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Developing a theory of low-mass star formation (∼ 0.1 to 3 M�) remains one of the
most elusive and important goals of theoretical astrophysics. The star-formation process is
the outcome of the complex dynamics of interstellar gas involving non-linear interactions of
turbulence, gravity, magnetic field and radiation. The evolution of protostellar condensations,
from the moment they are assembled by turbulent flows to the time they reach stellar densities,
spans an enormous range of scales, resulting in a major computational challenge for simulations.
Since the previous Protostars and Planets conference, dramatic advances in the development
of new numerical algorithmic techniques have been successfully implemented on large scale
parallel supercomputers. Among such techniques, Adaptive Mesh Refinement and Smooth
Particle Hydrodynamics have provided frameworks to simulate the process of low-mass star
formation with a very large dynamic range. It is now feasible to explore the turbulent fragmen-
tation of molecular clouds and the gravitational collapse of cores into stars self-consistently
within the same calculation. The increased sophistication of these powerful methods comes
with substantial caveats associated with the use of the techniques and the interpretation of the
numerical results. In this review, we examine what has been accomplished in the field and
present a critique of both numerical methods and scientific results. We stress that computational
simulations should obey the available observational constraints and demonstrate numerical
convergence. Failing this, results of numerical simulations do not advance our understanding of
low-mass star formation.

1. INTRODUCTION

Most of the stars in the galaxy exist in gravitationally
bound binary and low-order multiple systems. Although
several mechanisms have been put forth to account for bi-
nary star formation, fragmentation has emerged as the lead-
ing mechanism in the past decade (Bodenheimer et al.,
2000). This point of view has been strengthened by obser-
vations that have shown the binary frequency among pre-
main-sequence stars is comparable to or greater than that
among nearby main-sequence stars (Duchene et al., 1999).
This suggests that most binary stars are formed during the
protostellar collapse phase. Developing a theory for low
mass star formation ( 0.1 to 3 solar masses), which explains
the physical properties of the formation of binary and mul-
tiple stellar systems, remains one of the most elusive and
important goals of theoretical astrophysics.

Until very recently, the extreme variations in length scale

inherent in the star formation process have made it difficult
to perform accurate calculations of fragmentation and col-
lapse, which are intrinsically three-dimensional in nature.
Since the last review in Protostars and Planets IV by Bo-
denheimer et al., 2000, dramatic advances in the develop-
ment of new numerical algorithmic techniques, including
adaptive mesh refinement (AMR) and Smooth Particle Hy-
drodynamics (SPH), as well as advances in large scale par-
allel machines, have allowed a significant increase in the
dynamic range of simulations of low mass-star formation.
It is now feasible to explore the turbulent fragmentation of
molecular clouds and the gravitational collapse of cores into
stars self-consistently within the same calculation. In this
chapter we examine what has been recently accomplished
in the field of numerical simulation of low-mass star forma-
tion, and we critically review both numerical methods and
scientific results.
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1.1. Key Questions Posed by the Observations

Observational surveys present us with a basic picture
of star-forming regions including the structure and dynam-
ics of star-forming clouds and the properties of protostellar
cores. A theory of star–formation should explain both the
large scale environment and the properties of protostellar
cores self-consistently.

As shown first by Larson (1981), and later confirmed by
many other studies, star-forming regions are characterized
by a correlation between internal velocity dispersion and
size, δV ≈ 1km/s(L/1pc)0.4. This scaling law has been
interpreted as evidence of supersonic turbulence on a wide
range of scales. The turbulence can provide support against
the gravitational collapse, but can also create gravitationally
unstable compressed regions through shocks. A theory of
star formation should elucidate whether turbulence controls
the star formation rate and efficiency, or are those properties
controlled by stellar outflows and winds? Are the scaling
laws of turbulent flows related to scaling laws of core and
stellar properties? Is the turbulence setting the initial den-
sity perturbations that collapse into stars? What is the effect
of turbulence on the accretion of mass onto protostars?

On smaller scales, observational surveys have shown
that prestellar cores are elongated. Their density profiles are
flat near the center, steeper at larger radii, may show very
sharp edges and are sometimes consistent with Bonnor-
Ebert profiles (e.g., Bacmann et al., 2000; Alves et al.,
2001). Cores have rotational energies on the average only
a few percent of their binding energies (e.g., Goodman et
al., 1993). They are marginally supercritical (Crutcher,
1999) and their mass distribution is very similar to the stel-
lar mass distribution (e.g., Motte et al., 1998, 2001). The
large majority of cores are found to contain stars (e.g., Ji-
jina et al., 1999), and individual cores produce at most 2-3
protostars (e.g., Goodwin and Kroupa, 2005). A theory of
low-mass star formation should be consistent with these ob-
servations and address: Why are prestellar cores so short-
lived? Why do they have Bonnor-Ebert profiles? How does
the observed core angular momentum affect the formation
of binary and multiple systems? What is the role played by
magnetic fields in their evolution? Why is the mass distribu-
tion of prestellar cores so similar to the stellar initial mass
function? Why are cores barely fragmenting into binaries
or low multiplicity systems?

Observations of young stellar populations provide im-
portant constraints as well. We know that young stars are
always found in association with dense gas with an effi-
ciency ∼ 10-20%, much higher than the overall star forma-
tion efficiency in GMCs, ∼ 1-3% (e.g., Myers et al., 1986).
Stars are often found in clusters, of size ranging from 10
to 1000 members (e.g., Lada and Lada, 2003). The stel-
lar initial mass function peaks around a fraction of a solar
mass and its lognormal shape around the peak is roughly
the same in open clusters, globular clusters and field stars
(Chabrier, 2003). What determines the efficiency of star
formation? Why is the stellar multiplicity higher in younger

populations? What determines the typical stellar mass and
the initial mass function?

Although answering all these questions is outside the
scope of this review, we pose them because these are the
questions to be addressed by the computational simulations
of the formation of low-mass stars.

1.2. Generation of Initial Conditions Consistent with the
Observations

Simulations of low mass star formation should gener-
ate initial conditions for the collapse of protostars consis-
tent with the observed physical properties of star forming
clouds. This can be achieved if a relatively large scale is
simulated (> 1 pc) with numerical methods that can accu-
rately reproduce fundamental statistics measured in molec-
ular clouds. Such statistics include i) scaling laws of veloc-
ity, density and magnetic fields; ii) mean relative values of
turbulent, thermal, magnetic and gravitational energies (the
normalization of the scaling laws).

1.2.1. Scaling Laws. Larson (1981) found that veloc-
ity and size of interstellar clouds are correlated over many
orders of magnitude in size. This correlation has been con-
firmed by many more recent studies (e.g., Fuller and Myers,
1992; Falgarone et al., 1992). The most accepted interpre-
tation is that the scaling law reflects the presence of super-
sonic turbulence in the ISM (e.g., Larson, 1981; Ossenkopf
and Mac-Low, 2002; Heyer and Brunt, 2004). Large scale
velocity-column density correlations from molecular line
surveys of giant molecular clouds also suggest a turbulent
origin of the observed density enhancements (Padoan et al.,
2001). Starting with the work of Troland and Heiles (1986),
a correlation between magnetic field strength and gas den-
sity, B ∝ n1/2, has been reported for mean densities larger
than n ∼ 100 cm−3. However, density and magnetic field
scalings are very uncertain because both quantities are dif-
ficult to measure.

1.2.2. Mean Energies. Assuming an average tempera-
ture of T = 10 K, Larson’s velocity-size correlation cor-
responds to an rms sonic Mach number Ms ≈ 5 on the
scale of 1 pc, and Ms ≈ 1 at 0.02 pc. So, on the average,
the turbulent kinetic energy is larger than the thermal en-
ergy. Indirect evidence of super-Alfvénic dynamics in giant
molecular clouds has been presented by Padoan and Nord-
lund (1999) and Padoan et al. (2004a). They have shown
that the magnetic energy averaged over a large scale has an
intermediate value between the thermal and the kinetic en-
ergies, even if it can be significantly larger than this average
value within dense prestellar cores. Observations suggest
that in dense cores gravitational, kinetic, thermal and mag-
netic energies are all comparable. However, the magnetic
energy is very difficult to estimate. Accounting for both
detections and upper limits, there is a large dispersion in
the ratio of magnetic to gravitational energy of dense cores
(Crutcher et al., 1993; Crutcher et al., 1999; Bourke et al.,
2001; Nutter et al., 2004). In the case of turbulence that
is super-Alfvénic on the large scale, this dispersion and the
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B-n relation are predicted to be real (Padoan and Nordlund,
1999).

In summary, large scale simulations may provide real-
istic initial and boundary conditions for protostellar col-
lapse, but they must be consistent with the turbulent nature
of the ISM. On the scale of giant molecular clouds, obser-
vations suggest the turbulence is on the average supersonic
and super-Alfvénic and its kinetic energy is roughly equal
to the cloud gravitational energy.

2. A BRIEF SURVEY OF LOW-MASS STAR FOR-
MATION MECHANISMS

Although much progress in numerical simulations of
collapse and fragmentation has been made in the interven-
ing 6 years since PPIV, a self-consistent theory of binary
and multiple star formation that addresses the key questions
posed by observations is still not at hand. As discussed
by Bodenheimer et al., 2000, binary and multiple forma-
tion can occur through the processes of (i) capture, (ii) fis-
sion, (iii) prompt initial fragmentation, (iv) disk fragmenta-
tion and (v) fragmentation during the protostellar collapse
phase.

A recent mechanism for multiple star formation has been
put forth by Shu et al., (2000) and Galli et al., (2001).
They develop equilibrium models of strongly magnetized
isopedic disks and explored their bifurcation to non-axi-
symmetric, multi-lobed structures of increasing rotation
rates. Possible problems with this mechanism include
the observed low rotational energies, the observed ran-
dom alignment of disks with the ambient magnetic fields,
the complexity of star-forming regions relative to the two
dimensional geometry and absence of turbulence in the
model.

Disk fragmentation from gravitational instability can re-
sult in multiple systems in an equilibrium disk if the mini-
mum Toomre Q parameter falls below ≈ 1. However, Bo-
denheimer et al., 2000, have pointed out that the required
initial conditions to obtain Q < 1 may not be easily realized
since the mass accretion timescale is significantly longer
than the dynamical timescale throughout most of the evo-
lution of the protostar. Disk fragmentation plays a key role
in one of the theories of the formation of Brown Dwarfs
(BDs). This scenario, known as the ”failed embryo” sce-
nario, begins with a gravitationally unstable disk surround-
ing a protostar. The disk fragments into a number of sub-
stellar objects. If the crossing time of the cluster of embryos
is much less than the free-fall time of the collapsing core,
one or more of the members will be rapidly ejected result-
ing in a BD (Reipurth and Clarke, 2001). Problems with
this model include observational evidence of BD cluster-
ing (Duchêne et al., 2004) , Ly-α signatures of BD accre-
tion (e.g., Jayawardhana et al., 2002; Natta et al., 2004;
Barrado y Navascués et al., 2004; Mohanty et al., 2005)
and evidence that individual cores produce only 2 or 3 stars
(Goodwin and Kroupa, 2005).

Currently, there are two dominant models to explain

what determines the mass of stars. The Direct Gravitational
Collapse theory suggests that star-forming turbulent clouds
fragment into cores that eventually collapse to make indi-
vidual stars or small multiple systems (Shu et al., 1987;
Padoan and Nordlund, 2002, 2004). In contrast, the Com-
petitive Accretion theory suggests that at birth all stars are
much smaller than the typical stellar mass and that the fi-
nal stellar mass is determined by the subsequent accretion
of unbound gas from the clump (Bonnell et al.,1998; Bon-
nell et al., 2001; Bate et al., 2005). Significant problems
with competitive accretion include the large value of the ob-
served virial parameter relative to the one required by com-
petitive accretion (Krumholz et al., 2005b). We discuss this
problem with competitive accretion in detail in section 4d.

3. PHYSICAL PROCESSES NECESSARY FOR
DETAILED SIMULATION OF LOW-MASS STAR
FORMATION

3.1. Turbulence

The Reynolds number estimates the relative importance
of the nonlinear advection term and the viscosity term in
the Navier-Stokes equation, Re = V0L0/ν. V0 is the flow
rms velocity, L0 is the integral scale of the turbulence (say
the energy injection scale) and ν is the kinematic viscos-
ity that we can approximate as ν ≈ vth/(σn). vth is the
gas thermal velocity, n is the gas mean number density and
σ ∼ 10−15 cm2 is the typical gas collisional cross section.
For typical molecular cloud values, Re ∼ 107-108, which
implies flows are highly unstable to turbulence. It is impor-
tant to recognize the significance of turbulent gas dynam-
ics in astrophysical processes, as turbulence is a dominant
transport mechanism. In molecular clouds, the turbulence is
supersonic and the postshock gas cooling time is very short.
This results in the highly fragmented structure of molecular
clouds.

There has been significant progress in our understand-
ing of supersonic turbulence in recent years (progress on
the scaling properties of subsonic and sub-Alfvénic turbu-
lence is reviewed in Cho et al., 2003). Phenomenological
models of the intermittency of incompressible turbulence
(e.g., She and Leveque, 1994; Dubrulle, 1994) have been
extended to supersonic turbulence by Boldyrev (2002) and
the predictions of the model have been confirmed by nu-
merical simulations (Boldyrev et al., 2002a; Padoan et al.,
2004b). The intermittency correction is small for the expo-
nent of the velocity power spectrum (corresponding to the
second order velocity structure function) and large only at
high order. However, Boldyrev et al. (2002b) have shown
that low order density correlators depend on high order ve-
locity statistics, so intermittency is likely to play a signif-
icant role in turbulent fragmentation, despite being only a
small effect in the velocity power spectrum.

Because supersonic turbulence can naturally generate,
at very small scale, strong density enhancements of mass
comparable to a low mass stars or even a brown dwarf,
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its correct description is of paramount importance for sim-
ulations of molecular cloud fragmentation into low mass
stars and brown dwarfs. At present, the largest simula-
tions of supersonic turbulence may achieve a Reynolds
number Re ∼ 104. The scale of turbulence dissipa-
tion is therefore much larger in numerical simulations
(of order the computational mesh size) than in nature
(∼ 1014 cm). However, the ratio of the Kolmogorov dis-
sipation scale,ηK, and the Jeans length, λJ, is very small
and remarkably independent of temperature and density,
ηK/λJ ≈ 10−4(T/10K)−1/8(n/103cm−3)−1/4. One may
hope to successfully simulate the process of turbulent frag-
mentation by numerically resolving the turbulence to scales
smaller than λJ, but not as small as ηK, unless the nature of
turbulent flows varies dramatically between Re ∼ 103 and
Re ∼ 107. Experimental results seem to indicate that the
asymptotic behavior of turbulence is recovered in the ap-
proximate range Re = 10, 000–20,000 (Dimotakis, 2000),
which can be achieved with PPM simulations on a 2, 0483

mesh.
In order to i) generate a sizable inertial range (a power

law power spectrum of the turbulent velocity over an ex-
tended range of scales) and ii) resolve the turbulence just
below the Jeans length, a minimum computational box size
of at least 1, 0003 zones is required for a grid code. This ac-
counts for the fact that the velocity power spectrum starts to
decay with increasing wavenumber faster than a power law
already at approximately 30 times the Nyquist frequency.
It is still an optimistic estimate, because at this resolution
the velocity power spectrum is also affected by the bot-
tleneck effect (e.g., Falkovich, 1994; Dobler et al., 2003;
Haugen and Brandenburg, 2004). Assuming the standard
SPH kernel of 50 particles, this corresponds to at least
50 × 1, 0003 particles to describe the density field, and at
least few × 1, 0003 particles to describe the velocity field,
if a Godunov SPH method is used (see below).

Grid code simulations have started to achieve this dy-
namical range only recently, while particle codes appear un-
suitable to the task. The calculation of Bate et al. (2003)
has 3.5 × 1003 particles, more than four orders of magni-
tude below the above estimate and therefore inadequate to
describe the process of turbulent fragmentation (the forma-
tion of small scale density enhancements by the supersonic
turbulence). Studies proposing to directly test the effect of
turbulence on star formation, based on numerical simula-
tions with resolution well below the above estimate, should
be regarded with caution.

3.2. Gravity

3.2.1. The Jeans Condition. Jeans (1902) analyzed the lin-
earized equations of 1D isothermal self-gravitational hydro-
dynamics (GHD) for a medium of infinite extent and found
that perturbations on scales larger than the Jeans length,
λJ ≡ (πcs

2

Gρ )1/2, are unstable. Thermal pressure cannot
resist the self-gravity of a perturbation larger than λJ , re-
sulting in runaway collapse. Truelove et al. (1997) showed

that the errors generated by numerical GHD solvers can act
as unstable perturbations to the flow. In a simulation with
variable resolution, cell-scale errors introduced in regions
of coarser resolution can be advected to regions of finer res-
olution, allowing these errors to grow. The unstable col-
lapse of numerical perturbations can lead to artificial frag-
mentation. The strategy to avoid artificial fragmentation is
to maintain a sufficient resolution of λJ . Defining the Jeans
number J ≡ ∆x

λJ
, Truelove et al. (1997) found that keeping

J ≤ 0.25 avoided artificial fragmentation in the isothermal
evolution of a collapse spanning 7 decades of density, the
approximate range separating typical molecular cloud cores
from nonisothermal protostellar fragments. This Jeans con-
dition arises because perturbations on scales above λJ are
physically unstable, and discretization of the GHD PDEs
introduces perturbations on all scales above ∆x. It is es-
sential to keep λJ as resolved as possible in order to dimin-
ish the initial amplitude of perturbations that exceed this
scale. Although it has been shown to hold only for isother-
mal evolution, it is reasonable to expect that it is necessary
(although not necessarily sufficient) for nonisothermal col-
lapse as well where the transition to non-isothermal evolu-
tion may produce structure on smaller scales than the local
Jeans length. .
3.2.2. Runaway Collapse. The self-gravitational collapse in
nearly spherical geometry tends to show a so-called “run-
away collapse,”, where the denser central region collapses
much faster than the less-dense surrounding region. The
mass of the central fast collapsing region is of the order of
the Jeans mass, MJ = ρλ3

J ∼ G−3/2C
3/2
s ρ−1/2, which de-

creases monotonically in this runaway stage. The descrip-
tion of this process requires increasingly higher resolution,
not only on the spatial scale but also on the mass scale.
Therefore, an accurate description is not guaranteed even
with Lagrangian particle methods such as SPH, if the num-
ber of particles is conserved. The end of the runaway stage
corresponds to the deceleration of the gravitational collapse.
If the effective ratio of specific heats, γ (P ∝ ργ), becomes
larger than γcrit = 4/3, the increased pressure can decel-
erate the gravitational collapse. For example, the question
of how and when the isothermal evolution terminates was
explored in Masunaga and Inutsuka (1999).
3.2.3. Thermal Budget. In the low density regime the gas
temperature is affected by various heating and cooling pro-
cesses (e.g., Wolfire et al., 1995; Koyama and Inutsuka,
2000; Juvela et al., 2001). However, above a gas density
of 104-105 cm−3, depending on the timescale of interest,
the gas is thermally well coupled with the dust grains that
maintain a temperature of order 10K. During the dynami-
cal collapse, gas and dust are isothermal until a density of
1010-1011 cm−3, when the compressional heating rate be-
comes larger than the cooling rate (Inutsuka and Miyama,
1997; Masunaga and Inutsuka, 1999). The further evolu-
tion of a collapsing core and the formation of a protostar are
radiation-hydrodynamical (RHD) processes that should be
modeled by solving the radiation transfer and the hydrody-
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namics simultaneously and in three dimensions. Presently,
the most sophisticated multi-dimensional models are based
on the (flux-limited) diffusion approximation (Bodenheimer
et al. 1990, Krumholz et al. 2005c).

Once the compressional heating dominates the radiative
cooling, the central temperature increases gradually from
the initial value of ∼ 10 K. The initial slope of the tem-
perature as a function of gas density corresponds to an ef-
fective ratio of specific heats γ = 5/3: T (ρ) ∝ ρ2/3 for
10K < T < 100K. This monatomic gas property is due
to the fact that the rotational degree of freedom of molecu-
lar hydrogen is not excited in this low temperature regime
(e.g., E(J = 2 − 0)/kB = 512K). When the tempera-
ture becomes larger than ∼ 102K, the slope corresponds
to γ = 7/5, as for diatomic molecules. This value of γ is
larger than the minimum required for thermal pressure sup-
port against gravitational collapse: γ > γcrit ≡ 4/3. The
collapse is therefore decelerated and a shock is formed at
the surface of a quasi-adiabatic core, called “the first core”.
Its radius is about 1 AU in spherically symmetric mod-
els, but can be significantly larger in more realistic multi-
dimensional models. It consists mainly of H2.

The increase of density and temperature inside the first
core is slow but monotonic. When the temperature becomes
> 103 K, the dissociation of H2 starts. The dissociation
of H2 acts as an efficient cooling of the gas, which makes
γ < 4/3, triggering the second dynamical collapse. In
this second collapse phase, the collapsing velocity becomes
very large and engulfs the first core. As a result, the first
core lasts for only ∼ 103 years. In the course of the second
collapse, the central density attains the stellar value, ρ ∼
1 g/cm3, and the second adiabatic core, or “protostar”, is
formed. The time evolution of the SED obtained from the
self-consistent RHD calculation can be found in Masunaga
et al. (1998) and Masunaga and Inutsuka (2000a,b).
3.2.4. Core Fragmentation. Tsuribe and Inutsuka (1999a,b)
have shown that the fragmentation of a rotating collaps-
ing core into a multiple system is difficult in the isother-
mal stage. Matsumoto and Hanawa (2003) have extended
the collapse calculation by using a nested-grid hydro code
and a simplified barotropic equation of state that mimics the
thermal evolution, and have shown that the first-core disk
increases the rotation-to-gravitational energy ratio (T/|W |)
by mass accretion. A stability analysis of a rotating poly-
tropic gas shows that gas with T/|W | > 0.27 is unstable
for non-axisymmetric perturbations (e.g., Imamura et al.
2000). If the first-core disk rotates fast enough that the an-
gular speed × the free-fall time satisfies Ωc(4πGρc)

−1/2
∼>

(0.2 − 0.3), fragments appear and grow into binaries and
multiples in the first core phase. The non-axisymmetric
nonlinear spiral pattern can transfer the angular momentum
of the accreting gas.

3.3. Magnetic Fields

Detailed self-consistent calculations accounting for
both thermal and magnetic support (Mouschovias and

Spitzer, 1976; Tomisaka et al., 1988) show that the max-
imum stable mass can be expressed as Mmag,max ∼

MBE

{

1 −
[

0.17/(G1/2M/Φ)c
]2

}−3/2

, where (M/Φ)c is

the central mass-to-flux ratio and MBE = 1.18c4
s/G3/2p

1/2
ext

is the Bonnor-Ebert mass (Bonnor, 1956, 1957; Ebert,
1957). A similar formula was proposed by McKee (1989),
Mmag,max ∼ MBE + ΦB/2πG1/2.

Further support is provided by rotation. For a core
with specific angular momentum j, the maximum stable

mass is given by Mmax ∼
[

M2
mag,max + (4.8csj/G)2

]1/2

(Tomisaka et al., 1989). The dynamical runaway collapse
begins when the core mass exceeds this maximum stable
mass (magnetically supercritical cloud). Quasi-static equi-
librium configurations exist for cores less massive than the
maximum stable mass. The evolution of these subcritical
cores is controlled by the processes of ambipolar diffusion
and magnetic braking, both of which have longer timescales
than the gravitational free fall. As the core contracts, the
density grows and, when n ∼> 1012cm−3, the magnetic field
is effectively decoupled from the gas. At these densities,
Joule dissipation becomes important and particle drifts are
qualitatively different from ambipolar diffusion (Nakano et
al., 2002).

The magnetic field is also responsible for the transfer of
angular momentum in magnetized rotating cores, by a pro-
cess called magnetic braking. Magnetic breaking is caused
by the azimuthal component of the Lorentz force (~j × ~B)φ.
In the evolution of subcritical cores, the magnetic braking
is important during the quasi-static contraction phase con-
trolled by the ambipolar diffusion (Basu and Mouschovias,
1994). In the dynamical runaway collapse, the rotational
speed is smaller than the inflow speed (Tomisaka, 2000)

3.4. Outflows

The magnetic field generates an outflow, by which star
forming gas loses its angular momentum and accretes onto a
protostar. Magneto-hydrodynamical simulations of the con-
traction of molecular cores (Tomisaka, 1998, 2000, 2002;
Allen et al., 2003; Banerjee and Pudritz, 2006) have shown
that after the formation of the first core, the gas rotates
around the core, a toroidal magnetic field is induced and
magnetic torques transfer angular momentum from the disk
midplane to the surface. Outflows are accelerated in two
ways: i) The gas which has received enough angular mo-
mentum compared with the gravity is ejected by the ex-
cess centrifugal force (magnetocentrifugal wind mecha-
nism; Blandford and Payne, 1982). ii) In a core with a
weak magnetic field, the magnetic pressure gradient of the
toroidal magnetic field accelerates the gas and an outflow is
formed in the direction perpendicular to the disk.

Axisymmetric 2D simulations show that i) at least 10%
of the accreted mass is ejected; ii) the angular momentum is
reduced to a factor 10−4 of the value of the parent cloud at
the age of ' 7000yr from the core formation. This resolves
the angular momentum problem (Tomisaka, 2000). 7000 yr
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from the first core formation, the mass of the core reaches
∼ 0.1M� and the outflow extends to a distance from the
core of ' 2000AU with a speed of ∼ 2km s−1 (Tomisaka,
2002). If the accretion continues and the core mass grows
to one solar mass, the outflow expands and its speed is fur-
ther increased. It should be noted that the outflow refers to
the physics of the first core collapse only; the energetics of
outflows during the second core collapse phase are yet to be
determined.

3.5. Radiative Transfer in Multi-Dimensions

Radiation transport has been shown to play a significant
role in the outcome of fragmentation into binary and multi-
ple systems (Boss et al., 2000; Whitehouse and Bate, 2005)
and in limiting the largest stellar mass in 2D (Yorke and
Sonnhalter, 2002) and 3D simulations (Edgar and Clarke,
2004; Krumholz et al., 2005c). The strong dependence of
the evolution of isothermal and nonisothermal cloud models
on the handling of the cloud’s thermodynamics implies that
collapse calculations must treat the thermodynamics accu-
rately in order to obtain the correct solution (Boss et al.,
2000). Because of the great computational burden imposed
by solving the mean intensity equation in the Eddington ap-
proximation (the computational time is increased by a fac-
tor of 10 or more) it is tempting to sidestep the Edding-
ton approximation solution altogether and employ a sim-
ple barotropic prescription (e.g., Boss, 1981; Bonnell, 1994;
Bonnell and Bate, 1994a,; Burkert et al., 1997; Klein et al.,
1999). However, Boss et al. (2000) showed that a simple
barotropic approximation is insufficient and radiative trans-
fer must be used. We discuss the various methods of radia-
tion transport in section 3.b.6.

4. METHODOLOGY OF NUMERICAL SIMULA-
TIONS

4.1. Complexity of the Problem of Low Mass Star For-
mation

The computational challenge for simulations of low
mass star formation is that star formation occurs in clouds
over a huge dynamic range of spatial scales, with different
physical mechanisms being important on different scales.
The gas densities in these clouds also varies over many
orders of magnitude as a result of supersonic turbulence
and gravitational collapse. Gravity, turbulence, radiation
and magnetic fields all contribute to the star formation pro-
cess. Thus the numerical problem is multi-scale, multi-
physics and highly non-linear. To develop a feel for the
range of scale a simulation must cover, we can consider
the internal structure of GMCs as hierarchical, consisting
of smaller subunits within larger ones (Elmegreen and Fal-
garone, 1996). GMCs vary in size from 20 to 100 pc., in
density from 50 to 100 H2 cm−3 and in mass from 104 to
106 M�.

Self-gravity and turbulence are equally important in con-
trolling the structure and evolution of these clouds. Mag-
netic fields are likely to play an important role as well
(Heiles et al., 1993; McKee et al., 1993). Embedded within
the GMCs are dense clumps that may form clusters of stars.
These clumps are few pc. in size, have masses of a few
thousand M� and mean densities ∼ 103 H2 cm−3. The
clumps contain dense cores with radii ∼ 0.1pc., densities
104-106 H2 cm−3 and masses ranging from 1 to several
M�. These cores likely form individual stars or low or-
der multiple systems. The role of turbulence and magnetic
fields in the fragmentation of molecular clouds has been in-
vestigated by 3D numerical simulations (e.g., Padoan and
Nordlund, 1999; Ostriker et al., 1999; Ballesteros-Paredes,
2003; Mac Low and Klessen, 2003; Nordlund and Padoan,
2003).

A simulation that starts from a region of a turbulent
molecular clouds (R ∼ few pc.) and evolves through the
isothermal core collapse into the formation of the first hy-
drostatic core at densities of 1013 H2 cm−3 requires an ac-
curate calculation across 10 orders of magnitude in density
and 4-5 orders of magnitude in spatial scale. To resolve
100 AU separation binaries, one needs a resolution of about
10 AU. To follow the collapse all the way to an actual star
would require a further 10 orders of magnitude increase in
density and 2-3 more orders of magnitude in spatial scale.
Such extraordinary computational demands rule out fixed
grid simulations entirely and can be addressed only with
accurate AMR or SPH approaches.

4.2. Smooth Particle Hydrodynamics

The description of the gravitational collapse requires a
large dynamic range of spatial resolution. An efficient way
to achieve this is to use Lagrangian methods. Smoothed
particle hydrodynamics (SPH) is a fully Lagrangian parti-
cle method designed to describe compressible fluid dynam-
ics. This method is economical in handling hydrodynamic
problems that have large, almost empty regions. A vari-
ety of astrophysical problems including star formation have
been studied with SPH, because of its simplicity in pro-
gramming two- and three-dimensional codes and its ver-
satility to incorporate self-gravity. A broad discussion of
the method can be found in a review by Monaghan (1994).
An advantage of SPH is its conservation property; SPH is
Galilean invariant and, in contrast to grid-based methods,
conserves both linear and angular momentum simultane-
ously. The method to conserve the total energy within a
computer round-off-error is explained in Inutsuka (2002).
In order to further increase the dynamic range of spatial
resolution, Kitsionas and Whitworth (2002) introduced par-
ticle splitting, which is an adaptive approach in SPH.

The “standard” SPH formalism adopts artificial viscos-
ity that mimics the classical von-Neumann Richtmeyer vis-
cosity. This tends to give poor performance in the descrip-
tion of strong shocks. In two- or three-dimensional calcu-
lations of colliding streams, standard SPH particles often
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penetrate into the opposite side. This unphysical effect can
be partially eliminated by the so called XSPH prescription
(Monaghan, 1989), which does not introduce the (required)
additional dissipation, but results in additional dispersion
of the waves. As a more efficient method for handling
strong shocks in the SPH framework, the so called “Go-
dunov SPH” was proposed by Inutsuka (2002), who imple-
mented the exact Riemann solver in the strictly conservative
particle method. This was used in the simulation of the col-
lapse and fragmentation of self-gravitating cores (Tsuribe
and Inutsuka, 1999a; Cha and Whitworth, 2003a,b).

The implementation of self-gravity in SPH is relatively
easy and one can use various acceleration methods, such as
Tree-Codes, and special purpose processors (e.g., GRAPE
board). The flux-limited diffusion radiative transfer was re-
cently incorporated in SPH by Whitehouse and Bate (2004),
Whitehouse et al. (2005) and Bastien, Cha, and Viau
(2004).

Several groups are now using “sink particles” to follow
the subsequent evolution even after protostars are formed
(Bate et al., 1995). This is a prescription to continue the
calculations without resolving processes of extremely short
timescale around stellar objects. Krumholz et al., (2004)
have introduced sink particles for the first time into Eulerian
grid-based methods and in particular for AMR.

4.3. Fixed-Grid Hydrodynamics

Since the time of its introduction, the numerical code
of choice for supersonic hydrodynamic turbulence has been
the Piecewise Parabolic Method (http://www.lcse.umn.edu/)
(PPM) of Colella and Woodward (1984). PPM is based on
a Rieman solver (the discretized approximation to the solu-
tion is locally advanced analytically) with a third order ac-
curate reconstruction scheme, which allows an accurate and
stable treatment of strong shocks, while maintaining nu-
merical viscosity to a minimum away from discontinuities.
Because the physical viscosity is not explicitly computed
(PPM solves the Euler equations), large scale PPM flows
are characterized by a very large effective Reynolds num-
ber (Porter and Woodward, 1994). Direct numerical sim-
ulations (DNS) of the Navier-Stokes equation, where the
physical viscosity is explicitly computed, require a linear
numerical resolution four times larger than PPM to achieve
the same wave-number extension of the inertial range of
turbulence as PPM (Sytine et al., 2000). From this point of
view, therefore, PPM has a significant advantage over DNS
codes. Furthermore, DNS codes are generally designed
for incompressible turbulence, and hence of limited use for
simulations of the ISM.

Codes based on straightforward staggered mesh finite
difference methods, rather than Rieman solvers, have also
been used in applications to star formation and interstellar
turbulence, such as the Zeus code (http://cosmos.ucsd.edu/)
(Stone and Norman, 1992a,b) and the Stagger Code
(www.astro.ku.dk/StaggerCode/) (Nordlund and Gals-
gaard, 1995; Gudiksen and Nordlund, 2005). Finite dif-

ference codes address the problem of supersonic turbulence
with the introduction of localized numerical viscosity to
stabilize the shocks while keeping viscosity as low as pos-
sible away from shocks. The main advantage of this type
of code, compared with Rieman solvers, is their flexibil-
ity in incorporating new physics and their computational
efficiency.

Fixed-grid codes cannot achieve the dynamical range re-
quired by problems involving the gravitational collapse of
protostellar cores. Such problems are better addressed with
particle methods such as SPH, or by generalizing the meth-
ods used for fixed-grid codes into AMR schemes. The main
advantage of large fixed-grid experiments is their ability to
simulate the physics of turbulent flows. As supersonic tur-
bulence is believed to play a crucial role in the initial frag-
mentation of star-forming clouds, fixed-grid codes may still
be the method of choice to generate realistic large scale ini-
tial conditions for the collapse of protostellar cores. Recent
attempts of simulating supersonic turbulence with AMR
methods are promising (Kritsuk et al., 2006), but may be
truly advantageous only at a resolution above ∼ 1, 0003.
SPH simulations to date have resolution far too small for
the task, as commented above, and have not been used so
far as an alternative method to investigate the physics of
turbulence.

4.4. Adaptive Mesh Refinement Hydrodynamics and
Nested Grids

The adaptive mesh refinement (AMR) scheme utilizes
underlying rectangular grids at different levels of resolu-
tion. Linear resolution varies by integral refinement factors
between levels, and a given grid is always fully contained
within one at the next coarser level (excluding the coars-
est grid). The origin of the method stems from the seminal
work of Berger and Oliger (1984) and Berger and Collela
(1989). The AMR method dynamically resizes and reposi-
tions these grids and inserts new, finer ones within them ac-
cording to adjustable refinement criteria, such as the numer-
ical Jean’s condition (Truelove et al., 1997). Fine grids are
automatically removed as flow conditions require less reso-
lution. During the course of the calculation, some pointwise
measure of the error is computed at frequent intervals, typ-
ically every other time step. At those times, the cells that
are identified are covered by a relatively small number of
rectangular patches, which are refined by some even inte-
ger factor.

Refinement is in both time and space, so that the calcu-
lation on the refined grids is computed at the same Courant
number as that on the coarse grid. The finite difference ap-
proximations on each level of refinement are in conserva-
tion form, as is the coupling at the interface between grids
at different levels of refinement. AMR has three substantial
advantages over standard SPH. Combined with high order
Godunov methods, AMR achieves a much higher resolution
of shocks. This is important in obtaining accuracy in super-
sonic turbulent flows in star forming clumps and cores and
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in accretion shocks onto forming protostars. AMR allows
high resolution at all points in the flow as dictated by the
physics. Unlike SPH, where particles are taken away from
low density regions, where accuracy is lost, and concen-
trated into high density regions, AMR maintains high accu-
racy everywhere. An important consequence of this is that
if SPH were to maintain the same comparable resolution
as AMR everywhere in the flow, it would be prohibitively
expensive. AMR is based on fixed Eulerian grids and thus
can take advantage of sophisticated algorithms to incorpo-
rate magnetic fields and radiative transfer. This is far more
difficult in a particle-based scheme. AMR was first intro-
duced into astrophysics by Klein et al. (1990, 1994) and has
been used extensively both in low mass and high mass star
formation simulations (Truelove et al., 1998; Klein, 1999;
Klein et al., 2000, 2003, 2004a; Krumholz et al., 2005c).

An advantage of SPH over Cartesian grid based AMR is
that for pure hydrodynamics it can conserve both linear and
angular momentum simultaneously to within round-off er-
rors whereas Cartesian grid based AMR cannot. However,
if one uses a cylindrical or spherical coordinate system for
the simulation of protostellar disks for instance, then grid
based AMR conserves total angular momentum to round-
off. We point out, however, that these statements apply only
to pure hydrodynamics. Once forces such as gravity are in-
cluded, the situation becomes worse and both grid codes
that solve the Poisson equation or SPH codes that use tree-
type acceleration or grid based methods for gravity lose the
conservation property for total linear momentum as well.

There are several ways to implement AMR. They can
be broadly divided into two categories: Meshes with fixed
number of cells, such as in Lagrangian or rezoning ap-
proaches, and meshes with variable number of cells, such
as unstructured finite elements, structured cell-by-cell and
structured sub-grid blocks. For various reasons the most
widely adopted approaches in astrophysics are structured
sub-grid blocks and cell-by-cell. The first was developed by
Berger and Oliger (1984) and Berger and Collela (1989).
It is used in the AMR code ORION developed by Klein
and collaborators (Klein, 1999; Crockett et al., 2005) and
in the community code ENZO (Norman and Bryan, 1999).
The cell-by-cell approach such as in PARAMESH (Mac-
Neice et al., 2000) is used in the community code Flash
(Banerjee et al., 2004). A hybrid approach is used in the
code NIRVANA (Ziegler, 2005). The cell-by-cell method
has the advantages of flexible and efficient refinement pat-
terns and low memory overhead and the disadvantages of
expensive interpolation and derivation formulas and large
tree data structures. The sub-grid block method is more ef-
ficient and more suitable for shock capturing schemes than
the cell-by-cell method, at the price of some memory over-
head.

Finally, nested grids consisting of concentric hierarchi-
cal rectangular subgrids can also be very effective for prob-
lems of well defined geometry (Yorke et al., 1993). These
methods are advantageous for tracing the non-homologous
runaway collapse of an initially symmetrical cloud in which

the coordinates of a future dense region are known in ad-
vance (Tomisaka, 1998). The finest subgrid is added dy-
namically when spatial resolution is needed as in AMR
methods.

4.5 Approaches for Magneto-Hydrodynamics

Since strong shocks often appear in the astrophysical
phenomena, a shock-capturing scheme is needed also in
MHD. Upwind schemes based on the Riemann solver are
used as the MHD engine. Schemes well known in hy-
drosimulations, such as Roe’s approximate Riemann solver
(Brio and Wu, 1988; Ryu and Jones, 1995; Nakajima and
Hanawa, 1996), piecewise parabolic method (PPM; Dai
and Woodward, 1994), are also applicable to MHD.

Special attention should be paid to guarantee div ~B = 0
in MHD simulations. To ensure that the divergence of
Maxwell stress tensor Tij = −(1/4π)BiBj +(1/8π)B2δij

gives the Lorentz force, the first term of right-hand side
∂j(BiBj) must be equal to Bj∂jBi. This requires Bi∂jBj =
0 and means that a fictitious force appears along the mag-
netic field if the condition of divergence-free is broken.
The divergence of the magnetic field amplifies the insta-
bility of the solution even for a linear wave. Thus, it is
necessary for the MHD scheme to keep the divergence of
the magnetic field zero within a round-off error or at least
small enough. This divergence-free nature should be satis-
fied for the boundaries of subgrids in AMR and nested grid
schemes.

One solution is based on “constrained transport (CT)”
(Evans and Hawley 1988), in which the staggered colloca-
tion of the components of magnetic field on the cell faces
makes the numerical divergence vanish exactly. In the stag-
gered collocation, the electric field − ~v × B of the induc-
tion equation ∂t

~B = ~∇× (v × B) is evaluated on the edge
of the cell-face and the line integral along the edge gives
the time difference of a component of the magnetic field.
Note that the electric field on one edge appears twice to
complete the induction equation. To guarantee a vanishing
divergence of the magnetic field, CT requires the two eval-
uations to coincide with each other.

To utilize the Godunov-type Riemann solver in the con-
text of CT, Balsara and Spicer (1999) proposed a scheme
as follows: (1) face-centered magnetic field is interpolated
to the cell center; (2) from the cell-centered variables, the
numerical flux at the cell face is obtained using a Riemann
solver; (3) the flux is interpolated to the edge of the cell-face
and the electric field in the induction equation is obtained;
(4) new face-centered magnetic field is obtained from the
induction equation. Variants of this method are widely used
[see also Ryu et al., (1998) and Ziegler, (2004)].

Avoiding staggered collocation of the magnetic field re-
quires divergence cleaning. In this case, divergence clean-
ing is realized by replacing the magnetic field every step
as ~Bnew = ~B − ~∇Φ, where ~∇2Φ = div ~B (Hodge pro-
jection), or by solving a diffusion equation for div ~B as
∂t

~B = η∇(∇ · ~B). The former is combined with pure
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Godunov-type Riemann solvers using only cell-centered
variables (Ryu et al., 1995). Crockett et al. (2005) reported
that the divergence cleaning of the face-centered magnetic
field appearing in the numerical flux based on an unsplit,
cell-centered Godunov scheme improves its accuracy and
stability.

Powell et al. (1999) proposed a different formalism, in
which div ~B term is kept in the MHD equations as a source
(e.g., the Lorentz force (∇× ~B)× ~B/4π gives an extra term
related to div ~B as − ~B∇ · ~B besides the Maxwell stress
tensor term −Tij , in the equation for momentum density.)
In this formalism, div ~B is not amplified but advected along
the flow. Comparison between various methods is found in
Tóth (2000), Dedner et al. (2002), Balsara and Kim (2004)
and Crockett et al. (2005).

There have been attempts to solve the induction equa-
tion with SPH methods (e.g., Stellingwerf and Peterkin,
1994; Byleveld and Pongracic, 1996; Price and Monaghan,
2004a,b,c, 2005). A major obstacle is an instability that de-
velops when the momentum and energy equations are writ-
ten in conservation form. As a result, the equations must be
written in a way that does not conserve momentum (Phillips
and Monaghan, 1985; Morris, 1996), which is a major con-
cern for the accurate treatment of shocks. Results of re-
cent tests of the state-of-the-art SPH MHD code (Price and
Monaghan, 2004c) appear to be rather poor even for very
mild shocks, and we conclude that MHD with SPH is not
yet viable for simulations.

4.6. Approaches for Radiation Transport

Several levels of approximation of the radiation trans-
port in star formation simulations can be used and details
of various methods can be found in Mihalas and Mihalas
(1984) and Castor (2004). Here we briefly describe these
methods and point out their strengths and weaknesses. Al-
though modern simulations using radiative transfer are still
at an early stage, we include methods that hold promise for
the future that will circumvent the weaknesses of more ap-
proximate approaches currently in place.

The simplest improvement beyond a barotropic stiffened
EOS is the diffusion approximation which pertains to the
limit in which radiation can be treated as an ideal fluid with
small corrections. The approximation holds when the pho-
ton mean free path is small compared with other length
scales. The combined energy equation for the gas and radi-
ation results in an implicit non-linear diffusion equation for
the temperature. The weakness of the diffusion approxima-
tion is that it is strictly applicable to optically thick regimes
and performs poorly in optically thin regions. This can be
severe in optically thin regions of an inhomogeneous turbu-
lent core or in the optically thin atmosphere surrounding a
developing protostar.

The next level of approximation is the Eddington ap-
proximation (Boss and Myhill, 1992; Boss et al., 2000).
It can be shown that the diffusion approximation leads di-
rectly to Eddington’s approximation Pν = 1

3
EνI , where Pν

is the pressure tensor moment of the specific intensity of ra-
diation, Eν is the scalar energy density of radiation and Iν

is the isotropic identity tensor. This approximation, coupled
with dropping the time dependent term in the 2nd moment
equation of transfer results in a combined parabolic 2nd or-
der time dependent diffusion equation for the energy den-
sity of the radiation field. This formulation of the Eddington
approximation is used in Boss et al. (2000). The approx-
imation results in a loss of the finite propagation speed of
light c and a loss of the radiation momentum density, thus
there is an error in the total momentum budget. In optically
thin regions, the radiation flux can increase without limit.
As with all diffusion like methods, this approach also suf-
fers from shadow effects whereby radiation will tend to fill
in behind optically thick structures and may lead to unphys-
ical heating.

An alternative approach is the Flux Limited Diffusion
(FLD), that modifies the Eddington approximation, and
compensates for the errors made in dropping the time de-
pendent flux term by including a correction factor in the
diffusion coefficient for the radiation flux. This correction
factor, called a flux limiter, is in general a tensor and has
the property that the flux goes to the diffusion limit at large
optical depth and it correctly limits the flux to be no larger
than cE in the optically thin regime. This improvement over
the Eddington approximation has been used by Klein et al.
(2004c) for the simulation of both low mass and high mass
star formation. The resulting sparse matrices introduced by
the diffusion like terms are solved by multi-grid iterative
methods in an AMR framework. The flux-limiting correc-
tion can cause errors of order 20in the flux-limiter (or the
flux), similar to the errors of the Eddington approximation
of 20% in the Eddington factor at τ = 0 in the Milne prob-
lem (Castor 2004). The FLD method’s also suffer from
shadow effects which can be severe.

The next level of approximation, the variable Eddington
tensor method, removes many of the inaccuracies of the Ed-
dington approximation and the flux limiter modification. It
was first formulated in multi–dimensions for astrophysical
problems by Dykema et al. (1996). In essence, if the pre-
cise ratio of the pressure tensor to the energy density were
included as an ad hoc multiplier in the Eddington approxi-
mation equations they would represent an exact closure of
the system. The tensor ratio is obtained iteratively from ei-
ther an auxiliary solution of the exact transport equation for
the specific intensity or using an approximate analytic rep-
resentation of the tensor. This method holds promise for
future simulations, but has yet to be used in star formation.

The final two approaches, which are highly accurate and
deal with the angle dependent transport equation directly,
are SN methods and Monte Carlo methods. They have not
yet been developed for simulations in star formation be-
cause the cost in 3D is prohibitive. The SN method is a
short characteristic method in which a bundle of rays is cre-
ated at every mesh point and are extended in the upwind di-
rection only as far as the next spatial cell. The main problem
is in finding the efficient angle set to represent the radiation
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field in 2 or 3 dimensions (Castor, 2004). Finally, one might
consider Monte Carlo methods to solve the transport equa-
tion. Although simple to implement (its great advantage),
this method suffers from needing a vast number of oper-
ations per timestep to get accurate statistics in following
the particles used to track the radiation field. Both of these
methods will avoid shadow effects and may be necessary
to accurately treat optically thick inhomogeneous structures
that form in accretion flows onto protostars.

Radiative transfer implementations have recently been
developed also for SPH methods, based on the flux-limited
diffusion (Whitehouse et al., 2005) or the Monte Carlo
method (Stamatello and Whitworth, 2003, 2005).

4.7. Comparison of Computational Methods

Based on the physical processes and numerical method-
ologies discussed in the previous sections we can compare
numerical schemes according to their ability to handle the
following problems both accurately and efficiently: (a) tur-
bulence, (b) strong shocks, (c) self-gravity, (d) magnetic
fields, (e) radiative transfer.

The standard SPH method has been successful with (c)
and implementations of (e) have been recently developed in
the flux-limited diffusion approximation and with a Monte
Carlo method. It does not include (d), it is well known to be
inadequate for (b) and has had virtually no applications to
(a) to date. As any Lagrangian particle methods, SPH pro-
vides good resolution in high density regions, but very poor
in low density ones. The Godunov SPH method improves
the standard SPH codes because of its ability to address (b),
but does not provide a solution to (d) and is untested for
(a) as well. Although MHD is currently under development
in SPH, results of standard MHD tests with a state-of-the-
art code show the need for significant improvements even
in the case of very mild shocks. Current applications of
SPH should therefore be limited to non-MHD problems and
the accuracy and performance of SPH with turbulent flows
must be thoroughly tested.

In hydrodynamical problems, grid-based methods such
as MUSCL (van Leer, 1979) and PPM (Colella and Wood-
ward, 1984) use exact Riemann Solvers to construct the nu-
merical fluxes and provide very accurate description in as-
trophysical flows with strong shocks (b). They have also
been thoroughly tested with compressible turbulent flows,
and MHD versions have been developed that can address
both (d) and (e). Traditional finite-difference grid-based
schemes may still be useful, because the best of them can
also accurately address (a), (b), (d) and (e), at a lower cost
of code development and computer resources. Point (c) can
also be efficiently dealt with by grid-based codes thanks
to AMR methods. However, the development of AMR
schemes that satisfy (c) and at the same time (d) has be-
gun only recently. These schemes exist and have been suc-
cessfully tested, but it is unclear at present which approach
will provide the best trade off between accuracy and perfor-
mance.

The constrained transport method appears to be the ideal
one to guarantee the ∇ ·B = 0 condition. Various schemes
have been proposed even in the category of Godunov-type
methods with a linearized Riemann Solver. An exact MHD
Riemann Solver would be more adequate to handle strong
shocks, but it is not available yet. In MHD we have to
solve seven characteristics even in one-dimensional prob-
lems, which hinders an efficient construction of numerical
fluxes based on the non-linear waves. Furthermore, the dis-
covery of the existence of the MHD intermediate shocks
(Brio and Wu, 1988) brings an additional difficulty in the
categorization and prediction of the emerging non-linear
waves. Among possible solutions, a linearized Riemann
Solver with artificial viscosity may still be a useful option.

The Godunov MHD code of Crockett et al, (2005) has
been merged with the AMR RHD code of Klein et al.
(2004a,b) into the first fully developed AMR magneto-
radiation-hydrodynamic code (ORION) to be used in simu-
lations of star formation capable of addressing (a) through
(e).

5. RECENT SIMULATIONS AND CONFRONTA-
TION WITH THE OBSERVATIONS

5.1. Turbulent Fragmentation of Molecular Clouds

The fragmentation of molecular clouds is the result of
a complex interaction of supersonic turbulence with grav-
ity and magnetic fields. Supersonic turbulent flows gener-
ate nonlinear density enhancements through a complex net-
work of interacting shocks. Some density enhancements
are massive and dense enough to undergo gravitational in-
stability and collapse into stars. A fundamental problem
with our understanding of star formation is that the physics
of turbulence is not fully understood. In order to investi-
gate the process of turbulent fragmentation we must rely on
large numerical simulations that barely resolve the scale-
free nature of interstellar turbulent flows. If the scaling
laws of turbulence play a role in the star formation process,
we cannot accurately test their effects numerically, unless
those scaling laws are well reproduced in the simulations.
Ballesteros-Paredes et al. (2006) have tested the idea that
the power spectrum of turbulence determines the Salpeter
IMF (Padoan and Nordlund, 2002). However, their simula-
tions do not generate a turbulence inertial range, due to the
combined effect of low resolution and large numerical dif-
fusivity. Their velocity power spectra do not show any ex-
tended power laws, and they even differ between their grid
and SPH simulations. As a consequence, such numerical
simulations fail to reproduce a scale free mass distribution
of unstable cores.

Other recent SPH simulations have been used to com-
pute the stellar mass distribution (e.g., Bonnell et al., 2003;
Klessen, 2001) and to test the effect of turbulence on star
formation (Delgado-Donate et al., 2004). Although such
SPH simulations are ideally suited to follow the collapse of
individual objects due to their Lagrangian nature, their size
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is far too small to generate an inertial range of turbulence,
as discussed in section 3.a.1.

Despite their limitations, numerical simulations carried
out over the last few years have given us a good statis-
tical picture of the process of fragmentation of magne-
tized supersonic flows. The following are the most im-
portant results: i) The dissipation time of turbulence is al-
most independent of the magnetic field strength. The tur-
bulence decays in approximately one dynamical time in
both equipartition and super-Alfvénic flows (Padoan and
Nordlund, 1997; MacLow et al., 1998; Stone et al., 1998;
Padoan and Nordlund, 1999; Biskamp and Muller, 2000).
ii) The velocity power spectrum and structure functions are
power laws over an inertial range of scales (Boldyrev, 2002;
Boldyrev et al. 2002a,b; Padoan et al., 2004b). In the
limit of very large rms Mach number, the turbulent velocity
power spectrum scales approximately as u2

k ∝ k−1.8 and
the velocity structure functions follow the relative scaling
predicted by Boldyrev (2002). For intermediate levels of
compressibility, the scaling exponents depend on the rms
Mach number (Padoan et al., 2004b). iii) The power spec-
trum of the gas density is a power law over an inertial range
of scales. Its slope is a function of the rms Mach number of
the flow and of the average magnetic field strength (Padoan
et al., 2004b; Beresnyak et al., 2005). iv) With an isother-
mal equation of state, the probability density function of gas
density is well approximated by a Log-Normal distribution
(Vazquez-Semadeni, 1994; Padoan et al., 1997; Scalo et al.,
1998; Passot and Vazquez-Semadeni, 1998; Nordlund and
Padoan, 1999; Ostriker et al., 1999; Wada and Norman,
2001), with the dispersion of linear density proportional to
the rms Mach number of the flow (Padoan et al., 1997;
Nordlund and Padoan, 1999; Ostriker et al., 1999; Li et
al., 2004). v) If the kinetic energy exceeds the magnetic
energy, the distribution of the magnetic field strength, B, is
very intermittent and is correlated with the gas density, n.
The scatter plot of B versus n shows a very large dispersion
and a well defined power law upper envelope (Padoan and
Nordlund, 1999; Ostriker et al., 2001). If the kinetic en-
ergy is comparable to the magnetic energy, strong density
enhancements are still possible in the direction of the mag-
netic field, but fluctuations of B are small and independent
of n. vi) The flow velocity is correlated to the gas density.
Because density is increased by shocks, where the velocity
is dissipated, dense filaments and cores have lower velocity
than the low density gas (Padoan et al., 2001b). vii) The
mass distribution of gravitationally unstable turbulent den-
sity peaks is very close to the stellar IMF and follows the
analytical model of Padoan and Nordlund (2002) (Li et al.,
2004; Tilley and Pudritz, 2004).

There is now substantial observational evidence indicat-
ing that these main properties of supersonic MHD turbu-
lence are indeed found in molecular clouds. The compar-
ison of numerical simulations of turbulence with observa-
tional data was pioneered by Falgarone et al. (1994) and
continued by many others (e.g., Padoan et al. 1998, 1999;
Padoan et al. 2001a,b; Ostriker et al., 2001; Ballesteros-

Paredes and Mac Low, 2002; Ossenkopf, 2002; Padoan et
al., 2004a; Gammie et al., 2003; Klessen et al., 2005; Es-
quivel and Lazarian, 2005).

However, with the exception of several works by Padoan
et al. and the work of Ossenkopf (2002), where post-
processed three dimensional non-LTE radiative transfer cal-
culations were carried out, all other studies are based on a
simple comparison of density and velocity fields in the sim-
ulations with the observed quantities. Some recent works
addressing the comparison of turbulence simulations and
observational data include studies of velocity scaling, show-
ing that molecular cloud turbulence is driven on large scale
(e.g., Ossenkopf and Mac Low, 2002; Heyer and Brunt,
2004) and studies of core properties, showing that turbu-
lent flows naturally generate dense cores with shapes, inter-
nal turbulence, rotation velocity and magnetic field strength
consistent with the observations (e.g., Padoan and Nord-
lund, 1999; Gammie et al., 2003; Tilley and Pudritz, 2004;
Tilley and Pudritz, in preparation; Li et al., 2004).

5.2. Collapse and Fragmentation of Molecular Cloud
Cores into Low-Mass Stars

Over the past several years two dominant models of how
stars acquire their final mass have emerged: Direct Gravi-
tational Collapse and Competitive Accretion. In both the-
ories, a star initially forms when gravitational bound gas
collapses. In the gravitational collapse scenario, after a
protostar has consumed or expelled all the gas in its initial
core, it may continue accreting from the parent clump, but it
will not significantly alter its mass (McKee and Tan, 2003;
Padoan et al., 2005; Krumholz et al., 2005b). Competitive
accretion, in contrast, requires that the amount accreted af-
ter consuming the initial core be substantially larger than
the protostellar mass.

Krumholz et al. (2005a) define fm ≡ ṁ∗tdyn/m∗ as the
fractional change in mass that a protostar of mass m∗ un-
dergoes each dynamical time tdyn of its parent clump, start-
ing after the initial core has been consumed by the accret-
ing protostar. Gravitational collapse theory suggests that
fm � 1, while competitive accretion requires fm � 1. In
recent work examining the plausibility of competitive ac-
cretion, Krumholz et al. (2005a) considered two possible
scenarios. In the first scenario, the gas the protostar is ac-
creting is not accumulated into bound structures on scales
smaller than the entire clump. For unbound gas, self-gravity
may be neglected and the entire problem can be treated as
Bondi-Hoyle accretion in a turbulent medium of non-self-
gravitating gas onto a point particle. In a companion paper
(Krumholz et al., 2006) they develop the theory for Bondi-
Hoyle accretion in a turbulent medium. Using this theory
they derive the accretion rate for such a turbulent medium
and they confirm their theory with detailed, high resolution,
converged AMR simulations. By using this accretion rate
and the definition of the virial parameter, αvir ≡ Mvir/M ,
and the dynamical time, tdyn ≡ R/σ, where σ is the veloc-
ity dispersion in the gas, they show that the accretion of un-
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bound gas gives fm−BH = (14.4, 3.08 L
R )φBHαvir

−2(m∗

M )
for a (spherical, filamentary) star-forming region, where
φBH represents the effects of turbulence (Krumholz et al.,
2005a).

From this it is clear that competitive accretion is most ef-
fective in low mass clumps with virial parameters αvir � 1.
They then examined the observed properties of a large range
of star forming regions spanning both low mass and high
mass stars and computed the properties for each region
yielding αvir, φBH and fm−BH. In virtually every region
examined, the virial parameter αvir ∼ 1 and fm−BH � 1.
Thus none of the star-forming regions are consistent with
competitive accretion, but all are consistent with direct
gravitational collapse. Edgar and Clarke, (2004) exam-
ined Bondi-Hoyle accretion onto stars including radiation
pressure effects and found that radiation pressure halts fur-
ther accretion around stars more massive than ∼ 10M�. It
is important to point out that while this result may be true
for accretion of unbound gas onto a point particle, it is not
true for global collapse and accretion from a bound core
as shown in more realistic full 3D radiation hydrodynamics
simulations by Krumholz et al. (2005c), who form massive
stars with M ∼ 40M�. If Edgar and Clarke’s results do
hold for Bondi-Hoyle accretion (but not accretion from a
core), then the only way for massive stars to grow in com-
petitive accretion is by direct collisions. This requires den-
sities of 108 pc−3, ∼ 3 orders of magnitude larger than any
observed in the galactic plane. Furthermore, no competitive
accretion model to date has included the effects of radia-
tion pressure; a glaring omission if the model is attempting
to explain high mass stars. It follows that competitive ac-
cretion is not a viable mechanism for producing the stellar
IMF.

In a second possible competitive accretion scenario,
Krumholz et al. (2005a, supplemental section) examined
another way that a star could increase its mass by captur-
ing and accreting other gravitationally bound cores. Their
theory results in the calculation of fm−cap, the fractional
change in mass that a protostar undergoes by capturing
bound cores. As found with fm−BH, all the values are es-
timated to be three more orders of magnitude below unity
and again, competitive accretion is found not to work.

If competitive accretion is clearly not supported by ob-
servations in any known star forming region, why do the
simulations (Bonnell et al.,1998, 2001; Bate et al., 2005)
almost invariably find competitive accretion to work? Is
there a fundamental flaw in the methodology used in com-
petitive accretion scenarios (SPH) or is the problem one of
physics and initial conditions? As Krumholz et al. (2005a)
point out, all competitive accretion have virial parameters
αvir � 1. Some of the simulations start with αvir ≈ 0.01
as a typical choice (Bonnell et al., 2001a,b; Klessen and
Burkert, 2000, 2001). For other simulations the virial pa-
rameter is initially of order unity but decreases to � 1 in
a crossing time as turbulence decays (Bonnell et al., 2004;
Bate et al., 2002a,b, 2003). It is also noteworthy that many
of the simulations begin with clumps of mass consider-

ably smaller (M ≤ 100M�) than that typically one found
in star forming regions ∼ 5000M� (Plume et al., 1997).
Krumholz et al. (2005a) show that for competitive accre-
tion to work, αvir

2M < 10M�, but for typical star forming
regions αvir ≈ 1 and M ≈ 102–104M� and the inequality
is almost never satisfied.

One reason why simulations evolve to αvir � 1 is
that they omit feedback from star formation. Observa-
tions by Quillen et al. (2005) show that outflows inject
enough energy on the scale of a clump to sustain turbu-
lence thereby keeping the virial parameter from declining
to values much less than unity. Another possible reason is
that the simulations consider isolated clumps with too lit-
tle material. Real clumps are embedded in larger molecu-
lar clouds where larger scale turbulent motions can cascade
down to the clump scale preventing the rapid decay of the
turbulence.

5.3. 3D Collapse with Radiation

Radiation transfer is an important element in both low
mass and high mass star formation. Boss et al. (2000) car-
ried out the first 3D simulations including radiation trans-
fer to study the effect of radiation on the formation of
stars in collapsing molecular cloud cores. Starting from
cores with Gaussian initial density profiles, this work com-
pared collapse calculations based on the isothermal and
barotropic approximations with the more realistic case of
detailed radiative transfer in the Eddington approximation.
The use of the isothermal equation of state resulted in a
collapse leading to a thin isothermal filament (Truelove
et al., 1997). In the more realistic case with nonisother-
mal heating using radiative transfer in the Eddington ap-
proximation, they showed that thermal retardation of the
collapse caused the formation of a binary protostar sys-
tem at the same maximum density where the isothermal
collapse yielded a thin filament. Eventually, the binary
clumps evolved into a central protostar surrounded by spi-
ral arms containing two more clumps. The corresponding
collapse using the barotropic approximation allowed a tran-
sition from an isothermal optically thin to an optically thick
flow. It resulted in a transient binary merging into a cen-
tral object surrounded by spiral arms with no evidence of
further fragmentation. The barotropic result differs signifi-
cantly from the Eddington result at the same maximum den-
sity indicating the importance of detailed radiative transfer
effects.

Boss et al. (2000) examined the differences in the use
of a barotropic stiffened EOS approximation and radiative
transfer. In the former, the thermal properties of the gas
are specified solely as a function of density. This implies
that a single global value of a critical density represents the
entire calculation and its value depends weakly on the as-
sumed geometry of the cloud (Inutsuka and Miyama, 1997).
In 3-D the effective value of this critical density depends
on the local geometry surrounding a fluid element. In ad-
dition, whereas the specific entropy of a gas parcel gener-
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Fig. 1.— Binary outflows. Magnetic field lines, velocity
field vectors and density distribution on the z = 0 plane.
Taken from model DL of Machida et al (2005b).

ally depends on the thermal history of the parcel, the spe-
cific entropy of the gas using the barotropic approximation
depends solely on the density. Thus the derived pressures
used in the momentum equations will differ between a cal-
culation using a stiffened EOS approximation and a fully
consistent calculation using radiative transfer. As a result,
the temperature is determined not simply by adiabatic com-
pression, but by compressional heating in a 3D volume with
highly variable optical depth. Thus the dependence of the
temperature on the density cannot be represented with a
simple barotropic approximation with any great accuracy.
This causes concern for the validity of current simulations
of multiple star formation and cluster formation, since es-
sentially all use either the isothermal or the barotropic ap-
proximation. Recent work by Whitehouse and Bate (2005)
examined core collapse with radiation and the adequacy of
the barotropic approximation as well.

5.4. The Debate Over Disk Fragmentation

As pointed out in section 2, most simulations to date,
performed with SPH, find circumstellar disk fragmenta-
tion and rapid ejection of BDs in most cases (Bate et al.,
2003;Delgato-Donate et al., 2004; Goodwin et al., 2004a,b)
even possibly to an excess of BD and low-mass companions
(Goodwin et al., 2004b). Furthermore, most simulations
are terminated at an arbitrary time, when much of the gas
is still present; hence the simulations may provide only a
lower bound to the number of companions that would be
produced. As discussed in section 2, these simulations are
increasingly contradicted by recent observations. Goodwin
and Kroupa (2005) have recently pointed out that obser-
vations suggest that individual cores produce at most 2-3

protostars. A possible reason for this problem is the ab-
sence of a magnetic field and inaccurate thermodynamics
(i.e. barotropic equation rather than radiative transfer) in
the SPH simulations.

However, there is an alternative explanation: The SPH
simulations are likely not converged. Indeed, recent high
resolution AMR simulations of the collapse and fragmen-
tation of turbulent cores (Klein et al., 2004a,b) show that
a magnetic field and radiative transfer is not required to
explain the observational results of Goodwin and Kroupa
(2005). Klein et al., (2004a,b) find that over a broad range
of turbulent Mach numbers (M ∼ 1 − 3) and rotational
energies (β ∼ 10−4 − 10−1) low order single or binary
stars are formed through fragmentation of the core, not the
ensuing disk. Is it then a matter of faith in one numerical
method or the other? SPH versus AMR? Not really, it is
rather a matter of testing the convergence of the numerical
simulations, irrespective of the method.

Fisher et al. (2006, in preparation) have performed high
resolution, full convergence studies using the SPH code
Gadget with the same model and initial conditions as Good-
win et al. (2004a), except for the initial turbulent seed.
They confirmed the results of Goodwin et al., (2004a) at the
same low resolution (only one smoothing kernel per mini-
mum Jeans mass). But they have also found no convergence
of either the multiple number of companion protostars pro-
duced or the time for multiple fragmentation to occur in
the disk, with up to 32 times the resolution of Goodwin et
al., (2004a). This suggests that the current SPH simula-
tions showing high order multiple disk fragmentation may
be grossly under resolved. If so, the disagreement with the
observations may not be due only to the absence of the mag-
netic field and radiation, but also to unconverged numerics.
Recent grid-based simulations attempting to study fragmen-
tation in isolated disks (cf. Duriesen this book) indicate that
for 2D axisymmetric disk studies very high resolution, 256
cells in the radial direction alone (Ostriker private commu-
nication), is required to demonstrate that disks do not suffer
from numerical instability. This level of resolution is far be-
yond any SPH simulation of cores or clusters to date show-
ing disk fragmentation, and would be difficult to achieve
also with AMR simulations starting from globally collaps-
ing cores.

At the time of this conference, the debate between SPH
and AMR with respect to the issue of disk fragmentation
continues, but it is our strong opinion that all simulations
using SPH or AMR must demonstrate adequate conver-
gence to be credible. This should apply also to physical
systems that may display chaotic behavior, such as the gas
dynamics in a molecular cloud core. A high sensitivity to
initial conditions may result in statistical distributions of
the measured quantities (e.g., number of collapsing objects
and their formation time) around some mean value. In this
case, an expensive approach to test numerical convergence
would consist of running a large number of experiments at
each resolution and test for the convergence of the statistical
distributions of the quantities of interest. A less expensive
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Fig. 2.— Bird’s-eye view of the magnetic field lines in the
fast jet emanating from the central region around a proto-
star. Only the 17th grid in the nested-grid resistive MHD
calculations by Machida et al. (2006, in preparation) is
shown. The density contours and velocity vectors are pro-
jected on the walls on both sides.

approach is to measure quantities with a weak sensitivity to
initial conditions because they already represent the average
of some statistical distribution, or just because they are even
more sensitive to the numerical resolution than to the initial
conditions. For example, Fisher et al. (2006) find that as
they increase the resolution of their SPH simulations, the
time of disk fragmentation (when the first object is formed)
increases monotonically with resolution, a sign of lack of
convergence in the SPH simulations, rather than a signature
of chaotic behavior.

5.5. Star formation in a cloud with Magnetic Field and
Rotation

5.5.1. Fragmentation of the First Core. A non-rotating
cloud core without magnetic field contracts in a self-similar
manner to form a first core that is composed of molecu-
lar hydrogen (Larson, 1969; Masunaga et al., 1998). Re-
cently, nested grid MHD simulations (Machida et al., 2004,
2005a) have revealed that i) a rotating magnetized core
evolves maintaining a ratio of angular speed to magnetic
field strength at the center Ωc/Bc ' const; and ii) Ωc and
Bc are well correlated at the first core phase and satisfy
the “magnetic flux – spin relation” as Ω2

c/0.224πGρc +
B2

c/0.3628πc2
sρc ' 1, using a central density ρc and

isothermal sound speed cs. This is regarded as an appear-

ance of self-similarity in magnetized rotating cores.
The fragmentation of the first core is regarded as one

of the mechanisms to explain close binary systems (Bon-
nell and Bate, 1994b; Bate, 1998). The magnetic field
affects the rotational motion (magnetic braking) and thus
the fragmentation. Whether the magnetic field stabilizes
the first core against the fragmentation or not (Machida
et al., 2005b; Ziegler, 2005) is attracting attention in re-
lation to the binary formation. As well as non-magnetic
cores (see §3.a.5), a magnetized first core can fragment
if it is rotating sufficiently fast, Ωc ' 0.2(4πGρc)

1/2

(Machida et al., 2005b) and has only a weak magnetic
field, Bc ∼< 0.3(8πc2

sρc)
1/2. Simulations show that in-

creasing the magnetic field strength, fragmentation is sta-
bilized by the suppression of rotational motion by mag-
netic braking (see also Hosking and Whitworth, 2004).
This is not found by Boss (2002), but his model equation
is not fully consistent with MHD and does not account
for magnetic braking. In order to achieve enough rota-
tion to cause fragmentation, the initial Ω-to-B ratio must
satisfy the condition (Ω/B)init > 0.39G1/2cs ∼ 1.7 ×
10−7(cs/0.19km s−1)−1µG−1 (Machida et al., 2005b).

When ~B and angular momentum ~J are not parallel to
each other, the magnetic braking works more efficiently for
the component of ~J perpendicular to ~B. A magnetically
dominated cloud core whose Ω-to-B ratio is less than the
above critical value forms a disk perpendicular to the mag-
netic field (Matsumoto and Tomisaka, 2004) and an outflow
is ejected in the direction of the local magnetic field, even
if ~B is not parallel to ~J . The difference between the local
field in the vicinity of a protostar and on the cloud scale is
restricted to ∼< 30 deg for this case.

If the first core is fragmented into binary or multiple
cores, each fragment spins and multiple outflows (Fig.1)
are ejected (Machida et al., 2004, 2005b; Ziegler, 2005;
Banerjee and Pudritz, 2006), which explains binary out-
flows (Liseau et al., 2005).
5.5.2. Second Collapse with Magnetic Field. Once the dis-
sociation of molecular hydrogen starts at the central region
of the first core, the second collapse begins. Further cal-
culation of the evolution to form the second core (i.e., a
protostar) requires the inclusion of resistivity in the MHD
description, as the high density reduces the degree of ion-
ization and the conductivity of the medium. Machida et al.
(2006, in preparation) have adopted parametrized resistivity
as a function of density in their nested-grid resistive MHD
code, and extended the calculations of the collapse. Dur-
ing the isothermal phase, the magnetic Reynolds number is
a decreasing function of density. If the magnetic Reynolds
number decreases below unity, the magnetic field is effec-
tively decoupled from the collapsing gas. However, the
temperature of the gas becomes sufficiently high (∼ 103K)
that the magnetic field is re-coupled again with the collaps-
ing gas. This relatively sudden grab of the field lines tends
to make a very collimated fast outflow around the second
core. Fig. 2 shows a snapshot of the propagation of a fast
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jet from the protostar. The density distribution on the cross
section is also shown on the left and right walls. Note that
bow shocks are clearly seen in the density plot. The re-
sults of this calculation indicate that a realistic modeling of
the evolution of temperature and resistivity as a function of
density is required for a precise description of the jet.

6.SUMMARY AND FUTURE DIRECTIONS

6.1. Summary

Observations of molecular clouds and cores provide a
wealth of data that are important constraints for initial
conditions of numerical simulations. Large scale simula-
tions should be consistent with the turbulent nature of the
ISM and the observed properties of prestellar cores should
emerge self-consistently from the simulations. All calcu-
lations must adhere to the Jeans condition for grid-based
schemes or a well established equivalent for particle-based
schemes. It is important to stress that the Jeans condition is
a necessary but not sufficient condition to guarantee avoid-
ance of artificial fragmentation. Simulations must be tested
at more resolved Jeans numbers to establish convergence.

The importance of turbulence in star formation is now
well accepted. A very large spatial resolution is required
to simulate the turbulent fragmentation, barely achieved by
the largest grid-based simulations. Present SPH simulations
fall several orders of magnitude below the required spatial
resolution. It is possible that almost no available simula-
tions have yet accurately tested the effect of turbulent frag-
mentation.

Magnetic fields play a crucial role in the star formation
process. At this time there are no 3D, self-gravitational
MHD simulations that have evolved stars from turbulent
clouds. Grid based schemes such as AMR have devel-
oped high order accurate PPM and Godunov based MHD
that can provide accurate solutions across several orders
of magnitude of collapse. SPH has developed cruder ap-
proaches to MHD that appear to be rather poor even for very
mild shocks, but this will hopefully improve. Godunov ap-
proaches to MHD for SPH may provide increased accuracy.

Radiation transport has been shown to play a significant
role in the outcome of fragmentation to binary and multi-
ple systems. It has been shown that side stepping the issue
of radiation transport with a barotropic approximation can
lead to incorrect results. Current AMR calculations have
implemented radiation transfer in the flux-limited approxi-
mation and have used this for both low mass and high mass
star formation. Radiation transfer schemes have recently
been developed for SPH as well.

Current star formation simulations are not yet adequate
to accurately span the many orders of magnitude of den-
sity and spatial range necessary to account for stars from
initially turbulent clouds and encompassing all the relevant
physics. In our opinion, AMR approaches with recent de-
velopments coupling radiation transfer and MHD hold out
the best promise for achieving that goal. SPH, while mak-
ing significant strides in the last few years, is still faced

with difficult challenges of accurate handling of turbulence,
strong shocks, MHD, and radiation transfer. However, we
anticipate further progress with SPH.

Current calculations are still not adequate to explain the
stellar IMF. Of the two dominant theories for the origin
of stellar masses described as direct gravitational collapse
and competitive accretion, observations appear to favor the
first. Recent theoretical work by Krumholz et al. (2005a)
has now demonstrated that seed protostars cannot gain mass
efficiently by competitive accretion processes in observed
star-forming regions that are approximately in virial bal-
ance. There is no observational evidence for the existence
of regions that are far from virial balance, as required by
competitive accretion models. This suggests that competi-
tive accretion is not a viable mechanism for producing the
stellar IMF and that current simulations resulting in com-
petitive accretion must have initial or boundary conditions
inconsistent with the observations, or rather neglect some
crucial physics. Theoretical efforts directed toward the pic-
ture of direct gravitational collapse set up by turbulent frag-
mentation appear to be more promising.

6.2. Future Directions for Numerical Simulation

The lack of demonstrated convergence for most simula-
tions in the field presents us with uncalibrated results. We
strongly emphasize that future simulations should demon-
strate numerical convergence before detailed comparison
with observations can be credible. Otherwise there is no
way to normalize the accuracy of large scale simulations
and the results of such simulations will not advance our un-
derstanding of low mass star formation. Convergence tests
should be always carried out irrespective of the numerical
approach. A better understanding of the numerical treat-
ment of disk fragmentation must occur to clear up the cur-
rent discrepancies between AMR and SPH.

Future simulations of low mass star formation must en-
deavor to include MHD and radiation transfer. With the
development of accurate approaches to these processes, we
can expect to see simulations become more relevant to ad-
dressing the observations. For simulations to make a real
connection to the observations, detailed line profiles and
continuum sub-mm and mm maps should be calculated with
3D radiative transfer codes. Approaches that go beyond the
Eddington approximation and flux-limited diffusion such as
SN transport and Monte Carlo need further development to
work efficiently in full 3D simulations. They will become
increasingly important in treating the flow of radiation in
highly inhomogeneous regions. As future simulations en-
compass multi-coupled physics, significant progress must
be made in algorithms that improve the parallel scalabil-
ity. That is necessary in order to simulate the full dynamic
range of collapse and fragmentation from clouds to stars,
while capturing all the relevant physics.
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Gudiksen B. V. and Nordlund Å. (2005) Astrophys. J., 618, 1020-
1030.

Haugen N. E. and Brandenburg A. (2004) Phys. Rev. E, 70,
026405-026411.

Heiles C., Goodman A. A., McKee C. F., and Zweibel E. G. (1993)
In Protostars and Planets III (E. H. Levy and J. I. Lunine, eds.),
pp. 279-326. Univ. of Arizona, Tucson.

Heyer M. H. and Brunt C. M. (2004) Astrophys. J., 615, L45-L48.
Hosking J. G. and Whitworth A. P. (2004) Mon. Not. R. Astron.

Soc., 347, 1001-1010.
Imamura J. N., Durisen R. H., and Pickett B. K. (2000) Astrophys.

J., 528, 946-964.
Inutsuka S.-I. and Miyama S. M. (1997) Astrophys. J., 480, 681-

693.
Jayawardhana R., Mohanty S., and Basri G. (2002) Astrophys. J.,

578, L141-L144.
Jeans J. H. (1902) Phil. Trans. A, 199, 1-53.
Jijina J., Myers P. C., and Adams F. C. (1999) Astrophys. J. Suppl.,

125, 161-236.
Juvela M., Padoan P., and Nordlund Å. (2001) Astrophys. J., 563,
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Motte F., Andr é P., Ward-Thompson D., and Bontemps S. (2001)

Astron. Astrophys., 372, L41-L44.
Mouschovias T. C. and Spitzer L. (1976) Astrophys. J., 210, 326-

327.
Myers P. C., Dame T. M., Thaddeus P., Cohen R. S., Silverberg

17



R. F., Dwek E., and Hauser M. G. (1986) Astrophys. J., 301,
398-422.

Nakajima Y. and Hanawa T. (1996) Astrophys. J., 467, 321-333.
Nakano T., Nishi R., and Umebayashi T. (2002) Astrophys. J.,

573, 199-214.
Natta A., Testi L., Muzerolle J., Randich S., Comer ón F., and Persi
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Nordlund Å. and Padoan P. (1999) In Interstellar Turbulence (J.

Franco and A. Carraminana, eds.), pp. 218-231. Cambridge
University Press.
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