the shock is isentropic].