
Astrophysical Fluid Dynamics

Assignment #10: due January 22nd

1. Stability of a rotating gas distribution

Suppose that two equal mass fluid elements A and B are located within an azimuthally
symmetric rotating gas distribution. Let RA and RB be the distances from the rotation
axis to fluid elements A and B, respectively. Assume that the angular velocity Ω varies
as a function of radius within the disk. We now interchange the two fluid elements
(so that A moves to RB and B moves to RA) while ensuring that the specific angular
momentum of each fluid element remains constant. How does the total kinetic energy
of the system change? Under what circumstances will the energy decrease? What does
this imply for the stability of the gas distribution?

2. Thermal instability

Consider a uniform gas distribution with density ρ0, pressure p0 and temperature T0
that is initially at rest and that obeys the following fluid equations:

∂ρ

∂t
+∇ · (ρ~v) = 0, (1)

∂~v

∂t
+ ~v · ∇~v = −1

ρ
∇p, (2)

∂ε

∂t
+∇ · (ε~v) = −p∇ · ~v − ρL. (3)

Here, L is the cooling rate of the gas per unit volume, and ε = p/(γ−1) is the internal
energy density. We assume that the gas is initially in thermal equilibrium, and hence
that L(ρ0, T0) = 0. The gas is ideal and therefore also obeys the ideal gas law

p =
R

µ
ρT, (4)

where R ≡ kb/mH is the specific gas constant and µ is the mean molecular weight.
Suppose now that we perturb this gas distribution with perturbations of the form

a(~x, t) = a1 exp
(
ωt+ i~k · ~x

)
. (5)

[Note that with perturbations of this form, imaginary ω corresponds to an oscillatory
perturbation, while real, positive ω corresponds to a growing mode.]



(a) Show that to first order, the behaviour of the perturbations is governed by the
following set of equations:

∂ρ1
∂t

+ ρ0∇ · ~v1 = 0, (6)

ρ0
∂ ~v1
∂t

= −∇p1, (7)

1

γ − 1

∂p1
∂t

+
γ

γ − 1
p0∇ · ~v1 = −ρ0ρ1Lρ − ρ0T1LT , (8)

p1
p0
− ρ1
ρ0
− T1
T0

= 0, (9)

where Lρ ≡ (∂L/∂ρ)T and LT ≡ (∂L/∂T )ρ.

(b) Using these equations, show that the dispersion relation of the perturbations can
be written as

ω3 + cskTω
2 + c2sk

2ω +
c3sk

2

γ
(kT − kρ) = 0, (10)

where cs = (γp0/ρ0)
1/2, and

kρ =
µ(γ − 1)ρ0Lρ

RcsT0
, (11)

kT =
µ(γ − 1)LT

Rcs
. (12)

(c) Show that in the limit k → 0, the perturbations are unstable only if LT < 0.


