Triggered Star Formation in OB Associations Thomas Preibisch

Max-Planck-Institute for Radioastronomy Bonn, Germany

generation II

Upper Centaurus - Lupus age = 17 Myr generation I

(Ambartsumian 1947; Protostars and Planets V chapter by Briceno et al. (2006; astro-ph/0602446)

- Unbound stellar group containing O B2 stars, Ø ~ 20 ... 50 pc
- Density < 0.1 M_{\odot} pc⁻³ \rightarrow unstable against galactic tidal forces \rightarrow < 30 Myr old

Blaauw (1964, 1991):

OB Association:

Many OB associations consist of distinct sub-groups with different ages \rightarrow sequential (triggered ?) formation

Massive stars profoundly affect their environment via

Effects: - Winds & radiation <u>disperse</u> surrounding clouds & disks:

→ star (& planet) formation terminated

- UV Radiation <u>compresses</u> surrounding clouds:
 - → radiation-driven implosion of irradiated globules may trigger further star formation

- Winds & Supernovae drive large-scale shock waves:

 \rightarrow triggered star formation in other clouds

Triggered or **revealed** star formation ?

Problem: Proof of causality

Was the formation of the YSOs really <u>triggered</u> by the shock, or did YSOs form independently and are just <u>revealed</u> by the shock ?

More insight: Determine ages of the YSOs and compare to shock arrival time

OB associations show the *result of a recently completed star formation process, reconstructed star formation history and initial mass function* allow a *quantitative comparison to models*

Theoretical models for triggering mechanisms in OB associations:

1. Sequentially triggered formation of OB subgroups (Elmegreen & Lada 1977, Lada 1987)

Predictions:

- Bimodal star formation:

low-mass stars form independently \rightarrow are on average older, show large age spread

IMF variations:

- IMF variations:

younger OB subgroups should have larger fractions of low-mass stars

of low-mass stars

Theoretical models for triggering mechanisms in OB associations:

2. Radiation-driven implosion of globules near OB stars

(Bertoldi 1989; Lefloch & Lazareff 1994; Kessel-Deynet & Burkert 2003)

Predictions:

- OB stars form first, are older than low mass stars

- Age gradients:

stars close to the O star are older than those further away

Theoretical models for triggering mechanisms in OB associations:

3. Supernova shock wave compression of clouds

(e.g. Foster & Boss 1996, ApJ 468, 784; Vanhalla & Cameron 1998, ApJ 508, 291)

At suitable distances of $\sim 20 \dots 100$ pc,

where v_{shock} = 20 ... 50 km/sec,

cloud collapse can be triggered

Predictions:

- High- and low-mass stars have same age
- Small age spread (since v_{shock} > 20 km/sec)
- Age difference of ~ 5...10 Myr between subgroups

The nearest OB Association: Scorpius - Centaurus (Sco OB2)

Hipparcos revealed B to F stars

de Zeeuw et al (1999, AJ 117, 354) de Bruijne (1999, MNRAS 310, 585)

D= 144 pc 49 B-stars D = 142 pc 66 B-stars Upper Scorpius Upper Centaurus - Lupus

> D = 116 pc 42 B-stars Lower Centaurus - Crux

25 pc 10°

 α Sco

The nearest OB Association: Scorpius - Centaurus (Sco OB2)

de Geus et al. (1989, A&A 216,44)

log L/L₀

What about the low-mass stars ?

The low-mass stars in Upper Scorpius

- needles in a haystack

Problem: Huge field star confusion

10° x 10° (25 x 25 pc)

The low-mass stars in Upper Scorpius

- needles in a haystack

Problem: Huge field star confusion Solution: Look for Lithium

Young members: Lithium preserved Older field stars: Lithium depleted

10° x 10° (25 x 25 pc)

Task: Obtain high-/medium-resolution spectra of *all* stars in the region feasible with modern multi-object spectrographs like 2dF (400 objects in a 2° field-of-view)

The low-mass stars in Upper Scorpius

- needles in a haystack

Lithium surveys in Upper Sco:

- X-ray selected candidates: Walter et al (1994, AJ 107,692) Preibisch et al (1998, A&A 333,619)
- Survey with multi-object spectrograph 2dF (1045 candidate stars observed)
 - Preibisch et al (2002 AJ 124, 404)
 - → 250 low-mass members

→ 364 known members SpT = B0.5 – M6

 $M = 20 M_{\odot} - 0.1 M_{\odot}$

10° x 10° (25 x 25 pc)

Statistically robust sample Individual spectral types and extinctions known: can derive IMF and star formation history

The HR Diagram for Upper Scorpius

The Initial Mass Function of Upper Sco

 IMF is <u>not</u> truncated, <u>no deficit</u> of low-mass stars

- Observed IMF consistent with field IMF
- Total stellar mass: \sim 2200 M_{\odot}

Preibisch et al (2002, AJ 124, 404)

Salpeter: $dN/dM \propto M^{-2.35}$

The HR Diagram for Upper Scorpius

→ High- and low-mass stars are <u>coeval</u> Does this scatter imply ~10 Myr age spread ??

- photometric variability:

$$\Delta \log L = [-0.1 \dots +0.1]$$

true age: 5 Myr range of isochronal ages: 0.5 Myr 20 Myr

- photometric variability:

$$\Delta \log L = [-0.1 \dots +0.1]$$

Monte-Carlo Simulation

Monte-Carlo Simulation

→ false impression of large age spread & accelerating star formation rate

in an actually perfectly coeval population !

HRD for Upper Sco consistent with

<u>zero age spread</u>

 $\Delta \tau < 1 - 2$ Myr

Implications on the star formation process

age of the high-mass stars: 5 Myr age of the low-mass stars: 5 Myr

age spread < 1-2 Myr

diameter: ~ 30 pc

stellar velocity dispersion: 1.3 km/sec

→ lateral crossing time ~ 25 Myr

age spread << crossing time</p>

 \rightarrow external agent coordinated onset of star formation over the full spatial extent

Implications on the star formation process

age of the high-mass stars: 5 Myr age of the low-mass stars: 5 Myr

age spread < 1-2 Myr

diameter: ~ 30 pc

stellar velocity dispersion: 1.3 km/sec

→ lateral crossing time ~ 25 Myr

age spread << crossing time</p>

\rightarrow external agent coordinated onset of star formation over the full spatial extent

De Geus (1992, A&A 262, 258):

Wind- & supernova-driven expanding superbubble from UCL crossed Upper Sco ~ 5 Myr ago

ScoCen is surrounded by several H I shells

Scenario for the star formation history

de Geus (1992, A&A 262, 258); Preibisch & Zinnecker (1999, AJ 117, 2381)

Supernova & wind driven shock wave from USco reaches ρ Oph cloud

Scenario for the star formation history

de Geus (1992, A&A 262, 258); Preibisch & Zinnecker (1999, AJ 117, 2381)

Supernova & wind driven shock wave from USco reaches ρ Oph cloud

"Any theory of star formation is incomplete without a corresponding theory of cloud formation" (Elmegreen & Lada 1977)

Hartmann et al (2001, ApJ 562,852) and others: **Molecular clouds are short-lived structures,** i.e. do not exist for > 10 Myr without forming stars and "wait for a trigger"

Rapid formation of molecular clouds and stars

Ballesteros-Paredes et al.(1999, ApJ 527,285); Hartmann et al.(2001 ApJ 562, 852); Clark et al.(2005, MNRAS 359,809)

Large-scale flows in the ISM accumulate and compress gas to form transient molecular clouds

- Wind & supernova shocks waves create coherent large-scale velocity fields,
- → formation of large structures in which star formation can be triggered nearly simultaneously

Ballesteros-Paredes et al. (1999, ApJ 527,285)

Hartmann et al. (2001 ApJ 562, 852)

Triggered cloud & star formation in ScoCen T = - 14 Myr

OB star winds in UCL create expanding superbubble (v ~ 5 km/sec)

Interaction with ISM flows starts to sweep up clouds

Triggered cloud & star formation in ScoCen T = - 5 Myr

Supernovae in UCL add energy & momentum to expanding superbubble

Shock wave (~ 30 km/sec) crosses cloud in Upper Sco

Increased pressure triggers star formation in this cloud

Triggered cloud & star formation in ScoCen

Shock wave from USco superbubble triggers star formation in ρ Oph and Lupus I clouds

ρ Ophiuchus generation III

Upper Scorpius

generation II

Upper Centaurus - Lupus generation I

Lupus I cloud generation III

T = -1 Myr

Model versus observations

Model Predictions I:

Stellar groups triggered in swept-up clouds move away from the trigger source

Observation:

Centroid space motions of Upper Sco and UCL de Bruijne (1999, MNRAS 310, 585) show that

Upper Sco moves away from UCL with $v \sim 5 (\pm 3)$ km/sec

Hipparcos proper motions of USco and UCL members

de Zeeuw et al (1999, AJ 117, 354)

Model versus observations

Model Predictions Ib:

Stellar groups triggered in swept-up clouds move away from the trigger source

Observation:

Mamajek & Feigelson (2001)

Several young stellar groups:

- η Cha cluster
- TW Hydra Association

- CrA cloud

move away from UCL with v ~ 10 km/sec

were located near the edge of UCL ~ 12 Myr ago (when SN exploded)

Model versus observations

Model Predictions II:

Elongated star forming clouds form at the intersection of two expanding flows

Observation:

Lupus I cloud is located just between USco and UCL

Dust extinction map from Dobashi et al. 2005, PASJ 57,S1

S

Observations \leftrightarrow **Models**

Key properties of ScoCen & other well investigated OB associations: Briceno et al. (2006; Protostars & Planets V chapter; astro-ph/0602446)	Bimodal SF	Radiative driven implosion	Large-scale shock waves
- IMF is consistent with field IMF no evidence for IMF variations		_	
- Low- and high-mass stars are coeval formed simultaneously, not one first, the other later			
- Age spreads are often (much) smaller than the stellar crossing time rapid star formation		?	

Triggered cloud formation in action:

 $H\alpha$ image, green contours: CO open circles: > 10 Myr clusters, filled circles: < 10 Myr old clusters

Possible problem: Subgroups with the same age

Hen 206 (LMC)

OB association NGC 2018: age ~ 10 Myr

blue: 3.6+4.5 μm, cyan: 5.8 μm, green: 8.0 μm, red: 24 μm

Supernova-driven expanding H I shell v = 22 km/sec

Simultaneous triggered formation of several new OB subgroups

Gorjian et al. (2004, ApJS 154, 275)

The Supergiant Shell Region in IC 2574

Cannon et al. (2005, ApJ 630, L37) Stewart & Walter (2000, AJ 120,1794)

ΗI

cavity surrounded by expanding shell

Ø ~ 800 pc, M ~ $10^{6} M_{\odot}$ v ~ 25 km/sec

UV

central OB Association total mass ~150 000 M_{\odot} age ~ 11 Myr

Hα young OB Associations M ~ 5000 ... 300000 M_{\odot} ages ~ 1 ... 4 Myr

Expanding shell triggers a second generation of OB Associations on its rim

HII region IC 1396 in the Cep OB 2 Association

Getman et al. (2006)

Radiation-driven implosion of globule triggers star formation

BUT:

This globule will only form a *small* stellar group, <u>no</u> OB subgroup!

"Pillars of Creation" in the Eagle Nebula (M16)

HST optical image; Hester et al. (1996) Detection of evaporating gaseous globules "EGGs"; sites of triggered star formation ?

Only 11 of 73 EGGs have YSOs

< 100 stars will eventually form in the pillars, much less than the stellar population of the exciting OB cluster NGC 6611

VLT near-infrared image;

McCaughrean & Andersen (2002)

Conclusions

OB subgroups with **well defined age sequences** and **small internal age spreads** suggest **large-scale triggered formation scenarios**. (Supernova/wind driven shock waves)

Expanding bubbles → coherent large-scale ISM flows → new clouds
Supernova shock waves → cloud compression
→ triggered formation of whole OB subgroups (several 1000 stars).

Other triggering mechanisms (e.g. radiation-driven implosion of globules) may operate simultaneously, but seem to form only small groups of stars (i.e. are secondary processes).

Note: Our Sun formed in an OB association ! Supernova shock wave injected short-lived radionucleids (e.g. ²⁶Al, ⁶⁰Fe). (Cameron & Truran 1977; Hester & Desh 2005)

THE END

Age sequences / spreads and projection effects

O'Dell 2001 ARAA 39, 99

HR Diagram of the Orion Nebula Cluster:

- most stars have ages <~ 1 Myr

- a few much older stars with ~ 10 - 20 Myr

Is this evidence for extended periods of star formation activity ?

Hillenbrand 1997 (AJ 113, 1733)

Pflamm-Altenburg & Kroupa, (MNRAS, in press; astro-ph/0611517): A collapsing cloud can capture stars from surrounding (i.e. older) populations

The <u>captured stars</u> will become kinematic members of the cluster/association

This model explains the number of apparently older ONC members:
 → no evidence for extended periods of star formation

Hipparcos results for Scorpius-Centaurus:

Upper Scorpius:144 pc,49 B-stars, 34 A-stars, 22 F-stars, 9 G-starsUpper Centaurus Lupus:142 pc,66 B-stars, 68 A-stars, 55 F-stars, 25 G-starsLower Centaurus Crux:116 pc,42 B-stars, 55 A-stars, 61 F-stars, 15 G-stars

The stellar population of Upper Sco over the full stellar mass range $0.1 - 20 M_{\odot}$

- 114 Hipparcos members in 150 sqdeg, SpT = B0.5 to F
 - 84 X-ray selected members in 150 sqdeg, SpT = G0 to M4
- 166 members revealed by 2dF survey (9 sqdeg), SpT = K5 to M6