Properties of Embedded Clusters Models versus Observations

Centro de Astrofísica da Universidade do Porto **Stefan Schmeja** Centro de Astrofísica da Universidade do Porto

ITA-Kolloquium, Univ. Heidelberg, 20 December 2006

Collaborators

Ralf S. Klessen ITA/ZAH

Dirk Froebrich Michael D. Smith University of Kent at Canterbury

Nanda Kumar CAUP

Paula S. Teixeira Harvard-Smithsonian Center for Astrophysics Universidade de Lisboa

KENT UNIVERSITY OF KENT AT CANTERBURY

Stars form...

- in the dense cores of molecular clouds
- in clusters
 - continuously
 - with an efficiency $\lesssim 30\%$

From Clouds to Stars

(Hogerheijde 1998, after Shu et al. 1987)

Pre-main-sequence star, remnant disk

Δ

(Hogerheijde 1998, after Shu et al. 1987; Lada 2001)

"Standard Model" of SF

"Standard model" of star formation (Shu 1977): stars form by inside-out collapse of a singular isothermal sphere (SIS), initially in quasistatic equilibrium, supported against gravity by magnetic and thermal pressure evolution only due to ambipolar diffusion processes

problems:

- only applicable to isolated stars
- observed magnetic fields probably not strong enough
- long timescale
- constant mass accretion rates

➡ Star formation controlled by interplay between gravity and supersonic turbulence

Supersonic Turbulence

- observed ubiquitously within the Galaxy
- Mach numbers $\mathcal{M} \approx 10 \ (\mathcal{M} = v/c_s)$
- counterbalances gravity on global scales
- produces strong density fluctuations \rightarrow local collapse
- hierarchical and complex (clumpy) density and velocity structure
- moderates the star formation process (Mac Low & Klessen 2004)

Turbulence plays a dual rôle!

Numerical Simulations

- smoothed particle hydrodynamics (SPH) (Lagrangian method)
- periodic boundaries
- sink particles
- resolving large density contrasts, long timescale

t = 6.41

Numerical Simulations

- isothermal equation of state
 two models contracting from initial Gaussian conditions without turbulence
 - different turbulent environments: $0.1 \le \mathcal{M} \le 10, k = 1..2, 3..4, 7..8$
- initial conditions typical for observed star-forming regions
- magnetic fields, feedback mechanisms neglected

Properties of Embedded Clusters

- local properties (properties of individual objects):
 - properties of individual clumps (e.g. shape, radial profile)
 - accretion history of individual protostars
 - SEDs of individual protostars
 - T_{bol} - L_{bol} evolution, evolutionary tracks

global properties (statistical properties):

- SF efficiency
- SF time scale
- initial mass function (IMF)
- number ratios of YSOs
- structures of young star clusters

Properties of Embedded Clusters

- local properties (properties of individual objects):
 - properties of individual clumps (e.g. shape, radial profile)

11

- accretion history of individual protostars
- SEDs of individual protostars
- T_{bol} - L_{bol} evolution, evolutionary tracks

global properties (statistical properties):

- SF efficiency
- SF time scale
- initial mass function (IMF)
- number ratios of YSOs
- structures of young star clusters

Mass Accretion History

 $\log \dot{M}(t) = \log \dot{M}_0 \frac{e}{\tau} t e^{-t\tau}$

Fit Parameters

 $\log M_0: \log (dM/dt)_{max}$

 τ : time of $(dM/dt)_{max}$ related to local free-fall time/local density at onset of collapse

Observations

Mass accretion rates cannot be measured directly from observations \rightarrow estimated from SEDs or outflow strengths Class 0 protostars: ~10⁻⁵ ... ~10⁻⁴ M_{sun}/yr Class I protostars: ~10⁻⁷ ... ~5 × 10⁻⁶ M_{sun}/yr dM/dt ~ one order of magnitude higher in Class 0 phase: good agreement with our values dM/dt hard to observe \rightarrow conversion of dM/dt into easier observable quantities like T_{bol}, L_{bol}

Evolutionary Tracks

combination of mass accretion rates from gravoturbulent models with evolutionary code (Smith 2000) \rightarrow L_{bol} - T_{bol} diagram Can we predict final masses, ages...?

Comparison with Observations

 All tracks of one model → 3D probability diagram (L_{bol}, T_{bol}, M_{env}): comparison with sample of observed Class 0 sources (Froebrich 2005) by 3D Kolmogorov-Smirnov test

Comparison with Observations

- max. 70% probability
- best agreement for Class 0 duration of $2 \dots 6 \times 10^4$ yr
- no correlation with turbulent environment (\mathcal{M}, k)
- all sources in Taurus: underluminous, worse correlation
 → other mechanism than turbulence?

Structures of Embedded Clusters

- (almost) all stars form in clusters
- quantitative statistical measure of structure important for understanding the formation and evolution of young star clusters

(Hartmann 2002)

Statistical Methods

- Distribution of source separations
- Mean surface density of companions (Larson 1995):
 - average number of neighbours per square degree on the sky at an angular separation ϑ
- Normalised correlation length (Cartwright & Whitworth 2004)
 - Minimum spanning tree (MST) (Cartwright & Whitworth 2004)

Normalised Correlation Length

mean separation between stars in the cluster, normalised by cluster radius
better indicator for cluster behaviour than MSDC
independent of the number of stars

 \rightarrow normalised mean correlation length S

Minimum Spanning Tree

- construct from graph theory (Kruskal 1956; Prim 1957)
- unique set of edges connecting a given set of points without closed loops, such that the sum of edge lengths is a minimum
- used in many fields (telecommunications, genetics, biology...); astrophysics: structures of galaxy clusters

21

(Prim 1957)

Minimum Spanning Tree

MST \rightarrow mean edge length *m m* not independent of number of points \rightarrow normalised with factor $\sqrt{A/n}$ (Marcelpoil 1993)

A ... arean ... number of points

 \rightarrow normalised mean edge length $\,\mathcal{m}$

Q (Cartwright & Whitworth 2004): distinction between smooth largescale density gradient and fractal subclustering

0 -	\bar{m} _	normalised mean edge length
& –	\overline{s}	normalised correlation length

$Q \ge 0.8$:

centrally concentrated clusters with volume density $n \propto r^{-\alpha}$

Area of a Cluster

- *m*, *s* normalised by cluster radius/area
- How to define the cluster area?
- different approaches: circle, rectangle, convex hull
- definition crucial, can differ by factor of 2 or more
- $Q = \bar{m}/\bar{s}$ independent of radius/area!

Elongation of a Cluster

- elongation ξ of a cluster:
 - $\xi = \frac{R_{\text{cluster}}^{\text{circle}}}{R_{\text{cluster}}^{\text{conv.hull}}}$
- ξ ≈ 1: spherical cluster,
 ξ ≈ 3: elongated elliptical cluster with axis ratio of *a/b* ≈ 10

Observations

- data: sample of YSOs and prestellar cores constructed from various published sources (Schmeja et al. 2005)
- ρ Ophiuchi, Serpens, Taurus: all classes
- Chamaeleon I, IC 348: no information on individual classes
- Caveat: different samples → different completeness limits
- Caveat: 2D projections, not 3D structure!

Observations: MST

(Schmeja & Klessen 2006)

Observations:Q

(Cartwright & Whitworth 2004)

Models: MST

Models: 3D, projection into 2D planes

MST of one model ($\mathcal{M} = 6, k = 3..4$) projected into the xy-plane at different times (SFEs): expansion of the cluster

Models: Parameters

---- Serpens - Taurus - Cha I - IC 348 - ρ Oph

- no correlation with \mathcal{M} or k
- good agreement between models and observations when similar ξ values

Models: Q

(Cartwright & Whitworth 2004)

Models: Temporal Evolution

- similar behaviour of all models
- \bar{s}, \bar{m} decline slightly, Q increases
- star formation sets in in different regions, cluster becomes more centrally concentrated as more and more gas is turned into stars

Models: Effect of Projection

models: 3D distribution projected into xy-, xz-, yz-plane

 $\bar{s}_{3D}/\bar{s}_{2D} \approx 1.2, \bar{m}_{3D}/\bar{m}_{2D} \approx 1.1$

individual values can change, but qualitative behaviour of evolution similar

Evolution: Open Clusters

sample of 63 open clusters (Kharchenko et al. 2004, 2005):

correlation of Q with cluster age?

Summary

- gravoturbulent models of SF predict many observed properties
- mass accretion rates highly time-dependent
- no unique protostellar evolutionary tracks
- Class 0 duration: $2 \dots 6 \times 10^4$ yr
- protostars in Taurus: anomalous accretion history → other control mechanism?
- not all prestellar cores may form stars
- clusters build up from several subclusters, evolve to more centrally concentrated state