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Almost all young stars are found in multiple systems. This suggests that protostellar cores
almost always fragment into multiple objects. The observedproperties of multiple systems
such as their separation distribution and mass ratios provide strong constraints on star formation
theories. We review the observed properties of young and oldmultiple systems and find that
the multiplicity of stars changes. Such an evolution is probably due to (a) the dynamical decay
of small-N systems and/or (b) the destruction of multiple systems within dense clusters. We
review simulations of the fragmentation of rotating and turbulent molecular cores. Such models
almost always produce multiple systems, however the properties of those systems do not match
observations at all well. Magnetic fields appear to supress fragmentation, prehaps suggesting
that they are not dynamically important in the formation of multiple systems. We finish by
discussing possible reasons why theory fails to match observation, and the future prospects for
this field.

1. INTRODUCTION.

Correctly predicting the properties of young multiple
systems is one of the most challenging tests of any theory
of star formation. In this chapter we discuss the current
understanding of how dense prestellar cores fragment into
multiple stars including brown dwarfs (by ‘stars’ we gener-
ally mean both starsandbrown dwarfs).

Firstly, we will discuss the important observed proper-
ties of both young and old binary systems and the differ-
ences between them. Then we will describe the possible
origins of the differences between the young and old sys-
tems and hopefully convince the reader that almost all stars
must form in multiple systems. This initial binary popu-
lation must form from the fragmentation of star-forming
dense molecular cores and so we discuss the observed prop-
erties of these cores that may influence their ability to form
multiple systems. We will then review the current mod-
els of core fragmentation, with an emphasis on turbulence
as the mechanism that promotes fragmentation. Finally we
will examine why theory currently fails to correctly predict
binary properties.

2. THE PROPERTIES OF MULTIPLE SYSTEMS.

There has been an extensive study of binary properties
over the past two decades with the modern study often

marked as beginning with the detailed survey byDuquen-
noy and Mayor(1991, hereafter DM91). Multiple systems
in the field are by far the best studied due to the availabil-
ity of local samples whose completeness is easier to esti-
mate, and the properties of the field provide the benchmark
against which younger samples are measured.

2.1 Multiple Systems in the field.

2.1.1 Multiplicity fraction.The fraction of field stars in
multiple systems is found to be high and increases with in-
creasing primary mass. Many different measures are used
to quantify multiplicity which can become very confus-
ing. Most important is the ’multiplicity frequency’fmult =
(B+T+Q+...)/(S+B+T+Q+...) where S, B, T and Q are the
numbers of single, binary, triple and quadruple systems re-
spectively, thusfmult represents the probability that any
system is a multiple system (seeReipurth and Zinnecker,
1993).

The raw value of the field G-dwarf multiplicity fre-
quency found by DM91 is0.49, when corrected for incom-
pleteness this rises to0.58. However, recent studies using
Hipparcos data have shown that it may even be higher than
this (Quist and Lindegren, 2000;Söderhjelm, 2000).

It should be noted that the brown dwarf (BD) binary frac-
tion has generally been considered to be much lower than
that of stars at∼ 0.1 − 0.2 (Bouy et al., 2003;Close et al.,
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2003; Gizis et al., 2003; Martı́n et al., 2003). However,
recent studies have suggested that the BD multiplicity fre-
quency may be significantly higher, possibly exceeding 0.5
(Pinfield et al., 2003;Maxted and Jeffries, 2005), provided
most BDs reside in very tight BD–BD pairs.

2.1.2 Separation distribution.The binary separation dis-
tribution is very wide and flat, usually modelled as a log-
normal with mean∼ 30 AU and varianceσlogd ∼ 1.5
(DM91 for G-dwarfs). This is illustrated in Fig. 1 where
the field period distribution is compared to that of young
stars (note thata3/P 2 = msys, wherea is in AU, P is in
years andmsys is the system mass inM�).

A similar distribution is found for M-dwarfs byFischer
and Marcy(1992), and generally seems to hold for all stars,
although the maximum separations do appear to decrease
somewhat, but not substantially, for stars with decreasing
mass (Close et al., 2003). Very low-mass stars (VLMSs)
and BDs seem strongly biased towards very close compan-
ions with semi-major axesa ≤ amax ≈ 15 AU (Close et
al., 2003;Gizis et al., 2003;Pinfield et al., 2003;Maxted
and Jeffries, 2005) in contrast to those of stars that have
amax

>∼ 100 AU (DM91; Fischer and Marcy, 1992;Mayor
et al., 1992). It is this unusual separation distribution which
may have led to the underestimate of the BD multiplicity
fraction. The much smalleramax for VLMSs and BDs com-
pared to the other stars cannot be a result of disruption in a
cluster environment but must be due to the inherent physics
of their formation (Kroupa et al., 2003).

2.1.3 Mass ratio distribution.DM91 found that Galactic-
field systems with a G-dwarf primary have a mass-ratio
distribution biased towards small values such that it does
not follow the stellar IMF which would predict a far
larger number of companions with massesm2

<∼ 0.3 M�

(Kroupa, 1995b). For short-period binaries, the mass-ratio
distribution is biased towards similar-mass pairs (Mazeh
et al., 1992). Integrating over all periods, for a sam-
ple of nearby systems with primary masses in the range
0.1 <∼m1/M�

<∼ 1, Reid and Gizis(1997) find the mass-
ratio distribution to be approximately flat and consistent
with the IMF (Fig. 2).

2.1.4 Eccentricity distribution.Binary systems have a
thermalised eccentricity distribution (Eqn. 3 below) for pe-
riodsP >

∼ 103−4 d, with tidally circularised binaries dom-
inating at low separations (DM91;Fischer and Marcy,
1992).

2.1.5 Higher-order systems.DM91 find the uncorrected
ratio of systems of different multiplicity to be S:B:T:Q =
1.28 : 1 : 0.175 : 0.05 (see alsoTokovinin and Smekhov,
2002), suggesting that roughly 20% of multiple systems are
high-order systems. Concerning the origin of high-order
multiple systems in the Galactic field, we note that many,
and perhaps most, of these may be the remnants of star clus-
ters (Goodwin and Kroupa, 2005).

2.2 Pre-Main Sequence Multiple Systems.

The properties of pre-main sequence (PMS) multiple

Fig. 1.— The period distribution function. Letters show the
observed fraction of field G, K and M-stars and PMS stars (P).
The solid curve shows the model initial period distribution(see
Eqn. 2). The light histogram is the initial binary population in the
simulations ofKroupa (1995b) which evolves through dynamical
interactions in a cluster into a field-like distribution shown by the
heavy histogram.

systems are much harder to determine than those in the
field. We refer the reader to the chapter byDucĥene et al.
for a detailed review of the observations of PMS multiple
systems and the inherent problems.

Probably the most important difference between the
PMS and field populations is that young stars have a signif-
icantly highermultiplicity fraction than the field (see the
chapter byDucĥene et al.; also see Fig. 1).

Theseparation distribution of PMS stars also appears
different to that in the field with an over-abundance of bina-
ries with separations of a few hundred AU (Mathieu, 1994;
Patience et al., 2002; Fig. 1). More specifically, the binary
frequency in the separation range∼ 100−1000 AU is a fac-
tor of∼ 2 higher than in the field (Mathieu, 1994;Patience
et al., 2002;Ducĥene et al., 2004). Extrapolating this in-
crease across the whole separation range implies thatfmult

for PMS stars could be as high as 100%. (It appears that in
Taurus the binary frequencyis∼ 100% for stars> 0.3M�,
Leinert et al., 1993;Köhler and Leinert, 1998).

Themass-ratio distribution of PMS stars is similar to
the field population. A detailed comparison is not yet pos-
sible because low-mass companions to pre-main sequence
primaries are very difficult to observe as the available re-
sults depend mostly on direct imaging or speckle interfer-
ometry, while for main-sequence systems radial-velocity
surveys have been done over decades (DM91). Thus, using
near-infrared speckle interferometry observations to obtain
resolved JHK-photometry for the components of 58 young
binary systems,Woitas et al. (2001) found that the mass-
ratio distribution is flat for mass ratiosq ≥ 0.2 which is
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consistent with random pairing from the IMF, i.e. fragmen-
tation processes rather than common-accretion (Fig. 2).

Theeccentricity distribution of PMS stars also is simi-
lar to the field, with a thermalised distribution except at low
separations where tidal circularisation has occurred rapidly
(e.g.,Kroupa, 1995b;White and Ghez, 2001). Finally, the
ages of components in young multiple systems appear to be
very similar (White and Ghez, 2001).

It is currently unclear what the proportion of higher-
order multiples is in young systems (see the chapter by
Ducĥene et al.). We will revisit this question in the next
section.

2.3 The evolution of binary properties.

The observations described in Sections 2.1 and 2.2
clearly show that at least the binary fraction and separa-
tion distributions evolve significantly between young stellar
populations and the field.

Indeed, binary properties are seen to change even within
populations in star forming regions. The binary frac-
tion is found to vary between embedded and (older) non-
embedded sources in both Taurus andρ Oph (Ducĥene et
al., 2004; Haisch et al., 2004). Also, the mass ratio dis-
tributions of massive stars appear to depend on the age of
the cluster with those in young clusters being consistent
with random sampling from the IMF and those in dynam-
ically evolved populations favouring equal-mass compan-
ions (Section 2.4).

The evolution of binary properties has been ascribed
to two mechanisms. Firstly, the rapid dynamical de-
cay of young small-N clusters within cluster cores (e.g.,
Reipurth and Clarke, 2001; Sterzik and Durisen, 1998,
2003;Durisen et al., 2001;Hubber and Whitworth, 2005;
Goodwin and Kroupa, 2005; Umbreit et al., 2005), and
secondly, the dynamical destruction of multiples by inter-
actions in a clustered environment can modify an initial
PMS-like distribution into a field-like distribution (Kroupa,
1995a, b;Kroupa et al., 2003; Figs. 1, 3).

2.3.1 Small-N decay.Multiple systems containingN ≥
3 stars are unstable to dynamical decay unless they form
in a strongly hierarchical configuration (stability criteria for
N > 2 systems are provided byEggleton and Kiseleva,
1995). Generally, a triple system is unstable to decay with
a half-life of

tdecay = 14

(

R

AU

)3/2 (

Mstars

M�

)−1/2

yrs (1)

whereR is the size of the system, andMstars is the mass
of the components (Anosova, 1986). The decay time for
R = 250 AU andMstars = 1M� is ∼ 55 kyr which is of
order the duration of the embedded phases of young stars,
thus ejections should mainly occur during the main Class
0 accretion phase of PMS objects (e.g.,Reipurth, 2000).
Indeed, one such early dynamical decay appears to have
been observed byGómez et al.(2006), and this is probably

the process at work to reduce the binary fraction between
the embedded and non-embedded stars seen byDucĥene et
al. (2004) andHaisch et al. (2004). These early dynami-
cal processes cause embedded protostars to be ejected from
their natal envelopes, possibly causing abrupt transitions of
objects from class 0/I to class II/III (Reipurth, 2000;Good-
win and Kroupa, 2005).

Significant numbers of small-N decays will dilute any
initial high multiplicity fraction very rapidly to a small bi-
nary fraction for the whole population (e.g.,N = 5 systems
would lead to a population with a binary fractionf = 1/5
within < 105 yr). The observed high binary fraction in
about 1 Myr old populations thus suggests that the forma-
tion of N > 2 systems is the exception rather than the
rule (Goodwin and Kroupa, 2005). Ejections would occur
mostly during the very early Class 0 stage such that ejected
embryos later appear as free-floating single very low-mass
stars and BDs (Reipurth and Clarke, 2001). However, the
small ratio of the number of BDs per star,≈ 0.25 (Munech
et al., 2002; Kroupa et al., 2003; Kroupa and Bouvier,
2003b;Luhman, 2004), again suggests this not to be a very
common process even ifall BDs form from ejections.

Ejections have two main consequences: a significant
reduction in the semi-major axis of the remaining stars
(Anosova, 1986; Reipurth, 2000; Umbreit et al., 2005);
and the preferential ejection of the lowest mass component
(Anosova, 1986; Sterzik and Durisen, 2003). The early
ejection of the lowest-mass component forms the basis of
the embryo ejection scenario of BD formation (Reipurth
and Clarke, 2001;Bate et al., 2002).

TheN -body statistics of the decay of small-N systems
has been studied by a number of authors (Anosova, 1986;
Sterzik and Durisen, 1998, 2003;Durisen et al., 2001;
Goodwin et al., 2005;Hubber and Whitworth, 2005). How-
ever, onlyUmbreit et al. (2005) have attempted to include
the effects of accretion on theN -body dynamics which ap-
pear to have a significant effect - especially on the degree
of hardening of the binary after ejection.Goodwin et al.
(2004a, b) andDelgado Donate et al.(2004a, b) have sim-
ulated ensembles of cores including the full hydrodynam-
ics of star formation, however proper statistical conclusions
about the effects of ejections are difficult to draw due to the
different numbers of stars forming in each ensemble (which
there is no way of controlling a priori), and the smaller num-
ber of ensembles that may be run in a fully hydrodynamic
context. However, some conclusions appear from these and
other studies (Whitworth et al., 1995; Bate and Bonnell,
1997; Bate et al., 2003; Delgado Donate et al., 2003).
Firstly, that early ejections are very effective at hardening
the remaining stars (c.f.Umbreit et al., 2005). Secondly,
this early hardening tends to push the mass ratios of close
binaries towards unity. This occurs as the low-mass com-
ponent has a higher specific angular momentum than the
primary and so is more able to accrete mass from the high
angular momentum circumstellar material (seeWhitworth
et al., 1995;Bate and Bonnell, 1997). However,Ochi et al.
(2005) find in detailed 2D simulations of accretion onto bi-
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naries that the gas accretes mainly onto the primary due to
shocks removing angular momentum.

One significant caveat to the previous discussion is that
the gradual formation (over∼ 0.1 Myr) of stars allows
far more stable triples and higher-order multiples to form
than expected observationally, which are stable for at least
10 Myr (Delgado Donate et al., 2004a, b). Indeed, simu-
lations that form a large number of stars often form very
hierarchical higher-order multiples (often quadruples and
quintuples formed when even larger systems decay) which
are not observed (Delgado Donate et al., 2003, 2004a, b;
Goodwin et al., 2004a, b). Such systems would probably be
destroyed during the cluster destruction phase (see below),
but not dilute the binary fraction on very short timescales.

2.3.2 Dynamical destruction in clusters.In the highly-
clustered environments in which most stars are thought to
form (e.g.,Lada and Lada, 2003) dynamical interactions
will be common and may disrupt many initially binary sys-
tems.

Binaries can be sub-divided into three dynamical groups:
(i) the wide, or soft, binaries, (ii) the dynamically active
binaries, and (iii) the tight or hard binaries.

Wide binarieshave orbital velocities much smaller than
the velocity dispersion,σ, in a cluster and are easily dis-
rupted. This is best seen by a gedanken experiment, where
we construct a reduced-mass particle (a test particle orbiting
in a fixed potential with total mass, eccentricity and orbital
period equal to that of the binary in question) in a heat bath
of field particles (the cluster stars). If the orbital velocity of
the test particle is smaller than the typical velocities of the
field particles (vorb � σ), then the test particle will gain
kinetic energy by encounters, i.e. by the principle of energy
equipartition, until it’s orbital velocity surpasses the bind-
ing energy of the binary. The binary consequently gets dis-
rupted. Energy conservation requires the heat bath to cool;
cluster cooling has been seen inN -body computations by
Kroupa et al., (1999), but the effect is not significant for
cluster dynamics. The general effect of this process is that
binaries with weak binding energies are disrupted (i.e., bi-
naries with long periods and/or small mass-ratios).

Hard binaries, on the other hand, can be represented
by a reduced-mass binary in which the test particle has
vorb � σ, so that energy equipartition leads to a reduc-
tion of vorb and to an increase ofσ (cluster heating). This
increases the binding energy of the binary which heats up
further (vorb increases as the test particle falls towards the
potential minimum). This run-away process only stops be-
cause either the binary merges when it is so tight that the
constituent stars touch (forming a blue straggler), or be-
cause the hardened binary receives a re-coil expelling it
from the cluster, or the hardening binary evolves to a cross-
section so small that the binary becomes essentially unre-
solved in further interactions.

Heggie (1975) andHills (1975) studied the details of
these processes and formulated theHeggie–Hills lawof bi-
nary evolution in clusters: “soft binaries soften and hard
binaries harden”. An important implication of this law is

that hard binaries can absorb the entire binding energy of
a cluster and drive the evolution of the core of a massive
cluster.

Not accessible to analytical work areactive binaries
with intermediate binding energies. Only full-scaleN -body
computations can treat the dynamics of the interactions ac-
curately (e.g.,Heggie et al., 1996). Such binaries couple
efficiently to the cluster, and efficiently exchange energy
with it. The binary–binary and binary–single-star interac-
tions form complex resonances and short-lived higher-order
configurations that decay by expelling typically the least
massive member. Active binaries are thus quite efficient
in exchanging partners, but more work needs to be done
in order to quantify the exchange rates for typical Galactic
star-forming clusters.

The dynamical interactions between binaries or single
stars will continue to alter the binary properties of the pop-
ulation as long as it remains relatively dense (i.e. until the
cluster dissolves or expands significantly after residual gas
removal). In a series of papers (Kroupa, 1995a, b;Kroupa
et al., 2001) it has been shown that a population initially
composed entirely of binary systems with a PMS binary
separation distribution can evolve into the field-like distri-
bution through dynamical encounters, as is exemplified by
the evolution of the mass-ratio distribution (Fig. 2).

Importantly, however, dynamical interactions in a clus-
ter cannot form a significant number of binaries from an
initially single star population,or widen an initially narrow
separation distribution (Kroupa and Burkert, 2001). Also,
the clusters within which most Galactic-field stars form do
not sufficiently harden an initially wide separation distribu-
tion to be consistent with the number of tight binaries. Such
clusters that would lead to significant hardening would dis-
rupt too many of the wide binaries diluting the Galactic-
field binary-star population.

This indicates that the observed broad period distribu-
tion (Fig. 1) is already imprinted at the time of binary for-
mation. The existingN -body simulations of young clusters
tend to assume a relatively well-mixed and relaxed initial
distribution of stars. However, real young clusters tend to
be lumpy and unrelaxed which alters the binary-binary in-
teraction rate (e.g.,Goodwin and Whitworth, 2004), but is
not expected to change the general outcome (a smaller-N
system with a smaller radius isdynamically equivalentto a
larger-N system with a larger radius, (Kroupa, 1995a).

2.3.3 The effect of dynamics on the binary population.
Small-N decay will act to modify thebirth binary popula-
tion (ie. that produced by star formation) by reducing the
overall binary fraction and by hardening the remaining bi-
naries on a timescale of< 105 yrs. Small-N decay cannot
occur very often as it would produce too many single PMS
stars and too many hard binaries (and quite possibly too
many BDs). However, it is unclear if small-N decay is rare
because cores usually form only binaries and only some-
times triples, or because higher order multiples are formed
in stable, hierarchical systems.

The initial binary population (ie. the population af-
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Fig. 2.— The mass-ratio distribution of all late-type primary
stars. The solid dots are observational data byReid and Gizis
(1997), while the expected initial distribution is shown asthe
dashed histogram. In a typical star cluster it evolves to thesolid
histogram which reproduces the observed data quite well (from
Kroupa et al., 2003).

ter small-N decay and internal energy re-distribution pro-
cesses, “eigenevolution”-see below, has modified it) is fur-
ther changed by dynamical interactions within a cluster on a
timescale of a Myr for typical Galactic star-forming clusters
(Kroupa, 1995a, b;Adams and Myers, 2001). Encounters
will destroy soft and active binaries leaving mostly the hard
binary population unchanged. Crucially it cannot produce
more binaries in any significant numbers.

Thus both of the processes that act to modify the birth
binary population into the field binary populationreduce
the binary fraction. We are led to the conclusion that the
birth binary fraction must be higher than that of the field.
This conclusions agrees well with observations.

Goodwin and Kroupa(2005) argue that the birth binary
fraction must be almost unity for all stars, and that the low
binary fraction amongst M-dwarfs is due to the preferen-
tial destruction of low-mass binaries.Lada (2006), how-
ever, argues that most stars form as single stars, as most
M dwarfs are single and most stars are M dwarfs. The cru-
cial issue here is how many initial M dwarf binaries decay?
We note that in a model that assumes that stars are born
with a 60 % binary fraction with companion masses se-
lected randomly from the IMF and without dynamical dis-
solution of the binaries leads to a population with the ob-
served binary fraction-spectral type relationship (Kroupa et
al., 1993, their Fig. 11). In models that assume a 100 % ini-
tial binary fraction, processing through an ‘average’ cluster
(Lada and Lada, 2003) also converts the binary population
into the observed field population. Observations of the bi-
narity of a very young (embedded?) M star population in an
average cluster (as opposed to Taurus which is atypical) are

Fig. 3.— Evolution of the total binary fraction as a function of
time for four cluster models with decreasing half-mass radii R0.5

from top to bottom. Each cluster initially contains 200 late-type
binaries (with periods, eccentricities and mass-ratios consistent
with the initial distribution functions described in Section 2.4) ex-
cept the bottom simulation which containsno binaries. The area
marked ‘GF’ shows the observed field binary fraction (DM91).
The cluster withR0.5 = 0.8 pc evolves into a field-like distri-
bution. With no initial binaries capture is unable to produce a
significant number of binaries. FromKroupa(1995a).

required to fully resolve this issue. However, for higher-
mass stars, it seems almost certain that the initial binary
fraction must besignificantlyhigher than the field binary
fraction due to their current relatively high binary fraction.
It is worth noting that the observed population of high-order
multiples may be formed from the final handful of stars that
remain at the end of cluster dissolution which tend to be in
high-order heiarchical systems (seeGoodwin and Kroupa,
2005).

Thus, whilst more work needs to be done, especially on
the effects of the cluster density and on the initial distri-
bution in star-forming regions with very different physical
properties, a picture has emerged in which the observed
high multiplicity PMS population can be modified by sec-
ular dynamical evolution to produce the field population.
Most (especially K-dwarfs and later) stars therefore form in
multiple - probably binary and triple - systems with a very
wide separation distribution and a relatively flat mass-ratio
distribution.

2.4 The initial binary population.

Given these results, a useful working hypothesis appears
to be that the initial binary-star properties are invariantto
star-formation conditions. The observed differences be-
tween binary populations result from different secular dy-
namical histories of the respective populations: ie. due to
different cluster masses and densities.
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Kroupa (1995b) suggests that the field binary properties
can be understood if thebirth binary population has the fol-
lowing semi-empirical distribution functions:
(1.) Companion masses are chosen randomly from the IMF;
(2.) The distribution of periods is independent of primary
mass, and can be described with the following functional
form,

flP = 2.5
lP − 1

45 + (lP − 1)2
, (2)

wheredNlP = Ntot flP dlP is the number of binaries with
periods in the rangelP, lP +dlP (lP ≡ log10P , P in days)
andNtot is the number of single-star and binary-star sys-
tems in the sample under consideration;
(3.) The eccentricity distribution is thermal (all bindingen-
ergies are equally occupied),

dN = fo f(e) de = fo 2 e de, (3)

being the number of binary systems with eccentricity in the
rangee, e + de.

These birth distributions need to be modified for short-
period binaries (lP <∼ 3) through the evolution of the bind-
ing energy and angular momentum owing to dissipative
processes within the young binary system termed collec-
tively as pre-main sequence eigenevolution. This then gives
the initial distributions which are evident in dynamically
unevolved populations (e.g., Taurus,Kroupa and Bouvier,
2003a) and can be used as the initial binary-star population
in N -body modelling of stellar populations.

The distribution over binding energies and specific-
angular momenta can be evaluated readily given the above
distribution functions. Fig. 4 shows that the distributionof
specific angular momenta of molecular cloud cores forms
a natural extension to the distribution of specific angular
momenta of the initial binary stellar population, possibly
suggesting an evolutionary connection.

These semi-empirical distribution functions have been
formulated for late-type stars (primary massmp

<∼ 1 M�)
as it is for these that we have the best observational con-
straints. It is not clear yet if they are also applicable to
massive binaries.Baines et al. (2006) report a very high
(f ≈ 0.7 ± 0.1) binary fraction among Herbig Ae/Be stars
with the binary fraction increasing with increasing primary
mass. Furthermore, they find that the circumbinary discs
and the companions appear to be co-planar thereby support-
ing a fragmentation origin rather than collisions or capture
as the origin of massive binaries. Most O stars are believed
to exist as short-period binaries withq ≈ 1 (Garćıa and
Mermilliod, 2001), at least in rich clusters, while smallq
appear to be favoured in less substantial clusters such as the
Orion Nebula Cluster (ONC), being consistent there with
random pairing (Preibisch et al., 1999). Kouwenhoven et
al. (2005) report the A and late-type B binaries in the Scor-
pius OB2 association to have a mass-ratio distributionnot
consistent with random pairing. The lower limit on the bi-
nary fraction is 0.52. Perhaps the massive binaries in the
ONC represent the primordial population, whereas in rich

Fig. 4.—The observed specific angular momentum distribution
of molecular cloud cores byGoodman et al.(1993) is shown as
the rightmost dashed histogram, while the initial binary-star pop-
ulation (Section 2.4) is plotted as the solid histogram. It evolves
to the dot-dashed histogram after passing through a typicalstar
cluster (fromKroupa, 1995b).

clusters and in OB associations the population has already
dynamically evolved through hardening and companion ex-
changes to that observed there. This possibility needs to be
investigated using high-precisionN -body computations of
young star clusters.

Given such reasonably-well quantified estimates of the
distribution functions of orbital elements of the primordial
binary population, the problem remains as to how these dis-
tributions functions can be understood theoretically as a re-
sult of the star-formation process.Fisher (2004) notes that
distribution functions similar to the ones derived above, and
in particular a wide mass-ratio distribution, a very wide pe-
riod range, and a thermal eccentricity distribution, are ob-
tained quite naturally from a turbulent molecular cloud (see
alsoBurkert and Bodenheimer, 2000).

3. THE PROPERTIES OF PRESTELLAR CORES.

The gas that is just-about-ready to form stars arranges
itself into denser structures often called prestellar ‘cores’
(e.g.,Myers and Benson, 1983). Often, a ‘typical’ prestel-
lar core is described as having a radius∼ 0.1 pc, density
>
∼ 104 cm−3, and velocity dispersion∼ 0.5 km s−1. In
fact though, the idea that such cores are ‘typical’ primar-
ily arises from the relative ease with which nearby, isolated
dense cores, that will each form fewer than a handful of
stars, can be observed and modelled. It is in fact likely that
accounting for the diversity in core properties is crucial to
improving the match between theory and observations of
the conversion of gas to (binary) stars.

3.1 What is a ‘core’?
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In general, observations and theory have concentrated on
isolatedandcoherentprestellar cores such as those found
in low-mass star forming regions such as Taurus (due to the
relative ease of observing such cores). It is not yet clear if
legitimate analogs to these cores exist within the dense con-
centrations of gas that form the clusters (e.g.,Goodman et
al., 1998). In particular, the∼ 0.1 pc size of isolated cores
would result in them having multiple dynamical encounters
in the dense environment that forms ‘typical’ clusters such
as Orion (e.g.,Lada and Lada, 2003).

That we have not observed any 0.1 pc core analogues
in dense clusters is not surprising. Even in very nearby
clusters like NGC1333 in Perseus (at∼ 300 pc), 0.1 pc
is 1 arcmin, typical of single-dish resolution for tracers like
NH3 and N2H+, which map out gas with density>∼ 104

(e.g.,Benson and Myers, 1989;Evans, 1999). Thus, to find
meaningful dense structures on scales significantly less than
1 arcmin, interferometry is required. Interferometers have
definitively revealed sub-structure in the gas within clus-
ters, but this substructure does not offer a one-to-one gas
clump-to-star match the way observations of isolated cores
do. Instead, regions forming many stars are associated with
more dense gas than those forming fewer. This lack of one-
to-one correspondence suggests that long-lived blobs asso-
ciated with the formation of individual cores within clusters
do not exist.

Given this, is it reasonable to extend observations and
simulations of isolated cores to more typical clustered star
forming ‘cores’? The answer is possibly. Whilst large iso-
lated cores cannot exist in clustered star forming regions,
the regions in which stars are thought to form are far smaller
than the size of a whole core. Observationally, the size of
binary systems is<a few hundred AU in agreement with
theoretical expectations of the scale of fragmentation (see
Section 4.1). Systems of this scale would be expected to
interact on timescales of> Myr in a typical cluster which
is significantly longer than the star formation timescale is
thought to be (see the chapters byDi Francesco et al.and
Ward-Thompson et al.). So, while the details of the first
stages of collapse in isolated cores are probably not appli-
cable to most star formation, the details of the final stages
of fragmentation and star formation occurring on few hun-
dred AU scales quite possibly occur in relative isolation.
However, continued accretion onto cores may significantly
effect the evolution of the inner proto-stellar system de-
pending on the details and timescale of core and star for-
mation in clusters.

With this in mind, we will continue to review the prop-
erties of isolated pre-stellar cores.

3.2 Rotation.

Clearly, for cores to fragment some angular momentum
must be present otherwise the cores will collapse onto a
single, central point. The simplest source of this angular
momentum is due to bulk rotation of the core. It is a rela-
tively straightforward procedure to estimate the component

of solid-body rotation present in a dense core by fitting for
the gradient in observed line-of-sight velocity over the face
of a core (e.g.,Goodman et al., 1993;Barranco & Good-
man, 1998;Caselli et al., 2002). The results of this fitting
(see Fig. 4) have been used as input values of ‘initial angu-
lar momentum’ in many calculations. While the estimates
of the componentof solid-body rotation made in this way
are sound, and are thus fine to use as inputs, it is important
to appreciate that cores do not really rotate as solid-bodies
(Burkert and Bodenheimer, 2000). When the velocity mea-
surements are put into the context of measurements of ve-
locities on larger scales, both observations (Schnee et al.,
2005) and simulations (Burkert and Bodenheimer2000),
show that the “rotation” is often just an artifact created by
larger-scale turbulent motions.

Fig. 4 gives a summary of the measured specific an-
gular momentum for core rotation for the 29 dense cores
from Goodman et al.(1993) which show significant rota-
tion. The majority of cores included in theGoodman et al.
(1993) study are isolated, low-mass cores: one should keep
in mind that the rotational properties of smaller fragments
that may form inside those cores as true(r) precursors to
protostars remain largely unmeasured.

3.3 Non-thermal line widths.

It has been known for many years (Larson, 1981;My-
ers, 1983; Solomon et al., 1987; see alsoElmegreen and
Scalo, 2004a and references therein) that the line widths in-
side even the most quiescent of dense cores are more than
thermal. The coldest isolated dense cores have gas tempera-
tures of order 10 K, and dust temperatures as low as 6 K (see
the chapters byDi Francesco et al.andWard-Thompson et
al.). A gas temperature of 10 K implies an H2 1σ velocity
dispersion of only 0.2 km s−1. Observed dispersions have a
distribution from∼ 0.2 to 1 km s−1with a peak at∼ 0.4 km
s−1, never quite reaching down to the thermal value (e.g.,
see the catalogue ofJijina et al., 1999).

The origin of the non-thermal line width in dense cores is
the subject of an extensive literature, but it is fair to say that
a consensus exists that ‘turbulence’ is responsible (see e.g.,
Myers, 1983; Barranco & Goodman, 1998; Goodman et
al., 1998;Elmegreen and Scalo, 2004a). Significant levels
of turbulence in cores are important for fragmentation as
they may provide the angular momentum to form multiple
systems (see Section 4.2.2) and, as mentioned above, could
also be responsible for the observed rotation.

3.4 Magnetic fields.

The role of magnetic fields in supporting cores against
collapse is a subject of much debate. Magnetic fields are
not thought to be dynamically dominant in cores as was
once thought (e.g.,Shu et al., 1987; or indeed in the ISM as
a wholeElmegreen and Scalo, 2004a). However, they may
be very important as the role of magnetic fields in the frag-
mentation of cores is poorly understood (see Section 4.2.6).
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Isolated cores are found to be statistically triaxial with a
tendency towards being prolate (Jones et al., 2001;Good-
win et al., 2002). In contrast to this, magnetic support
would tend to produce oblate cores. In addition these
magnetically-supported oblate cores would tend to rotate
around their short axis which is not observed (Goodman et
al., 1993). This is supported by observations of the mag-
netic field which show that cores are not magnetically criti-
cal (Crutcher et al., 1999; seeBourke and Goodman, 2004
and references therein).

4. THE FRAGMENTATION OF PRESTELLAR
CORES.

4.1 The Physics of Collapsing Cores.

During the early stages of the collapse of a prestellar
core, the rate of compressional heating is low and the gas
is able to cool radiatively, either by molecular line emis-
sion, or, whenρ > 10−19 g cm−3, by thermally coupling to
the dust. The gas is therefore approximately isothermal (at
∼ 10 K) with an equation of stateP ∝ ρ.

Eventually the rate of compressional heating becomes so
high (due to the acceleration of the collapse), and the rate of
radiative cooling so low (due to the increasing column den-
sity and dust optical depth), that the gas switches to being
approximately adiabatic, withP ∝ ργ (whereγ = 5/3
initially for a monatomic gas, and thenγ = 7/5 above
∼ 300 K when H2 becomes rotationally excited).

This behaviour has been studied in detail (Larson, 1969;
Tohline, 1982;Masunaga et al., 1998;Masunaga and Inut-
suka, 2000) for cores in the range1− 10M� with an initial
temperature of 10 K. These authors find that the switch be-
tween isothermality and adiabaticity occurs at a critical den-
sity of ρcrit ∼ 10−13 g cm−3. (See Fig. 1 inBate1998 or
Fig. 2 inTohline, 2002). Thus, as contraction proceeds and
the density,ρ, increases the Jeans mass,MJ ∝ ρ−1/2T 3/2,
decreases as long as the gas can retain the same tempera-
ture,T , while it is optically thin. Once the opacity increases
such that the gas core heats up,MJ increases. The most
important result of this thermal behaviour is therefore that
there is aminimumJeans mass that is reached at∼ ρcrit of
orderMmin ∼ 10−2M�. This is often referred to as the
opacity limit for fragmentation.

There is an even lower minimum mass that occurs dur-
ing a later isothermal phase atρ ∼ 10−3 g cm−3 when
molecular hydrogen dissociates at a few thousand K. It is
possible that a further fragmentation episode can occur at
these densities which may account for some close binaries.

Fragmentation in cores is expected to occur at around
ρcrit as at lower or higher densities the Jeans mass increases
(although how rapidly it rises aboveρcrit does depend sen-
sitively on theγ used in the adiabatic equation of state).
Thus we expect multiple systems to be formed with a typi-

cal length scaleRform of

Rform <

(

3Mcore

4πρcrit

)1/3

∼ 125 (Mcore/M�)1/3 AU (4)

whereMcore is the mass of the core. Interestingly, this scale
matches the observed peak in the T Tauri separation distri-
bution (see alsoSterzik et al., 2003).

There is a minimum separation in this picture of∼
30 AU which is the separation of two fragments ofMmin

at ρcrit. It may - or may not - be significant that this is the
averagebinary separation (DM91; see alsoSterzik et al.,
2003). However, it would appear difficult to form binaries
closer than∼ 20 − 30 AU without some hardening mecha-
nismor a secondary fragmentation phase.

It should be noted that the length scales of star formation
of less than a few hundred AU are several orders of magni-
tude smaller than the thousands of AU scales on which core
properties have been observed.

4.2 Fragmentation mechanisms.

In this section we examine the main mechanisms that
have been proposed to explain multiple formation. Given
the complex and highly non-linear nature of the physics
in most models, numerical simulations are the main route
by which the mechanisms for fragmentation have been in-
vestigated. Bulk rotation and turbulence are the two main
mechanisms that have been considered to provide the angu-
lar momentum required for fragmentation to occur and we
review the theoretical work and simulations conducted on
both of these mechanisms. In addition, we discuss the pos-
sible role of magnetic fields, disc fragmentation and ‘sec-
ondary fragmentation’.

4.2.1 Rotational fragmentation.The simplest situation
in which fragmentation may well occur is in a spherical
cloud with solid-body rotation and an isothermal equation
of state. Tohline (1981), using semi-analytic arguments
concluded that all such clouds should fragment. A num-
ber of simulations have shown that such clouds do fragment
if αthermβrot

<∼ 0.12 − 0.15, whereαtherm = Etherm/|Ω|
is the initial thermal virial ratio (whereEtherm is the ther-
mal kinetic andΩ is the gravitational potential energy), and
βrot = Erot/|Ω| the initial rotational virial ratio (where
Erot is the rotational kinetic energy) (Miyama et al., 1984;
Hachisu and Eriguchi, 1984, 1985;Miyama, 1992; see also
Tsuribe and Inutsuka, 1999a, b;Tohline, 2002).

Boss and Bodenheimer(1979) added anm = 2 az-
imuthal density perturbation to a standard rotating cloud
(effectively creating an elongated cloud more similar to
those observed than purely spherical clouds; see Sec-
tion 3.4). They found that with a perturbation of ampli-
tudeA = 0.5 the cloud fragments into a binary system.
This simulation was repeated byBurkert and Bodenheimer
(1993) who also found that whenA = 0.1 a filament con-
necting the two components of the binary fragments into
several smaller fragments. However the connecting fila-
ment should not fragment as predicted byInutsuka and
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Miyama(1992) and demonstrated byTruelove et al.(1997).
Indeed the ’Boss and Bodenheimer test’ has become a stan-
dard test for the accuracy of codes (e.g.,Truelove et al.,
1997 for adaptive mesh refinement - AMR - andKitsonias
and Whitworth, 2002 for smoothed particle hydrodynamics
- SPH). However, it is a rather unsatisfactory test as, whilst
theTruelove et al.simulations are generally considered to
have converged, no analytic solution to the problem exists.
An alternative test based on the original analysis of Jeans is
presented byHubber et al.(2006).

The simulation of rotating clouds can be made more
physical by including an adiabatic (e.g.,Tohline, 1981;
Miyama, 1992) or barotropic (e.g.,Bonnell, 1994;Bate and
Burkert, 1997;Boss et al., 2000;Cha and Whitworth, 2003)
equation of state (eos).Bate and Burkert(1997) showed
that theBoss and Bodenheimertest doesproduce a line
of fragments with a barotropic eos, but not if it remains
isothermal. In addition,Boss et al.(2000) simulated a cloud
with anm = 2, A = 0.1 perturbation using a barotropic eos
andalso with radiation transport; the second case producing
a binary whilst the first did not: despite the similarity of the
pressure-temperature relations. Both of these results sug-
gest that fragmentation is highly sensitive to thermal inertia
and radiation transport effects.

Other authors have modified the initial conditions to in-
clude effects such as different density profiles (e.g.,Myhill
and Kaula, 1992; Burkert et al., 1997; Boss, 1996; Boss
and Myhill, 1995;Burkert and Bodenheimer, 1996;Boss et
al., 2000;Boss, 1993), differential rotation (which tends to
promote fragmentation:Myhill and Kaula, 1992;Boss and
Myhill, 1995;Cha and Whitworth, 2003) and non-spherical
shapes (e.g.,Bastien, 1983; Bonnell and Bastien, 1991;
Bonnell et al., 1991;Nelson and Papaloizou, 1993;Boss,
1993;Sigalotti and Klapp, 1997). The effect increasing ex-
ternal pressure on the collapse of rotating cores have been
investigated byHennebelle et al.(2003, 2004, 2006).

4.2.2 Turbulent fragmentation.Recently a picture of
star formation as a rapid and highly dynamic process has
appeared (e.g.,Elmegreen, 2000;Váquez-Semadeni et al.,
2000;Larson, 2003;Elmegreen and Scalo, 2004b) as op-
posed to a quasi-static process (e.g.,Shu et al., 1987). In
particular, the idea of cores evolving slowly via ambipo-
lar diffusion (e.g.,Basu and Mouschovias, 1994, 1995a,
b; Ciolek and Mouschovias, 1993, 1994, 1995;Ciolek
and Basu, 2000) has been replaced by one in which cores
form in converging flows in a highly turbulent molecular
cloud. This is rather good news for fragmentation, as the
main effects of a quasi-static evolution are to delay frag-
mentation and reduce the angular momentum and turbu-
lence in a core and organise material so that its collapse
is well focused onto a central point (see also Section 3.2).
Simulations of core formation in a turbulent medium sug-
gest that cores form with significant amounts of turbulence.
Turbulent, rapidly formed cores also reproduce many of
the observed properties of cores (e.g.,Burkert and Boden-
heimer, 2000;Ballesteros-Paredes et al., 2003;Jappsen and
Klessen, 2004) and have a mass spectrum not dissimilar to

the observed core mass spectrum (e.g.,Padoan and Nord-
lund, 2002, 2004;Klessen et al., 2005).

Simulations of the effects of turbulence in cores fo-
cus on two different regimes: high-velocity (Bate et al.,
2002, 2003;Bate and Bonnell, 2005; Delgado Donate et
al., 2004a, b), and low-velocity (Goodwin et al., 2004a,
b). Also seeFisher (2004) for a semi-analytic approach
to multiple formation with turbulence. The level of turbu-
lence is usually quantified as a turbulent virial ratioαturb =
Eturb/|Ω|, whereEturb is the kinetic energy in turbulent
motions and|Ω| is the gravitational potential energy (note -
not any rotational property). Highly turbulent simulations
focus onαturb = 1 in 50M� (Bate et al., 2002, 2003;
Bate and Bonnell, 2005) and5M� (Delgado Donate et al.,
2004a, b) cores. Simulations of slightly turbulent cores
range betweenαturb = 0 − 0.25 in 5.4M� cores (Good-
win et al., 2004a, b). In all of these simulations turbulent
motions are modelled using a Gaussian divergence-free ran-
dom velocity fieldP (k) ∝ k−n wheren is usually taken to
be4 to match observations of cores for whichn = 3−4 pro-
vides a good fit to the Larson relations (Burkert and Boden-
heimer, 2000). It should be noted that the random chaotic
effects introduced by variations in the initial turbulent ve-
locity field can be very important. Therefore a statistical
approach is desirable utilising large ensembles of simula-
tions (e.g.,Larson, 2002).

These simulations of turbulence are different to those of
turbulence in molecular clouds which concentrate on the
formation of dense cores and massive stars (e.g.,Klessen
and Burkert, 2000). This is largely due to computational
limitations which do not allow the resolution of the opacity
limit for fragmentation in the large-scale context of giant
molecular clouds. A mass resolution of∼ 10−2M� is re-
quired to resolve the opacity limit for fragmentation in SPH.
In AMR the problem is even worse as the Jeans length con-
tinues to fall (albeit more slowly) after the minimum Jeans
mass is reached and codes must resolve few AU scales to
capture the lowest-mass fragments.

Even very low levels of turbulence (αturb ∼ 0.025) are
enough to allow cores to fragment: that is, for most cores
in an ensemble to form more than one star (Goodwin et al.,
2004b). As the level of turbulence is increased, the average
number of stars that form in a core increases (Goodwin et
al., 2004b). It has been suggested that approximately one
star forms per initial Jeans mass:∼ 1M� for these ini-
tial temperatures and densities (cf.Bate et al., 2003;Del-
gado Donate et al., 2004a). This seems to hold in highly-
turbulent cores, however the number of stars forming falls
with decreasing turbulence (Goodwin et al., 2004b) and so
this at best probably only represents a (statistical) asymp-
totic behaviour.

In highly-turbulent cores, the supersonic turbulent ve-
locity field creates a number of condensations in shocked,
converging regions which become Jeans unstable and col-
lapse (seeBate et al., 2003;Delgado Donate et al., 2004a,
b). However, it is unclear if this mode of fragmentation
is realistic in small (certainly< a few M�) cores as the
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observed levels of non-thermal motions rule-out significant
highly supersonic turbulence in these cores.

In Fig. 5 we show the formation of a fragment in a
mildly-turbulent5.4M� core withαturb = 0.05 based on
observations of the isolated core L1544 (fromGoodwin et
al., 2004a). Fragmentation occurs in a ‘disc-like’ mode in
circumstellar accretion regions (we avoid the use of ‘disc’
to describe these regions as they are not rotationally sup-
ported structures) (CARs) which form around the first star.
CARs are highly unstable structures as there is non-uniform
(in space, time and angular momentum) inflow onto them.
Complex spiral instabilities form in the CAR due to this
inhomogeneous infall of material. We note that these in-
stabilities are seen in both SPHand AMR simulations of
the same situation (Gawryszczak et al., 2006; see also Sec-
tion 4.4). Fragmentation occurs if the density in spiral
waves becomes high enough that the Jeans length falls to
the typical width of a spiral wave and the collapse time falls
to a low enough fraction of the local rotation period that
it may escape shredding by differential rotation. In these
simulations, fragmentation occurs for some (but not all) re-
gions that exceed∼ 10−12 g cm−3 in density (equating to
a Jeans length of∼ 20 AU) beyond∼ 50 − 100 AU from
the central star. We note that the highly unstable nature of
CARs makes usual applications of instability criteria such
as the Toomre Q-parameter impossible.

Such a mode of fragmentation is highly sensitive to the
equation of state that has been adopted. It has been found
that the number of fragments that form increases ifγ is
changed from5/3 to 7/5 (Goodwin et al., in prep.). This is
due to the sensitivity of the Jeans length with density and so
to the ease with which fragmentation can occur in CARs.

The process of fragmentation in CARs is highly chaotic,
relying as it does on a certain degree of ‘luck’ in being
able to reach a high-enough density and avoiding shredding
whilst collapsing. Thus it is no surprise that anywhere be-
tween 1 and 12 stars form in each core depending entirely
on the details of the initial turbulent velocity field (Goodwin
et al., 2004a, b).

In summary, it is found that turbulent cores generally
fragment into several stars: approximately one per initial
Jeans mass (∼ 1M�) in the core. The number of stars
that form increases with increasing turbulence and is also
highly sensitive to the details of the turbulent velocity field.
However, only relatively high-mass cores (> 5M�) have
been investigated in turbulent simulations so far. The effect
of turbulence in lower-mass cores must be investigated, as
lower-mass cores appear to dominate the core mass func-
tion (Motte et al., 1998;Testi and Sargent, 1998;Motte et
al., 2001).

4.2.3 Disc fragmentation.Disc fragmentation is a mech-
anism by which low-mass stars and BDs may be formed.
In the dense environments of clusters close encounters be-
tween stars can disturb the circumstellar discs promoting
instabilities which can lead to the fragmentation of oth-
erwise stable discs. (Note that this is rather different to
the turbulent disc-like scenario described above as these

proto-planetary discs are much less massive than CARs and
are also stable, rotationally supported discs as opposed to
CARs).

In a series of papers,Boffin et al. (1998) andWatkins
(1998a,b) found that most star-disc interactions will leadto
gravitational instabilities which form new low-mass com-
panions. These simulations generally considered massive
discs whereMstar = Mdisc = 0.5M�. Bate et al.(2003)
find that star-disc encounters play an important role in form-
ing binaries and also truncating discs. Star-disc encounters
are also thought to play an important role in redistributing
angular momentum in proto-planetary discs even if they do
not cause further fragmentation (Larson, 2002; Pfalzner,
2004;Pfalzner et al., 2005).

Star-disc encounters probably play a role in star forma-
tion, and may lead to to the formation of BD (or even plan-
etary) mass companions (Thies et al., 2005). However, they
are probably not a significant contributor to the primordial
stellar binary population. This is due to the requirement
that the encounters occur early in the star formation process
- during the Class 0 phase when the disc mass is still very
large compared to the stellar mass - a phase which lasts for
only ∼ 105 yrs, leaving only a small time for encounters
to occur. However, the role of disc fragmentation in planet
formation may well be important.

4.2.4 The role of magnetic fields.The treatments of col-
lapse and fragmentation discussed above do not include
magnetic fields. The new picture of rapid, turbulence-
driven star formation combined with the lack of observa-
tional evidence for magnetically critical cores suggests that
magnetic fields are not dynamically dominant. In addition,
fragmentation is expected to occur at densities>

∼ 10−13 g
cm−3, densities at which the magnetic field is expected to
be decoupled from the gas due to the extremely low frac-
tional ionisation (seeTohline, 2002). However, possibly
one of the main reasons for neglecting magnetic fields is the
difficulty in including them in SPH simulations. (although
this is improving, see esp.Hosking and Whitworth, 2004a,
b; Price and Monaghan, 2004a, b). Magnetic fieldsare
clearly present in (many) cores, even if they are not dynam-
ically dominant, and their effects may be very important.

Grid-based simulations which include magnetic fields in
rotating clouds show that fragmentation can occur in these
clouds, although magnetic fields appear to have a tendency
to suppress fragmentation (e.g.,Hosking and Whitworth,
2004b;Machida et al., 2005b), althoughBoss(2002;2004)
claims the opposite.Sigalotti and Klapp(2000) find bi-
nary and higher-order multiple formation in slowly rotating
∼ 1M� clouds which includes a model for ambipolar dif-
fusion.

Possibly the most extensive investigation of the effects
of magnetic fields on fragmentation has been made by
Machida et al.(2005a,b). They find that fragmentation oc-
curs in∼ 50% of their rotating, magnetised clouds when ei-
ther the rotation is relatively high or magnetic field strength
relatively low. In particular fragmentation always occurs
in magnetised clouds ifβrot > 0.05, but it almost never
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Fig. 5.—The evolution of a CAR in a turbulent molecular core fromGoodwin et al.(2004a). The boxes are 1000 AU on a side and the
timescale runs from 66.6 to 67.8 kyr after the start of the simulation in steps of 400 yrs. The grey-scale bar gives the column density in
g cm−2. The spiral features can become self-gravitating if their density exceeds∼ 10

−12 g cm−3 as their Jeans length falls to∼ 20 AU
which can allow collapse without being shredded. This does not always occur, in the first two panels a dense knot can be seenbeing
shredded and accreted onto the central object. Very similarevolution is also seen in AMR simulations (Gawryszczak et al., 2006).

occurs below this limit (see Fig. 10 fromMachida et al.,
2005b). Indeed,Burkert and Balsara(2001) conclude that
once magnetic fields are strong enough to affect the dynam-
ical evolution they will also efficiently suppress fragmenta-
tion which means that magnetic fields cannot be important
as we know that fragmentationmustoccur.

4.3 ‘Secondary’ fragmentation.

As briefly mentioned in Section 4.1, there is a second
isothermal phase in the evolution of gas towards stellar den-
sities. This occurs at a temperature of∼ 2000 K and a
density of∼ 10−3 g cm−3 when molecular hydrogen dis-
sociates into atomic hydrogen. This phase occurs in the
hydrostatic protostar when its radius is∼ 1 AU and - if
fragmentation can occur at this stage - it may explain very
close binaries.

Both Boss(1989) andBonnell and Bate(1994) simu-
lated the collapse of a rotating hydrostatic first object to
high densities. They found that fragmentation can occur in
axisymmetric instabilities or a ring formed by a centrifugal
bounce. However,Bate (1998) found that spiral instabili-
ties remove angular momentum and suppress further frag-
mentation. Recent 2D simulations bySaigo and Tomisaka
(2006) suggest that the angular momentum of the first core
is a crucial factor in determining if fragmentation will occur
during the second collapse.

Thus it is unclear if a secondary fragmentation phase oc-
curs. However, we suggest that such a phase could well be
responsible for the apparently high incidence of very close
BD-BD binary systems (Pinfield et al., 2003;Maxted and
Jeffries, 2005) as the evolution of BD-mass hydrostatic ob-
jects occurs on a longer timescale than in stellar-mass ob-
jects. This possibility is being investigated by SG without
any firm conclusions as yet.

4.4 Simulations vs. Observations

A summary of the simulations to date suggests that col-
lapsing cores are easily able to fragment. However, no de-

tailed model is currently able to correctly predict all of the
observed binary properties.

A successful model of star formation must produce mul-
tiple systems which generally have only 2 or 3 stars with
a wide range of separations from<< 1 AU to a peak at
∼ 100 − 200 AU. At all separations, most stars must usu-
ally have quite different masses, but avoiding BDs within at
least 5 AU of the primary (the BD desert).

Possibly the most significant problem at the moment, is
that simulations seem to formtoo manysingle stars (see
Bouvier et al., 2001;Ducĥene et al., 2004;Goodwin and
Kroupa, 2005). As described in Section 2.3.1 systems with
N ≥ 3 are generally unstable and decay by ejecting their
lowest mass member and hardening the remaining multi-
ple. The ejection of members of small-N multiple systems
dilutes the multiplicity of stars, as ejected stars tend to be
single. Thus, many ejections will result in a far lower mul-
tiplicity fraction than is observed in young star forming re-
gions. Goodwin and Kroupa(2005) suggest that the ob-
served multiplicity frequencies can be explained if roughly
half of cores form 2 stars, and half form 3 stars. However,
these numbers are far lower than are usually found in core
fragmentation simulations.

The inclusion of magnetic fields produces the opposite
problem that too few binaries are produced.Machida et
al. (2005b) find the fragmentation does not occur in rotat-
ing, magnetised clouds whenβrot

<∼ 0.04 - a higher level
of rotation than is observed in many cores. This problem
becomes especially accuse when we consider that much of
the observed rotation in cores could well be due to turbulent
motions rather than a bulk rotation.

A related problem is posed by the existence of a signif-
icant number (∼ 20% of field G-dwarfs; DM91) of close,
unequal mass binary systems. It appears difficult to form
stars much closer together than∼ 30 AU. In order to ob-
tain hard binary systems, a further hardening mechanism
is required. In many simulations of turbulent star forma-
tion, this hardening mechanism is provided by the ejection
of low-mass components (e.g.,Bate et al., 2003;Delgado
Donate et al., 2004a, b;Goodwin et al., 2004a, b;Um-
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Fig. 6.— Comparison of an AMR (left) and a SPH (right) simulation of a collapsing, turbulent5.4M� core showing the first ‘disc’
fragmentation episode fromGawryszczak et al.(2006). The bound fragments can be seen at (0,125) AU in the AMR simulation (left)
and (-200,0) AU in the SPH simulation (right). The scale and orientation of both views are identical.

breit et al., 2005;Hubber and Whitworth, 2005; seeOchi et
al., 2005 for a caveat). However, ejections appear to occur
rapidly, during the main accretion phase, producing many
close, equal-mass binary systems (see above) in contradic-
tion to observations of a relatively flat mass ratio distribu-
tion (Mazeh et al., 1992). White and Ghez(2001) do find
many roughly equal-mass PMS binaries< 100 au in Tau-
rus, however there is no trend to more equal mass ratios at
very low separations.Fisher et al.(2005) do find a bias to-
wards equal-mass binaries among local field spectroscopic
binaries (with separations<∼ 1 AU).

In general, simulations that produce a small number of
stars consistent with limits on ejection do not produce hard
binaries. These binaries are difficult to form in significant
numbers through later dynamical interactions in a clustered
environment, which tend to disrupt wide binaries but not
harden them. But simulations that produce many stars tend
to form too many close, equal-mass binaries and very high-
order multiple systems (many quadruples and quintuples)
and also dilute the multiplicity fraction too much through
ejections.

4.5 Numerical issues

As already discussed in this volume byKlein et al., there
is some debate about the ability of simulations to correctly
resolve fragmentation. Simulations of star formation are
usually conducted using SPH as opposed to AMR schemes
due to the Lagrangian nature of SPH (seeGawryszczak et
al., 2006 for details).

No numerical scheme is perfect, and both SPH and AMR
have their advantages and disadvantages. It is worth not-
ing that a recent study byGawryszczak et al.(2006) has
shown that AMR and SPH converge when simulating the
collapse of a slightly turbulent core. Fig. 6 shows a snapshot
of both the SPH and AMR simulations at roughly 76 kyr

from the start of the simulation showing that in both numer-
ical schemes a highly unstable CAR forms that fragments
in both simulations.Gawryszczak et al.found that AMR
is significantly more computationally intensive than SPH
for an identical simulation. This result is not surprising as
when simulating gravitational collapse the Lagrangian na-
ture of SPH should prove highly efficient. The agreement of
two very different methods when applied to the same physi-
cal situation increases our confidence that the results are not
dominated but numerical effects.

Both SPH and AMR suffer from problems with artificial
angular momentum transport. In AMR, rotation in a poorly
resolved Cartesian grid is likely to transport angular mo-
mentum outwards. In SPH, the use of artificial viscosity to
reduce particle inter-penetration in shocks produces an in-
ward transport of angular momentum with rotation. These
problems are probably responsible for the different CAR
(disc) sizes between SPH and AMR seen byGawryszczak
et al. (2006; see also Fig. 6).

It should be noted thatHubber et al.(2006) have shown
that SPH supresses artificial fragmentation rather than pro-
moting it which suggests that the current generation of SPH
simulations couldunderestimatethe number of fragments
that form.

We would conclude that the computational situation is
not perfect and many problems with both SPH and AMR
remain. However, we think that the conflict between sim-
ulation and observation is more probably due to missing
and/or incorrect physics, rather than any fundamental nu-
merical difficulties.

The computational situation is made more problematic
by the need to perform ensembles of simulations to get the
statistical properties of multiple systems. Even in cases
where the result for anysingleset of parameters might be
expected to converge there is a large parameter space to
cover, and small differences in initial conditions may make

12



a significant difference to the result. More realistically,sit-
uations where fragmentation occurs due to non-linear insta-
bilities, or with turbulence (when the details of the velocity
field vary) require large ensembles even for thesamere-
gion of parameter space. No matter how detailed or correct
any single simulation is, it can only be a snapshot of the
outcome of a particular initial configuration. This vastly
increases the computational effort required to model frag-
mentation and star formation.

4.6 Missing physics

One of the greatest problems facing the simulation of
core fragmentation is to correctly model the thermal physics
of cores. It is not possible in the foreseeable future that we
will be able to conduct hydrodynamical simulations that in-
clude a proper treatment of radiation transport as the com-
putational expense is just too great. However, as shown by
Boss et al. (2000) thermal effects can be very important.
The use of the barotropic equation of state is at best a first
approximation, and it is clear that varying the adiabatic ex-
ponent can have significant effects on fragmentation (Good-
win et al., in prep.). In particular, the barotopic equation
of state is based on simulations that have used (necessar-
ily) simplistic, spherically symmetric assumptions. It isnot
clear to what extent these can be applied to highly inhomo-
geneous cores including discs and local density peaks. Im-
provements are being made, including using a flux-limited
diffusion approximation (Whitehouse and Bate, 2004) and
an approximation based on the local potential as a guide to
optical depth (Stamatellos et al., in prep.). However a prob-
lem remains with any approximation in that, while it should
obviously match the fully detailed radiative transfer simu-
lations of simple situations, it is not clear if it is correctin
more complex situations.

Most simulations (especially SPH simulations) do not
include the effects of magnetic fields. Yet those simula-
tions which do include magnetic fields seem to suggest that
fragmentation is suppressed. This could well be a very im-
portant conclusion given that non-magnetic models seem
to over-produce stars in cores. However, the very efficient
suppression of fragmentation by magnetic fields may rule-
out the importance of magnetic fields in the fragmentation
process as we know that coresmustfragment.

Given that fragmentation appears to occur in disc-like
structures, the proper treatment of these is vital. Both AMR
and SPH have problems with the artificial transport of an-
gular momentum (seeGawryszczak et al., 2006) which will
effect their ability to correctly model discs. Discs are also
a situation in which magnetic fields may play an important
role.

Finally, very few simulations attempt to model the ef-
fects of feedback from stars as jets or through their radiation
field (for some first attempts to deal with these problems see
Stamatellos et al., 2005;Dale et al., 2005). In particular,
Stamatellos et al.(2005) find that the inclusion of jets may
inhibit fragmentation by decreasing the inflow rate onto the

disc and forcing that inflow to occur away from the poles.
Many of the physical situations which may result in frag-

mentation are rather complex and often chaotic (turbulence
being the most obvious example). Such situations will not
produce any single, unique answer. Indeed, given the va-
riety of multiple systems such a situation would not be
expected. However, this does require that a statistical ap-
proach be taken when performing simulations. This vastly
increases the computational effort required, as any ‘single’
region of an already huge parameter space will require an
ensemble of simulations to investigate it.

5. CONCLUSIONS

Almost all young stars are found in multiple systems
with a very wide separation distribution and a fairly flat
mass ratio distribution. Thus prestellar cores must fragment
into multiple stars and/or BDs with these properties.

The dynamical decay of small-N systems would rapidly
produce a large single-star pre-main sequence population if
large numbers of unstable systems form withN > 2 or 3.
This decay would also result in large numbers of very close
binary systems. Neither of these are observed, leading to
the conclusion that cores must usually form only 2 to 4 stars
in hierarchical systems (forN > 2).

Simulations show that most cores which contain some
angular momentum - either in bulk rotation, or in turbu-
lence - are able to fragment into multiple objects. However,
these simulations have been unsuccessful in matching their
results to the observed young multiple population. In par-
ticular, the distributions of separations and mass ratios from
simulations tend not to fit well.

The future is somewhat rosier, however. The inclusion of
more detailed physics and more realistic initial conditions
may well yield better fits to observations.
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Duchêne G., Bouvier J., Bontemps S., André P., and Motte F.
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Fisher J., Schröder K.-P., and Smith R. C. (2005)Mon. Not. R.

Astron. Soc., 361, 495-503.
Fisher R.T. (2004)Astrophys. J., 600, 769-780.
Garcı́a B. and Mermilliod J. C. (2001)Astron. Astrophys., 368,

122-136.
Gawryszczak A. J., Goodwin S. P., Burkert A., and RóżyczkaM.
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