Dissertation
Materietransport in Akkretionsscheiben

(Matter Transport in Accretion Discs)


Christof Keller 

Abstract:

Time-scales that need to be considered in time-dependent computations of accretion discs are many orders of magnitudes larger than stable time-step sizes of common numerical codes. Therefore, theoretical investigation of these objects is severely limited by present-day computational resources, unless more efficient algorithms are found. Due to large differences in the underlying physics of cosmic accretion discs, algorithms need to be adjusted to the particular problem. During the course of this thesis, several algorithms habe been implemented and tested. One of the implemented splitting-methods could efficiently be employed to 1D-simulations of supersonic accretion flows onto black holes. Another splitting method and a pressure correction scheme were applied to simulate two-dimensional protostellar accretion flows, which have been investigated more elaborately in this thesis. With these methods, performance in simulating protostellar discs could be improved in at least some cases. Numerical simulations of flow-structures in protostellar discs could thus be conducted and compared to higher order analytical approximations. Disc models using an α-description of the viscosity produced meridional flow-structures that have already been observed by several authors. Unlike flow-structures resulting from stationary one-zone-approximations, meridional flows exhibit outward directed velocities in the midplane of the disc. Test cases showed, that meridional flows can play an important role in the mixing processes of protostellar disc material that is reflected in the composition of cometary and meteorite material.

Thesis: ps.gz file (3216694 Bytes)     Only available in german


UP ITA Home University