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A New Solution to the
Three-Body Problem

Richard Montgomery

W
e describe a new solution to the
three-body problem (C. Moore
[1993], Chenciner and Montgomery
[2001]) and motivate its discovery.
We also sketch its existence proof,

which is based on the direct method of the calcu-
lus of variations. We begin with the statement of
the N-body problem and some of its solutions.

Newton told us that two masses attract each
other, the force of attraction being directed along
the line joining them, proportional to the product
of the masses, and inversely proportional to the
square of the distance between them. If we have
N masses, then the force on any one is the sum of
the forces exerted on it by all the others. This
gives us the nonlinear system of second-order 
differential equations

(1)
mi
d2xi
dt2

= −
∑
j 6=i

mimj (xi − xj )
r3
ij

,

i = 1, . . . ,N,

mi being the numerical value of the ith mass,
xi(t) ∈ Rd its position vector, and rij the distance
between it and mass j. We are interested in the pla-
nar case d = 2. A solution to the N-body problem
is then a solution x(t) = (x1(t), . . . , xN (t)) to these
equations. We contrast this notion with that of
“solving the N-body problem”, which we suppose
to mean finding an explicit expression for the gen-
eral solution. Poincaré showed, in effect, that this
is impossible for N > 2.

Newton solved the two-body problem. The 
difference vector x = x1 − x2 satisfies Kepler’s 
problem:

(2)
d2x
dt2

=
−kx
|x|3 ,

all solutions of which are conics with one focus 
at the origin. The Kepler constant k is m1 +m2 .
Correspondingly, if we fix the center of mass of 
our two bodies to be the origin, then the two 
move along similar conic sections with one focus
at this origin. The periodic two-body motions are
ellipses. We refer to them as Keplerian ellipses.
They include degenerate ellipses, sometimes called
elliptic collision-ejection orbits, which are line 
segments with one endpoint at the origin. They 
represent collision solutions to the two-body 
problem.

It is impossible to describe all the solutions to
the three-body problem. Following Poincaré, we
focus on the periodic solutions xi(t) = xi(t + T ) .
Here T is called the period. The simplest periodic
solutions for the three-body problem were dis-
covered by Euler [1765] and by Lagrange [1772].
Built out of Keplerian ellipses, they are the only ex-
plicit solutions. To form the Lagrange solution,
start by placing the three masses at the vertices x0

1, 
x0

2, x0
3 of an equilateral triangle whose center of

mass m1x0
1 +m2x0

2 +m3x0
3 is the origin. Identify

the plane of the triangle with the complex 
plane C, so that x0

i ∈ C . Take any solution λ(t) ∈ C
to the planar Kepler problem (2) where the Kepler
constant k is a certain rational expression in the 
three masses mi . The Lagrange solutions are
xi(t) = λ(t)x0

i . Each mass moves in an ellipse in
such a way that the triangle formed by the three
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masses evolves by a composition of instantaneous
dilations and rotations and hence is equilateral for
all time. For the Euler solutions start by placing the
three masses on the same line with their positions
x0
i such that the ratios rij/rik of their distances are

the roots of a certain polynomial whose coeffi-
cients depend on the masses. Again, take any
solution λ(t) ∈ C to Kepler’s equation (2) where the
Kepler constant is a certain other rational expres-
sion in the masses mi . The Euler solutions are
xi(t) = λ(t)x0

i . At every instant the masses are
collinear, and the ratios of their distances remain
constant. There are three different families of Euler
solutions, according to which mass remains be-
tween the other two. Together, the Euler and
Lagrange solutions form the only solutions for
which the similarity class of the triangle remains
constant throughout the motion. Their beginning
configurations x0

i are called central configurations.
Most important to astronomy are Hill’s peri-

odic solutions, also called tight binaries. These
model the earth-moon-sun system. Two masses are
close to each other while the third remains far
away. The two move in nearly circular orbits about
their common center of mass. This center of mass
and the third body in turn move in nearly circular
orbits about the total center of mass. Like the
Euler and Lagrange solutions, these Hill’s solu-
tions exist for all ratios of masses.

Perhaps next in order of complication is the
orbit which is the subject of this paper, the figure
eight. Unlike the earlier orbits, it is particular to
the case when all three masses are equal. The three
equal masses chase each other around the same
figure-eight-shaped curve in the plane. The eight
was discovered numerically by Chris Moore [1993].
Alain Chenciner and the author [2001] rediscovered
it and proved its existence.

Description of the eight. The eight is a periodic
solution x = (x1(t), x2(t), x3(t)) to the equal-mass
three-body problem. If T is the period, then
x2(t) = x1(t − T/3) and x3(t) = x1(t − 2T/3). This
says that the three bodies travel the same planar
curve, phase shifted from each other by one-third
of a period. This curve has the form of a figure
eight. There is an eight orbit of any period T, ac-
cording to a scaling symmetry of the equations (1)
to be described below. Modulo this scaling sym-
metry and the other obvious symmetries of (1), 
the eight is unique according to all numerical 
investigations. Its unicity has not been proved.

The double point of the figure-eight curve is at
the origin. This is also the center of mass. The eight
curve has the reflectional symmetries of the x-y
axes. Each of its two lobes is star-shaped (proved),
indeed convex (unproved). The solution begins at
t = 0 with mass 1 at the origin, forming the mid-
point of masses 2 and 3. We call any such config-
uration an Euler configuration of type 1, since it is
an initial configuration for Euler’s solution

Figure 1. Euler’s solution in the equal mass case.

Figure 2. Lagrange’s solution in the equal mass case.
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Figure 3. The figure-eight solution.
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orthogonal transformation, which we will refer to
as a “rotation”; c represents translation; and tv rep-
resents changing to a moving frame, moving with
constant velocity v . Associated to symmetries 
are conserved quantities, which are functions of 
position and velocity that are constant along any
solution. The total linear momentum vector
P =

∑
miẋi is the conserved quantity associated to

translation. Its constancy lets us form the Galilean
transformation with velocity v = −P/∑mi which
transforms us to a frame where the center of mass
is constant.

The conserved quantity associated with rotation
is the angular momentum 

∑
mixi ∧ ẋi . Time trans-

lation xi(t) 7→ xi(t − t0) is also a symmetry. Its 
conserved quantity is the total energy H = K/2−U ,
where

K =
∑
mi‖ẋi‖2

and U =
∑
i<j
mimj/rij .

K/2 is called the kinetic energy, and −U is called
the potential energy. The positivity of U will be 
important momentarily.

By virtue of the homogeneity of the potential,
(1) also enjoys the scaling symmetry
xi(t) 7→ λxi(λ−3/2t). This implies that if we have a
solution of one period, then we have similar solu-
tions of any period. It also implies Kepler’s third
law, that the period of a Keplerian ellipse is pro-
portional to its semi-major axis to the power 3/2.

We will call a solution bounded if c < rij (t) < C
for all pairs i, j and all time T, where c and C are
fixed positive constants. We call a solution reduced
periodic of period T if rij (t + T ) = rij (t) . Periodic
implies reduced periodic implies bounded implies
negative energy. For the two-body problem all 
these conditions are equivalent. In the three-body
problem there are counterexamples to reversing any
one of these implications.

For negative energies the N-body dynamics is
believed to be a complicated mixture of chaotic and
near-integrable (KAM) behavior. Very little is un-
derstood in general. For example, fix the energy and
the angular momentum with the energy negative.
Are the bounded orbits nowhere dense? Are the
periodic orbits dense within the bounded orbits?
These questions appear to be completely open.
Poincaré pointed us towards the periodic orbits as
being “the only breach in the fortress that is the
three-body problem.” We advocate looking for the
simplest, most basic of these breaches using 
variational methods.

Action Principles
The construction of the eight is based on the 
principle of least action, which we now describe.
With K and U as above, form the Lagrangian

described above when the masses are all equal. The
set of Euler configurations with mass i forming the
midpoint will be denoted by EULi. Every one-sixth
of a period the eight solution returns to an Euler
configuration, doing so in the order 132132 in a
full period. (A different ordering occurs in
Chenciner-Montgomery [2001].) At the times 
half-way between Euler configurations j and k ,
the triangle formed by the masses is isosceles,
with rij = rik , ijk being a permutation of 123. We
denote the set of all such isosceles configurations
by ISOSCi . Thus in time T/12 the curve x travels
between EUL1 and ISOSC2. This is the key to 
constructing the eight.

Stability. Carles Simó [2000b] showed numeri-
cally that the figure eight is stable. This is surpris-
ing for two reasons. First, we know very few 
stable periodic orbits for the three-body problem
and even fewer for the equal-mass case. Hill’s 
solutions are always stable. The Lagrange orbits 
are only stable when one of the three masses is 
much greater than the other two. The Euler 
solutions are never stable. Second, the eight is found
by minimizing action, a procedure which yields 
dynamically unstable orbits most of the time.

The stability of the eight is KAM stability. This
is different from the standard stability of dynam-
ical systems but is essentially the only kind of sta-
bility one can hope for in the N-body problem.
When a periodic orbit is KAM stable, then the so-
lutions through most initial conditions sufficiently
near the orbit stay near it for all time. The density
of these stable initial conditions approaches 1 as
we tend to the orbit. Those solutions that do leave
a neighborhood of the orbit do so extremely slowly
(Nekhoroshev estimates), so slowly that their rate
of escape cannot be detected by any power series
in the distance from the orbit. If an orbit is KAM
stable, then one can perturb its parameters, the
mass ratios or angular momentum for the eight,
and follow it to a nearby periodic KAM stable orbit
having these perturbed parameters.

What stability means physically is that there is
some chance that the eight might actually be seen
in some stellar system. The domain of stability of
the eight—the amount one can perturb the mass
ratios in particular—is very small, so this chance
is very small. Numerical experiments done by
Douglas Heggie (2000) suggest that the probabil-
ity of an eight is somewhere between one per galaxy
and one per universe.

N-Body Generalities
The solutions described above have their center
of mass 

∑
mixi/

∑
mi at the origin. This simpli-

fication is possible by virtue of the symmetries
of Newton’s equations (1). A symmetry is a trans-
formation which takes solutions to solutions.
The Galilean transformations xi 7→ R(xi) + c + tv ,
i = 1, . . . ,N ,  are symmetries.  Here R is an
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(3) L(x, ẋ) =
1
2
K(ẋ) +U (x),

to be contrasted with the energy H = K/2−U . The
space in which x moves is called configuration
space. For the planar N-body problem it is N copies
of the Euclidean plane, if we allow collisions. We
will, without loss of generality, restrict to the 
subspace Q of configuration space consisting of
those configurations x whose center of mass is at
the origin. The action of a path x : [0, T ] → Q is

A(x) :=
∫ T

0
L(x(t), ẋ(t))dt.

A curve x(t) is called collision-free if it has no 
collisions, meaning that rij (t) is never zero for any
pair i 6= j . The principle of least action asserts that
if C is an “appropriate class” of curves in Q , if x
is a collision-free curve in C, and if the derivative
of the restriction of A to C is zero at x , then that
path x is a solution to Newton’s equations (1). An
example of an appropriate class is the set of all
curves joining two fixed submanifolds of Q in
some specified time. To construct the figure eight,
we take the starting submanifold to be EUL1 and
the ending manifold to be ISOSC2.

Theorem 1. (Chenciner and Montgomery [2001])
Fix a time T̄ . There is a collison-free curve x which
minimizes the action among all curves joining EUL1

to ISOSC2 in the time T̄ . This curve comprises one-
twelfth of the figure-eight solution.

Our figure-eight solution x(t) is assembled out of
pieces congruent to the minimizer of the theorem.
The assembly requires understanding the shape
space for the three-body problem.

Shape Space
Because Newton’s equations are invariant under
isometries, we can push them down to the quotient
space of configuration space by isometries. This
quotient is the space of congruence classes of
N-gons. It is more convenient to divide out in-
stead by the group of orientation-preserving isome-
tries, which means dividing by rotations, since we
have fixed the center of mass. We call this quotient
shape space and denote it by C .

In the case of the planar three-body problem,
the shape space C is three-dimensional, by the
side-side-side theorem from high-school geometry.
It is homeomorphic to Euclidean three-space. Triple
collision (x1 = x2 = x3) is represented by the origin.
It lies in the equatorial plane, the points of which
represent the degenerate triangles whose masses
are collinear. Reflection about this plane corre-
sponds to replacing a triangle by its reflection.
Distance from the origin in C is measured by 

√
I ,

where I = I(x) is the moment of inertia of a trian-
gle whose center of mass is the origin:
I =

∑
mi|xi|2. (Note that I is invariant under rota-

tions, so it yields a well-defined function on C .)
Dilating a triangle by the factor λ induces the

change I 7→ λ2I. The sphere I = 1 in C is topolog-
ically a two-sphere. Its points represent oriented
similarity classes of triangles. We call it the shape
sphere and denote it by S . The equatorial plane 
intersects S in the equator whose points represent
the similarity classes of collinear triangles. The
three types of binary collisions—1 with 2, 2 with 3,
and 3 with 1—are represented by three points on
this equator.

The function U in the Lagrangian is invariant
under isometries, hence descends to a function on
shape space which we give the same name. This
function is homogeneous of degree −1, so it 
can be expressed in the form Ũ/

√
I where Ũ is 

homogeneous of degree 0. We identify Ũ with the
restriction of U to the shape sphere I = 1. The
function Ũ blows up at the three binary collision
points. It has five critical points: the two Lagrange
configurations, one for each orientation of an equi-
lateral triangle, and the three Euler configurations
lying on the equator. The Euler points are saddle
points for Ũ and the Lagrange points are its 
minima.

This picture of the shape sphere allows one to
describe succinctly much of what is known about
the planar three-body problem and suggests many
directions and open problems. We refer the reader
to the beautiful article of Moeckel [1988].

We have been viewing shape space C as simply
a topological space. But it also has a metric which
we call the kinetic energy metric, since it arises from
the kinetic term K in the Lagrangian. K is the norm
squared of the velocities for the kinetic energy
inner product on the configuration space:

EU2

EU3

Lag

Lag

EU1

ISOSC2

Figure 4. The shape sphere.
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K = ‖ẋ‖2 :=
∑
mi|ẋi|2.

The associated norm squared of positions is the
moment of inertia just introduced:

I = ‖x‖2 :=
∑
mi|xi|2.

The group of orientation-preserving isometries 
of the plane acts isometrically on configuration
space when we use this metric. Shape space, being
the quotient of configuration space by this 
group, inherits a metric. The distance between two
points in shape space is defined to be the 
distance in configuration space between the two
corresponding orbits.

This metric on C is Riemannian away from the
origin. The induced Riemannian metric on the
sphere S is that of the standard Euclidean two-
sphere of radius 1/2. The act of dilating a trian-
gle is a metric dilation on C . This information
completely specifies the metric structure of C . It
is called a cone over a two-sphere of radius one-
half. The triple collision is the cone point, and the
Riemannian metric is singular there.

For general masses, the binary collision points
and central configurations are asymmetrically
placed on the shape sphere, enjoying only reflec-
tional symmetry about the equator. In our case 
of all equal masses, these eight points are placed
as symmetrically as possible. The three Euler 
points and the three collison points are spaced 
out in equal intervals along the equator. The two
Lagrange points are at the north and south poles.
When we join the north pole to the six marked
points on the equator by great circles, we obtain
three meridians. Each meridian passes through
the south pole and intersects the equator in a 
pair of antipodal marked points, one an Euler point
and the other a binary collison. These meridians
represent the manifolds of isosceles triangles
ISOSC1, ISOSC2, and ISOSC3 from above.

Reduced Action
If x(t) is a curve in configuration space, then we
will write c(t) for its projection to the shape
space C . If x(t) is a solution to the three-body 
problem, then we will call c(t) a reduced solution.
We show how to pass back and forth between 
solutions and reduced solutions, provided the 
total angular momentum J :=

∑
mixi ∧ ẋi = 0 .

Let KC/2 denote the kinetic energy associated
to the metric on C . KC is the function on the 
tangent bundle of C given by KC (c, ċ) = 〈ċ, ċ〉c ,
where ċ represents a tangent vector to shape space
at the particular shape c ∈ C and 〈·, ·〉c denotes
the Riemannian metric at c . One proves that
K(ẋ) = KC (c, ċ) + |J(x, ẋ)|2/I . It follows that K ≥ KC
with equality if and only if the angular momentum
J is zero. Define the reduced Lagrangian to be
LC (c, ċ) = KC (c, ċ)/2 +U (c) , where U (x) = U (c) is

the negative potential, viewed as a function on C .
The reduced action is then the function
AC (c) =

∫
c LC dt on curves in C .

We relate the action principle to the reduced 
one. Write π : Q→ C for the quotient map which
associates to a triangle its shape, so that
c(t) = π (x(t)). Let M1,M2 ⊂ Q be two submanifolds
invariant under the action of the group of rotations
about the center of mass. Then Mi = π−1(Ei) ,
i = 1,2, for submanifolds Ei ⊂ C . Consider the
problem of minimizing the action A among all
paths in Q which connect M1 to M2 in time T.
According to the above, L(x, ẋ) ≥ LC (c, ċ) with
equality if and only if the curve x(t) has zero 
angular momentum. By applying a time-
dependent family of rotations g(t) to x(t), we can
obtain a new curve g(t)x(t) whose angular mo-
mentum J is zero and whose shape curve is the
same c(t). This proves that any minimizer x for our
original problem must satisfy A(x) = AC (c) . Our
original problem reduces to that of minimizing
AC among all curves in C joining E1 to E2 in time T.

We can reverse this procedure. Imagine that we
have a minimizer c for our AC -problem. Suppose
that this curve is without triple collisions. Each
curve in C without triple collision has a lift to Q ,
this being a curve x which projects to c and has
angular momentum zero. The lift is unique up to
rigid rotation. The lifts x of our minimizer c will
minimize the original variational problem for
curves on Q . We now apply this fact with
E1 = EUL1 and E2 = ISOSC2.

Building the Eight Using the Discrete
Symmetries
We build the figure-eight solution from the mini-
mizing curve x of Theorem 1, beginning from its
shape curve c(t), 0 ≤ t ≤ T/12 = T̄ .

The shortest curve in Euclidean three-space
which joins a point to a plane is a line segment 
orthogonal to that plane. More generally, if a path
minimizes the action over all paths which connect
one submanifold to another in a given time inter-
val, then this path must hit the endpoint manifolds
orthogonally at the endpoint times. Upon apply-
ing this idea to our reduced action principle, we
find that our shape curve c(t) intersects EUL0
orthogonally at t = 0 and ISOSC2 orthogonally at
t = T/12.

The equality of the masses implies that the re-
flections about the meridian planes ISOSCj in C
are symmetries, meaning that they preserve the
reduced Lagrangian and hence take reduced solu-
tions to reduced solutions. Reflect our minimizing
shape curve c(t), 0 ≤ t ≤ T/12, about ISOSC2. The
resulting reduced solution connects EUL3 to
ISOSC2, hitting ISOSC2 orthogonally with deriv-
ative opposite to c there. Thus if we concatenate
c with its time-reversed reflection, the derivatives
match up at T/12, and the result is a smooth
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reduced solution, still called c, now parameter-
ized by the doubled interval 0 ≤ t ≤ T/6.
Continuing in this manner, applying reflections
about meridian planes and the equator, which is a
symmetry for all mass ratios, we march around the
shape sphere, returning to where we started at
time 6T/12. The derivatives at t = 0 and t = T/2 are
not equal, but instead are related by reflection
about the equatorial plane. Continuing once more
around the equator, we obtain a periodic reduced
solution curve c(t) in C of period T, made up of
twelve pieces congruent to the initial shape curve
coming from Theorem 1. It passes through the
Euler configurations in the order 132132 at the
specified times and the isosceles configurations at
the intermediate times.

The lift x(t) = (x1(t), x2(t), x3(t)) ∈ Q of the
shape curve just constructed is a solution to 
Newton (1). It remains to show that it is periodic
of period T and has the form described. We do this
by seeing how our reflections act on arcs of x .
One might first guess that the symmetry
σ3(x1, x2, x3) = (x2, x1, x3) of interchanging masses
1 and 2 induces the reflection about ISOSC3. This
is not true, since this interchange, unlike the 
reflection, reverses the orientations of triangles 
and so interchanges north and south hemispheres
of the shape sphere. Instead, the interchange σ3
induces the half-twist about EUL3, by which we
mean the isometry of C which is the identity on
the ray EUL3 and which rotates planes orthogo-
nal to it by 180 degrees. The half-twist is the 
composition of the reflection about ISOSC3 with
the reflection about the equator and is the sym-
metry used to extend c([0, T/6]) past T/6. Now
x(T/6) = (x,−x,0) with x 6= 0 , thus σ3x(T/6)
6= x(T/6) , and so the concatenation of x([0, T/6])
with σ3(x(T/6− t)) yields a discontinuous curve,
which is not right. To correct matters we instead
concatenate x with g ◦ σ3(T/6− t) , where g is an
appropriate rigid rotation. (Any rotation g induces
the identity on shape space.) The unique choice of
g making the concatenation continuously differ-
entiable at T/6 is rotation by 180 degrees,
gxi = −xi . Since the arcs of x on either side of T/6
satisfy Newton (1), and since the derivatives now
match, this concatenation is a solution over
0 ≤ t ≤ T/3. The concatenation is achieved by 
substituting the time-reversed and translated 
time T/6 + (T/6− t) = T/3− t for the old time.
Hence our curve satisfies the functional equation
(x1(t), x2(t), x3(t)) = (−x2(T/3− t), −x1(T/3− t),
−x3(T/3− t)) for T/6 ≤ t ≤ T/3.

The initial configuration x(0) is in EUL1 and so 
has the form (0, a,−a) for some a ∈ C. According 
to the functional equation, x(T/3) = (−a,0, a), or
x(T/3) = p(x(0)) where p is the symmetry of per-
mutation of masses: p(x1, x2, x3) = (x3, x1, x2). The
configurations x(0) and x(T/3) are identical, except
that the masses have undergone the permutation

(132). The same can be checked for the velocities. 
It follows that the continuation of the solution 
past time t = T/3 satisfies x2(T/3 + t) = x1(t) ,
x3(T/3 + t) = x2(t) , and x1(T/3 + t) = x3(t) . Armed
with this functional equation, we can now 
continue x over the whole period T. The result 
is periodic of period T , since p3 = 1. This also 
shows that all three masses trace out the same 
planar curve q(t) = x1(t) during the solution.

It remains to show that this planar curve q(t)
has the qualitative form of the eight. Using the
proper choices of g in the realizations g ◦σ1 of 
the half-twist about EUL1 and of the equatorial 
reflection, we can check that q is odd in time t and
that its image enjoys the symmetries of the x-y
axes, where we take for the x-axis the symmetry
axis of the isosceles triangle x(T/12) . The 
qualitative form of the eight now follows from 
the form taken by its first quarter, q(t) ,
0 ≤ t ≤ T/4. This quarter lies in the first quad-
rant, is star-shaped (proved), indeed convex 
(unproved). Star-shapedness is achieved by using
minimality of c and the symmetries to show that
the angular momentum q ∧ q̇ = r2θ̇ is positive,
hence θ is monotone over this interval.

We now turn to the proof of Theorem 1, which
is all that remains to demonstrate the existence of
the figure-eight solution.

Hilbert’s Direct Method; a Sketch of the
Proof of Theorem 1
Consider the class C of all paths in C joining EUL1
to ISOSC2 in the time T̄ = T/12 . Choose a se-
quence xn ∈ C such that

lim
n→∞A(xn) = inf

x∈ A(x).

We call such a sequence a minimizing sequence. 
Try to extract a subsequence of the xn which 
converges to some x∗ ∈ C. If we can show that x∗
is collision-free, then we will be done, according
to the principle of least action. This method of es-
tablishing the existence of critical points is Hilbert’s
direct method in the calculus of variations.

The existence of some limiting x∗ follows
quickly from the Arzelà-Ascoli theorem of real
analysis. The crux of the matter is to show that x∗
suffers no collisions. To do this we compute the
infimum Acoll. of the action A over all curves
which suffer a collision during the specified time
T̄ , regardless of whether or not these curves 
satisfy the endpoint conditions defining C. Then
we find a collision-free “test path” xtest ∈ C with
A(xtest ) < Acoll. . This will complete the proof, 
since A(x∗) ≤ A(xtest ) < Acoll. , and so x∗ must be
collision-free.

To compute Acoll. observe that we decrease the
action if we replace a path x(t) = (x1(t), x2(t), x3(t))
by a path in which one of the masses is positioned
far from the other two and does not move. In other

C
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words, replace x(t) by x̃(n)(t) = (x1(t), x2(t), x(n)
3 )

where x(n)
3 is a fixed point of the plane satisfying

|x(n)
3 − x1(t)| > |x3(t)− x1(t)|

and
|x(n)

3 − x2(t)| > |x3(t)− x2(t)|.
In this way, a minimizing sequence x̃(n) realizing
Acoll. is obtained by letting two of the masses 
collide, while the third remains stationary and 
infinitely distant from them. This reduces the 
computation of Acoll. to a two-body problem, one
which had already been solved by Gordon [1977]
and which will be described momentarily.

To construct our test path, note that the 
potential function Ũ takes on the same value
Ũ (EUL) at all three of the Euler points EULi ∈ S
by symmetry. Consequently, its level curve
Ũ = Ũ (EUL) passes through each Euler point. These
points are saddle points for Ũ, and as we follow
the level curve we alternate hemispheres, crossing
the equator at the Euler points and nowhere else.
In other words, the topology of this level curve 
vis-à-vis the collisions and Euler points is identi-
cal to that of the shape curve of the eight. Follow
one-twelfth of this equipotential curve, namely,
the upper branch connecting EUL1 to ISOSC2.
Parameterize it at constant speed so that it 
arrives at ISOSC2 in the desired time T̄ = T/12 .
Scale it so that it lies in the sphere I = I0, thus 
obtaining a one-parameter family of test curves.
Minimize the action with respect to the scaling
parameter I0. There will be a unique minimizing
I0 = I0(T̄ ), and this yields xtest . Its action depends
only on the period T̄ and the length of the 
starting equipotential curve on the sphere
S = {I = 1}. We estimate this length with enough
tolerance to guarantee that A(xtest ) < Acoll.

Gordon and Kepler’s Problem
We have just finished the sketch of our proof of
the existence of the eight, except for the loose end
concerning Acoll. . We now tie up this loose end by
following Gordon’s work on action minimization
for the Kepler problem.

The action for the two-body problem is pro-
portional to the Keplerian action 

∫ 1
2 |ẋ|2 + k/|x|dt

for the difference vector x = x1 − x2 in the plane.
We insist on excluding the collision x = 0.

Theorem. (Gordon [1977]) Consider the class of
closed non-contractible curves of period T in the
plane minus the origin. The infimum of the 
Keplerian action over this class is realized by any
Keplerian ellipse with period T.

The act of excluding collisions breaks up the
space of closed curves in the plane into countably
many components, indexed by the winding num-
ber n ∈ Z of the curve about the origin. (This index
is the degree of the map x/|x| from the circle into

the circle.) The winding number of a single orbit
of a Keplerian ellipse is either 1 or −1. Gordon 
asserts, among other things, that these are the
only winding numbers which can be achieved by
minimization. If we try to minimize the action
over the winding number 2 component, then we
will be led to a collision curve at the boundary be-
tween this component and the winding number +1
component.

All Keplerian ellipses of period T have the same
action cT1/3. (The constant c is 3(2π )2/3k2/3/2.)
This action is a function of the semimajor axis of
the ellipse alone, as are both the energy and the
period. Consequently we have a whole family of
minimizers, all sharing the same infimal value of
the action. At the boundary of this family lie the
elliptic collision-ejection orbits representing the
planet crashing into the sun and being expelled
along the segment it came in on. These also 
realize the infimum of the action over our class 
despite the fact that they are not in the class but
rather on its boundary.

These two linked phenomena—that of the direct
method leading us to the boundary of a topologi-
cal component and that of collision orbits sharing
the infimal value of action—illustrate the main
subtleties of using action principles for Newton-
ian N-body problems. Identical phenomena occur
in the three-body problem. The solutions of 
Lagrange and Euler of a given period also occur in
families parameterized by Kepler, all having the
same action and including triple collision-ejection
orbits on their boundary. Solutions corresponding
to central configurations occur for all N, so this
phenomenon persists in the Newtonian N-body
problem for any N.

Still, the Keplerian ellipses do minimize, al-
though they are degenerate minima. The crucial
fact which allowed Gordon to prove this, which is
to say, to exclude the possibility of more than one
collision per period, is the concavity of the action
cT1/3 of a Keplerian orbit as a function of its
period T. Suppose, for example, we have a mini-
mizer with countably many collisions, with the
times between successive collisions being t1, t2, . . .,
tj, . . .. By standard arguments from the calculus of
variations, in between collisions the minimizer
must be a solution to Kepler and hence must be a
collision-ejection orbit. Its total action is thus
c
∑

(ti)1/3 . But 
∑

(ti)1/3 ≥ (
∑
ti)1/3 = T1/3 with

equality if and only if there is but a single collision.
This proves there is at most one collision. This is
the argument which allows us to compute Acoll. .

Poincaré Minimizes over a Homology Class
In the remainder of the article we describe other
applications of the direct method to N -body 
problems, relating some of these to the eight’s
construction.
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Poincaré [1896] was apparently the first to apply
the direct method to find new periodic solutions
to three-body equations. Poincaré was most inter-
ested in reduced periodic solutions, as described
earlier. Specifically, he looked for solutions x(t) with
the property that there is some fixed rotation g and
some time T for which

(R) x(t + T ) = g(x(t)).

Equivalently, these are solutions x to (1) which
are not necessarily periodic but whose shape 
curves are periodic.

Poincaré did not want collisions any more than
we do. Shape space minus collisions is homotopic
to the shape sphere minus three points. Its first
homology group is Z× Z. Poincaré fixed a homol-
ogy class (K2, K3) as well as the overall rotation 
g in (R). Concretely he considered a rotating 
orthogonal frame with one axis being the edge
x3 − x2 of the moving triangle. The integers K3
and K2 are the winding numbers of the nonzero
vectors x3 − x1 and x2 − x1 about the origin, as
viewed in this moving coordinate system. The ro-
tation g is the overall rotation of the coordinate
axes in one period. Together (K2, K3;g) specify a
a class of collision-free curves over which to apply
the direct method.

Poincaré knew that the Newtonian problem ad-
mits finite action solutions. Indeed, all solutions
ending in collision and defined over a bounded time
interval have finite action. He thus faced the pos-
sibility of action-minimizing collision-free se-
quences pinching off to collision. This possibility
blocked him from achieving reduced periodic so-
lutions in the given class by the direct method. To
circumvent this difficulty, Poincaré changed the 
potential and thus the differential equation (1), a
trick which dozens, if not hundreds, of researchers
have used since then without knowing that 
Poincaré had done this a hundred years earlier.

Replace the function U in the Lagrangian by
one of the general form

U =
∑
a<b

fab(rab),

where fab(r ) > 0, fab(0) = +∞, and fab(∞) = 0. The
resulting Euler-Lagrange equations define a new 
N -body problem whose differential equation 
is found by replacing the right-hand side of 
Newton’s equations (1) by the gradient of U with
respect to xi. This N-body problem will be called
strong-force if there exist positive constants δ and
c such that the two-body potential functions fab
making up U satisfy

fab(r ) >
c
r2 whenever r < δ.

The prime examples come from the power laws

fab(r ) =
kab
rν
,

with kab > 0. These are strong-force if and only if
ν ≥ 2.

Poincaré observed that when the potential is
strong-force, the action of any curve tending to 
a collision diverges. Consequently, there are no 
finite action curves with collision. This let Poincaré
prove the following, using the direct method.

Theorem. (Poincaré [1896]) Consider the class of
collision-free reduced periodic curves specified, as
above, by the period T , the winding numbers
(K2, K3), and the overall rotation g. If the potential
is strong-force, then there is a solution to Newton’s
equations lying in this class and realizing the 
infimum of the action over this class.

There is a small oversight in Poincaré’s proof.
For the statement to be correct we must exclude
those classes in which at least one of the Ki is zero
and g is the identity. To see what goes wrong with-
out this constraint, consider the case g = 1,
K2 = K3 = 0. The infimal action is zero. It is real-
ized by a minimizing sequence xn in which the xn(t)
are constant, forming the vertices of an equilateral
triangle (or any fixed noncollinear triangle ∆ ∈ S)
of size 

√
I = n. As n →∞, all three masses recede

to infinity and there is no limiting curve.
If, on the other hand, K2K3 6= 0 or g 6= 1, then all

three masses must move in order that the curve
lie in the class C. Indeed, the projection to the 
three-sphere {I = 1} must be a curve whose length
is bounded away from zero by a positive constant
depending only on K2, K3, and g. It follows that if
xn is a sequence of curves realizing this class and
if In = I(xn(tn))→∞ for some times tn, then the
lengths of the xn must tend to infinity, which 
implies that their action A(xn) →∞ . This excludes
the possibility of points of a minimizing sequence
wandering off to infinity in the plane.

Gordon [1977] formalized the above argument.
He called a class C of collision-free curves tied to
the collisions if whenever we have a sequence of
curves xn ∈ C with ‖xn(tn)‖2 := I(xn(tn))→∞ for
some sequence of times tn, the actions A(xn) must
also tend to infinity. A minimizing sequence ex-
tracted from a tied class cannot fail to converge
by receding to infinity.

Instead of fixing a homology class of reduced
periodic curves in shape space, let us fix a ho-
mology class of truly periodic curves in the usual
configuration space minus collisions. Such a class
is determined by the winding numbers n1, n2, n3
of the three edges xi − xj . Gordon’s tied condition
is that at least two of these integers are nonzero.
The direct method then yields a periodic collision-
free solution with these winding numbers, 
provided the potential is a strong-force potential.

Venturelli [2001] transcended the strong-force
restriction.

Theorem. (Venturelli [2001]) Consider the class of
all closed collision-free periodic curves of period T
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we decorate the letters with superscripts + and −
to indicate whether the corresponding ecliptic 
arc is approached from the northern or southern
hemisphere. The pluses and minuses must alter-
nate. A given eclipse sequence has exactly two
such decorations, corresponding to a curve and its
reflection. We have established a one-to-one 
correspondence between grammatically correct
eclipse sequences and free homotopy classes in
C\collisions, up to reflection.

Open Problem. (Wu-Yi Hsiang) Is every grammat-
ically correct eclipse sequence realized by a 
solution to the three-body problem?

Wu-Yi Hsiang posed this question in the spring of
1995. It helped lead to the construction of the 
figure-eight solution.

Cheating by assuming the strong-force 
condition and applying the direct method just 
as Poincaré did, we get an answer.

Theorem. (Montgomery (1998)) Let T > 0 be given.
For the three-body problem with a strong-force po-
tential, any given eclipse sequence in which all
three eclipse letters 1, 2, and 3 appear is realized
by a reduced periodic solution of period T which
minimizes the action over this eclipse sequence
class.

Gordon’s tied condition is precisely that all three
eclipse letters occur.

Poincaré, the inventor of the homotopy group,
clearly had the tools to state and prove the above
theorem. It is slightly surprising that he did not.

Summary. The set of periodic curves in C breaks
up into infinitely many components when we 
exclude collisions. These components are indexed
by eclipse sequences. The (reduced) action func-
tion creates walls between them. When we take 
the potential to be strong-force, these walls are 

in the configuration space for the planar Newton-
ian three-body problem whose winding numbers ni
satisfy n1n2n3 6= 0 . The infimum of the Newtonian
action over this class is realized by any elliptic or
circular Lagrange solution of this period.

The Lagrange solutions have winding numbers 1,
1, 1 or −1, −1, −1. Their homology classes are the
only classes realized by action-minimizing solu-
tions. If we fix any other homology class with all
nonzero winding numbers, such as 2, 1, 1, and try
to minimize the action over this class using the 
direct method, then we will be led out of that class
to the Lagrange collision-ejection solution. This 
collision solution has the same action as the 
noncollision Lagrange solutions.

Note the close parallel with Gordon’s theorem.
Gordon’s theorem is one of the main 
ingredients in Venturelli’s proof. Another key 
ingredient is that the Lagrange configuration 
minimizes Ũ.

Eclipse Sequences: Minimizing over a
Homotopy Class
Instead of fixing the homology class of a reduced
periodic curve, we now fix its free homotopy class.
We explain how to encode such a class into an
eclipse sequence. A loop in C\collisions radially
projects to a loop in S\collisions. Perturbing the
loop slightly makes it intersect the equator of
collinear triangles a finite number of times, each
transversally. Each intersection represents an
eclipse, a configuration in which the three masses
are collinear, one lying between the other two. We
label these eclipses 1, 2, or 3 according to which
body is in the middle. Consequently, our curve
yields a finite sequence, or “word”, abc . . . , a, b,
and c being 1 , 2 , or 3 written down in the 
order they appear. We call such a word the eclipse
sequence of the curve. For example, Hill’s solution
realizes the eclipse sequence 12 if 1 and 2 are 
the close bodies, while the figure eight has eclipse
sequence 132132.

If two consecutive eclipses aa of the same type
occur, then they can be deleted by pulling the arc
between the two eclipses up into the opposite
hemisphere. This deletion decreases the action, so
it is consistent with the direct method. This process
allows us to delete all “stutters” . . . aa . . . occurring
in our word. Since we are interested in periodic 
orbits, we should think of our eclipse sequence 
as being written out along the circumference of a
circle, i.e., as a periodic word. For example, the class
of the figure eight is 132132 = 321321 = 213213.
We insist that each such cyclic permutation be
stutter-free. A cyclic word in the letters 1, 2, and 3
subject to this stutter-free rule will be called a gram-
matically correct eclipse sequence. Such 
an eclipse sequence uniquely specifies the free
homotopy of the collision-free shape curve once
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Figure 5. Gerver’s solution.
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infinitely high, so we can minimize separately in
each component. But as we lower the exponent ν
of fab =mamb/rνab coming from the power law 
potential above and so try to approach the case 
of real interest (the Newtonian case of ν = 1), the
walls descend in height, becoming finite in height
as soon as ν < 2. Then we can cross over from one
component to the other. The walls are probably still
steep and sharp in most places, but crossing is now
possible. The Hilbert direct method might even lead
us to “valleys” or “breaks” in these walls, forcing
the limit x∗ to have collisions. Because of this we
can say little to nothing at present about whether
or not the given eclipse sequence is realized by an
action minimizer.

The situation is worse. The Lagrange collision-
ejection orbit xL is a kind of “universal” low pass
allowing us to cross from any component to any

other. Indeed, it lies in the boundary of every 
component and has very small action, hence is a
very attractive place to head. See the discussion of
Venturelli’s theorem and also Montgomery [2000].
It could be that the direct method applied to any
component will always lead to xL in the Newton-
ian case. If so, the direct method would yield no
solutions beyond Lagrange and thus no eclipse
sequences beyond the empty sequence, which is
the sequence for Lagrange.

We were able to get around these difficulties 
in constructing the figure eight because of our 
assumption of equal masses, with its consequent
discrete symmetries. In effect, these allowed us to
replace the specification of the eclipse sequence
132132 with the endpoint conditions appearing in
Theorem 1.

New N-Body Solutions
We ask N equal Newtonian masses to dance around
a fixed curve. The eight is such a solution, as is 
the circular Lagrange solution. For each N we can
obtain such a solution where the curve is a circle
by placing the N points at the vertices of a regu-
lar N-gon inscribed in the circle and then rotating
this N-gon at the proper frequency. Additional 
orbits like this were found numerically by Davies
et al. (1983) and G. Hoynant (1999) in space and
by Moore [1993] in the plane. Right after our 
rediscovery of the eight, Gerver conjectured the 
existence of solutions of this type for all N, with
the number of distinct topological types of solu-
tions increasing rapidly with N. He numerically
found one of his conjectured solutions when N = 4.
In Gerver’s solution the configuration formed by
the four bodies is a parallelogram at every instant,
and the curve they move on is a “super-eight”, a
figure eight with an extra twist. Simó [2000a] 
numerically verified Gerver’s conjecture, finding
hundreds of new equal mass planar N -body 
solutions. See also Chenciner et al. [2001]. Of all
these solutions, apparently the only stable one is
the eight. And, except for the eight, we lack rigor-
ous existence proofs for any of these new New-
tonian N-body solutions.

To make N equal bodies perform a desired
dance, begin with the circle S1 = R/TZ of circum-
ference T. The cyclic group ZN of order N acts on
this circle with its generator ω acting by
ω(t) = t + T/N , which is to say by rotation by
2π/N .  It acts on CN by ω(x1, x2, . . . , xN ) =
(xN, x1, x2, . . . , xN−1). Then ZN acts on the space
of all loops x : S1 → CN by (ωx)(t) =ω(x(ω−1(t)).
A fixed point of this action on loops is a map
x : S1 → CN satisfying xj+1(t) = x1(t − jT/N) . We
call such a map a choreography. In a choreogra-
phy all N masses travel along the same closed 
planar curve q(t) = x1(t) , staggered in phase 
from each other by T/N .
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Figure 6. A choreography of nine bodies.
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Figure 7. A floral arrangement with eleven bodies.
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This action of ZN on loops x leaves the N-body
action A(x) invariant when the masses are all equal.
It follows from a general principle, which Palais
calls the principle of symmetric criticality, that if
we restrict A to the fixed points of the action—
the choreographies—and find a collision-free 
choreography which is a critical point for this 
restricted A , then this choreography will be a 
solution to the N-body problem. Excluding colli-
sions breaks up the set of choreographies into
countably many different components, which 
we call choreography classes. By the argument
which Poincaré used above, if the potential is
strong-force, then there is a solution realizing each
choreography class.

Simó has numerically implemented this equi-
variant action-minimization procedure for the
Newtonian problem. He discretizes the gradient
flow of the action, starting with an initial guess for
a choreography. The resulting iteration scheme
stays within the space of (discrete) choreographies
and will either converge to a choreography with 
collisions or to a collision-free choreography. 
(In the strong-force case the first possibility is 
excluded.)

In this way Simó has produced a huge number
of new solutions to the equal mass Newtonian 
N-body problem. Apparently all choreographies are
unstable except the original figure eight for N = 3.
Simó’s results suggest that for each N only finitely
many choreography classes are realized by local
action minimizers. For N = 3 it seems only two
choreography classes are realized: that of the 
Lagrange solution and that of the eight. What 
topological criterion selects the classes which 
are realized by a Newtonian choreography? An 
answer to this question might lead to an existence
proof for this horde of new orbits and perhaps 
a better understanding of the planar N -body 
problem.
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About the Cover
The cover shows several frames of an anima-
tion constructed by Carles Simó—redrawn
slightly—that exhibits the periodic orbital mo-
tion of six objects of equal mass on a single
orbit.  This is what is called in Richard Mont-
gomery's article a “simple choreography”. The
original animation is number 42 in a spectacu-
lar series of animations by Simó which run in
gnuplot. The whole series can be obtained
from http://www.maia.ub.es/dsg/nbody.
html. 

As Montgomery explains, almost all of these
choreographies are known at the moment only
through computer calculation, primarily the
work of Carles Simó. Producing them is a dif-
ficult but interesting process. To see what is in-
volved one should look at various papers of
Simó. Many recent ones are available as
preprints at http://www.maia.ub.es/dsg/.

Simó is currently working on finding rigor-
ous computer-assisted proofs of the existence
of choreographies.

—Bill Casselman (covers@ams.org)
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