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Overview

• Some words about hydrodynamics

• SPH – The Standard Implementation

•Modifications and Extensions

• Some Caveats



Hydrodynamics:
• text books on hydrodynamics
◦ Landau & Lifshitz, Volume VI - Hydrodynamics

◦ Landau & Lifshitz, Volume X - Kinetic theory

◦ Reichl, A modern course in statistical physics, Wiley, New York (1998)

◦ Shu, The physics of astrophysics 2, Univ. Sc. Books, Mill Valley (1992)

• derivation

◦ gases and fluids are large ensembles of interacting particles

◦ −→ state of system is described by location in 6N dimensional

phase space f (N)(~q1...~qN , ~p1...~pN)d~q1...d~qNd~p1...d~pN

◦ time evolution governed by ‘equation of motion’ for 6N -dim

probability distribution function f (N)

◦ f (N) → f (n) by integrating over all but n coordinates −→
BBGKY hierarchy of equations of motion (after Born, Bogoli-

ubov, Green, Kirkwood and Yvon)

◦ physical observables are typically associated with 1- or 2-body

probability density f (1) or f (2)

◦ at lowest level of hierarchy: 1-body distribution function de-

scribes the probability of finding a particle at time t in the vol-

ume element d~q at ~q with momenta in the range d~p at ~p.

◦ Boltzmann equation – equation of motion for f (1)

df

dt
≡∂f

∂t
+ ~̇q · ~∇q f + ~̇p · ~∇p f

=
∂f

∂t
+ ~v · ~∇q f + ~F · ~∇p f = fc .



Hydrodynamics:

• derivation

◦ Boltzmann equation

df

dt
≡∂f

∂t
+ ~̇q · ~∇q f + ~̇p · ~∇p f

=
∂f

∂t
+ ~v · ~∇q f + ~F · ~∇p f = fc .

→ first line: transformation from comoving to spatially fixed

coordinate system.

→ second line: velocity ~v = ~̇q and force ~F = ~̇p

→ all higher order terms are ’hidden’ in the collision term fc

◦ observable quantities are typically (velocity) moments of the

Boltzmann equation, e.g.

→ density:

ρ =
∫

m f(~q, ~p, t)d~p

→ momentum:

ρ~v =
∫

m~v f(~q, ~p, t)d~p

→ kinetic energy density:

ρ~v 2 =
∫

m~v 2 f(~q, ~p, t)d~p



Hydrodynamics:

• derivation

◦ in general: the i-th velocity moment 〈ξi〉 (of ξi = m~v i) is

〈ξi〉 =
1

n

∫

ξi f(~q, ~p, t)d~p

with the mean particle number density n defined as

n =
∫

f(~q, ~p, t) d~p

◦ the equation of motion for 〈ξi〉 is

∫

ξi







∂f

∂t
+ ~v · ~∇q f + ~F · ~∇p f







d~p =
∫

ξi {fc} d~p ,

which after some complicated rearrangement becomes

∂

∂t
n〈ξi〉 + ~∇q (n〈ξi~v〉) + n~F 〈~∇p ξi〉 =

∫

ξifc d~p

(Maxwell-Boltzmann transport equation for 〈ξi〉)

◦ if the RHS is zero, then ξi is a conserved quantity. This is only

the case for first three moments, mass ξ0 = m, momentum
~ξ1 = m~v, and kinetic energy ξ2 = m~v 2/2.

◦ MB equations build a hierarically nested set of equations, as 〈ξi〉
depends on 〈ξi+1〉 via ~∇q (n〈ξi~v〉) and because the collision term

cannot be reduced to depend on ξi only.

−→ need for a closure equation

−→ in hydrodynamics this is typically the equation of state.



Hydrodynamics:

• assumptions

◦ continuum limit:

→ distribution function f must be a ‘smoothly’ varying function

on the scales of interest −→ local average possible

→ stated differently: the averaging scale (i.e. scale of interest)

must be larger than the mean free path of individual particles

→ stated differently: microscopic behavior of particles can be

neglected

→ concept of fluid element must be meaningful

◦ only ‘short range forces’:

→ forces between particles are short range or saturate −→ col-

lective effects can be neglected

→ stated differently: correlation length of particles in the system

is finite (and smaller than the scales of interest)

• limitations

◦ shocks (scales of interest become smaller than mean free path)

◦ phase transitions (correlation length may become infinite)

◦ description of self-gravitating systems

◦ description of fully fractal systems



Hydrodynamics:

• the equations of hydrodynamics

◦ hydrodynamics ≡ book keeping problem

One must keep track of the ‘change’ of a fluid element due to

various physical processes acting on it. How do its ‘properties’

evolve under the influence of compression, heat sources, cooling,

etc.?

◦ Eulerian vs. Lagrangian point of view

Eulerian Lagrangian

consider spatially fixed volume element following motion of fluid element

◦ hydrodynamic equations = set of equations for the five con-

served quantities (ρ, ρ~v, ρ~v 2/2) plus closure equation (plus trans-

port equations for ‘external’ forces if present, e.g. gravity, mag-

netic field, heat sources, etc.)



Hydrodynamics:

• the equations of hydrodynamics

◦ equations of hydrodynamics

dρ

dt
=

∂ρ

∂t
+ ~v · ~∇ρ =−ρ~∇ · ~v (continuity equation)

d~v

dt
=

∂~v

∂t
+ (~v · ~∇)~v =−1

ρ
~∇p− ~∇φ + η~∇2~v +

(

ζ +
η

3

)

~∇(~∇ · ~v)

(Navier-Stokes equation)
dǫ

dt
=

∂ǫ

∂t
+ ~v · ~∇ǫ = T

ds

dt
− p

ρ
~∇ · ~v (energy equation)

~∇2φ = 4πGρ (Poisson’s equation)

p =RρT (equation of state)

~FB = −~∇
~B2

8π
+

1

4π
( ~B · ~∇) ~B (magnetic force)

∂ ~B

∂t
= ~∇× (~v × ~B) (Lorentz equation)

ρ = density, ~v = velocity, p = pressure, φ = gravitational poten-

tial, ζ and η viscosity coefficients, ǫ = ρ~v 2/2 = kinetic energy

density, T = temperature, s = entropy, R = gas constant, ~B =

magnetic field (cgs units)



Hydrodynamics:
• the equations of hydrodynamics
◦ mass transport – continuity equation

dρ

dt
=

∂ρ

∂t
+ ~v · ~∇ρ = −ρ~∇ · ~v

(conservation of mass)

◦ transport equation for momentum – Navier Stokes equation

d~v

dt
=

∂~v

∂t
+(~v · ~∇)~v = −1

ρ
~∇p− ~∇φ+η~∇2~v+

(

ζ +
η

3

)

~∇(~∇·~v)

momentum change due to

→ pressure gradients: (−ρ−1 ~∇p)

→ (self) gravity: −~∇φ

→ viscous forces (internal friction, contains div(∂vi/∂xj) terms):

η~∇2~v +
(

ζ + η
3

)

~∇(~∇ · ~v)

(conservation of momentum, general form of momentum trans-

port: ∂t(ρvi) = −∂jΠij)

◦ transport equation for internal energy

dǫ

dt
=

∂ǫ

∂t
+ ~v · ~∇ǫ = T

ds

dt
− p

ρ
~∇ · ~v

→ follows from the thermodynamic relation dǫ = T ds−p dV =

T ds + p/ρ2dρ which described changes in ǫ due to entropy

changed and to volume changes (compression, expansion)

→ for adiabatic gas the first term vanishes (s =constant)

→ heating sources, cooling processes can be incorporated in ds

(conservation of energy)



Hydrodynamics:

• the equations of hydrodynamics

◦ closure equation – equation of state

→ general form of equation of state p = p(T, ρ, ...)

→ ideal gas: p = RρT

→ special case – isothermal gas: p = c2
sT (as RT = c2

s)



SPH Basics:
• literature
◦ Benz, W., SPH, in ‘The Numerical Modeling of Nonlinear Stellar Pulsa-

tions’ ed. J. R. Buchler, Kluwer (1990)

◦ Monaghan, J. J., Particle Methods for Hydrodynamics, Comp. Phys. Re-

ports (1985)

◦ Monaghan, J. J., SPH, ARA&A (1992)

• concept of SPH

◦ ‘invented’ independently by Lucy (1977) and Gingold & Mon-

aghan (1977)

◦ originally proposed as Monte Carlo approach to calculate the

time evolution of gaseous systems

◦ more intuitively understood as interpolation scheme:

The fluid is represented by an ensemble of particles i, each

carrying mass mi, momentum mi~vi, and hydrodynamic

properties (like pressure pi, temperature Ti, internal energy

ǫi, entropy si, etc.). The time evolution is governed by

the equation of motion plus additional equations to modify

the hydrodynamic properties of the particles. Hydrodynamic

observables are obtained by a local averaging process.



SPH Basics:

• properties of local averaging processes

◦ local averages 〈f(~r)〉 for any quantity f(~r) can be obtained by

convolution with an appropriate smoothing function W (~r,~h):

〈f(~r)〉 ≡
∫

f(~r ′)W (~r − ~r ′,~h) d3r′ .

the function W (~r,~h) is called smoothing kernel

◦ the kernel must satisfy the following two conditions:
∫

W (~r,~h) d3r = 1 and 〈f(~r)〉 −→ f(~r) for ~h→ 0

the kernel W therefore follows the same definitions as Dirac’s

delta function δ(~r): limh→0 W (~r, h) = δ(~r).

◦ most SPH implementations use spherical kernel functions

W (~r,~h) ≡W (r, h) with r = |~r| and h = |~h|.

(one could also use triaxial kernels, e.g. Martel et al. 1995)

◦ as the kernel function W can be seen as approximation to the

δ-function for small but finite h we can expand the averaged

function 〈f(~r)〉 into a Taylor series for h to obtain an estimate

for f(~r); if W is an even function, the first order term vanishes

and the errors are second order in h

〈f(~r)〉 = f(~r) +O(h2)

this holds for functions f that are smooth and do not exhibit

steep gradients over the size of W (→ problems in shocks).

(more specifically the expansion is 〈f(~r)〉 = f(~r) + κh2~∇2f(~r) +O(h3))



SPH Basics:

• properties of local averaging processes

◦ within its intrinsic accuracy, the smoothing process therefore is

a linear function with respect to summation and multiplication:

〈f(~r) + g(~r)〉 = 〈f(~r)〉 + 〈g(~r)〉
〈f(~r) · g(~r)〉 = 〈f(~r)〉 · 〈g(~r)〉

(one follows from the linearity of integration with respect to summation, and two is true to O(h2))

◦ derivatives can be ‘drawn into’ the averaging process:

d

dt
〈f(~r)〉 =

〈 d

dt
f(~r)

〉

~∇〈f(~r)〉 = 〈~∇f(~r)〉

Furthermore, the spatial derivative of f can be transformed into

a spatial derivative of W (no need for finite differences or grid):

~∇〈f(~r)〉 =
〈

~∇f(~r)
〉

=
∫

f(~r ′) ~∇W (|~r − ~r ′|, h) d3r′ .

(shown by integrating by parts and assuming that the surface term vanishes; if the solution space is

extended far enough, either the function f itself or the kernel approach zero)

◦ basic concept of SPH is a particle representation of the fluid

−→ integration transforms into summation over discrete set of

particles; example density ρ:

〈ρ(~ri)〉 =
∑

j
mjW (|~ri − ~rj|, h) .

in this picture, the mass of each particle is smeared out over

its kernel region; the density at each location is obtained by

summing over the contributions of the various particles −→
smoothed particle hydrodynamics!



SPH Basics:
• properties of local averaging processes
◦ ‘scatter’ versus ‘gather’ approach:

〈ρ(~ri)〉 =
∑

j
mjW (|~ri − ~rj|, h) .

allows for two different interpretations...

1. particle i collects the contributions from all other particles j

which smoothing volumes hj scatter onto location ~ri

h→ hj, i.e. use W (|~ri − ~rj|, hj) in the summation

2. particle i gathers the contributions from all particles which

centers fall within the smoothing volume of i

h→ hi, i.e. use W (|~ri − ~rj|, hi) in the summation

if all particles have the same smoothing length h = hi = hj

both approaches are equivalent; otherwise different j contribute

to the sum −→ violation of Newton’s 3. law!!

therefore, enforce force anti-symmetry by using the (arithmetic)

average of the smoothing lengths for all particle pairs

h −→ hij =
hi + hj

2
.



SPH Basics:
• the kernel function
◦ different functions meet the requirement

∫

W (|~r|, h) d3r = 1

and limh→0
∫

W (|~r − ~r ′|, h)f(~r ′) d3r′ = f(~r):

→ Gaussian kernel:

W (r, h) =
1

π3/2h3
exp





−r2

h2







· pro: mathematically sound

· pro: derivatives exist to all orders and are smooth

· contra: all particles contribute to a location

→ spline functions with compact support

→ the standard kernel: cubic spline

with ξ = r/h it is defined as

W (r, h) ≡ 1

πh3



























1− 3
2
ξ2 + 3

4
ξ3, for 0 ≤ ξ ≤ 1;

1
4
(2− ξ)3, for 1 ≤ ξ ≤ 2;

0, otherwise.

· pro: compact support −→ all interactions are zero for

r > 2h −→ number of particles involved in the average

remains small (typically between 30 and 80)

· pro: second derivative is continuous

· pro: dominant error term is second order in h

→ in principle different kernel functions could be used for dif-

ferent equations (but it brings no obvious advantage, except

maybe in the case of XSPH)

→ specialized kernels can be constructed for different types of

problems



SPH Basics:

• variable smoothing length h

◦ spatial resolution of SPH is limited by h, the scale over which

forces and physical properties are smeared out

◦ to make optimum use of the Lagrangian nature of SPH one has

to allow for variations of h: in high-density regions h should be

small, in regions of low density h should be large

◦ the optimum value of h is such that every particle has ∼ 50

neighbors within the smoothing volume

◦ caveats:

→ introduction of additional errors (the Taylor series now con-

tains contributions from ~∇h, furthermore time derivatives

∂h/∂t occur); however, these errors are of second or higher

order and thus the same as the one inherent to SPH anyway

→ modification of the kernel gradient

~∇W (|~r−~r ′|, h) = ~∇W (|~r−~r ′|, h)
∣

∣

∣

∣

h
+

∂

∂h
W (|~r−~r ′|, h)~∇h

∣

∣

∣

∣

~r

the new term is ∝ ~∇h and becomes important only if the

smoothing length varies on scales less than the smoothing

lengths itself −→ it is generally neglected (see Nelson &

Papaloizou 1994).

◦ equation of ‘motion’ for h can be coupled to the density: from

h = h0 (ρ0/ρ)3 it follows from using the continuity equation

dh

dt
= −1

3

h

ρ

dρ

dt
=

1

3
h ~∇·~v (1)

alternative methods exist (see e.g. Steinmetz & Müller 1993)



SPH Basics:
• the fluid equations in SPH
◦ there is an infinite number of possible SPH implementations of

the hydrodynamic equations!

◦ some notation: hij = (hi+hj)/2, ~rij = ~ri−~rj, ~vij = ~vi−~vj, and
~∇i is the gradient with respect to the coordinates of particle i;

all measurements are taken at particle positions (e.g. ρi = ρ(~ri))

◦ general form of SPH equations:

〈fi〉 =
Ni
∑

j=1

mj

ρj
fjW (rij, hij)

◦ density — continuity equation (conservation of mass)

ρi =
Ni
∑

j=1
mjW (rij, hij)

or
dρi

dt
=

Ni
∑

j=1
mj~vij · ~∇iW (rij, hij)

(the second implementation is almost never used, see however

Monaghan 1991 for an application to water waves)

important

density is needed for ALL particles BEFORE computing

other averaged quantities −→ at each timestep, SPH com-

putations consist of TWO loops, first the density is obtained

for each particle, and then in a second round, all other par-

ticle properties are updated.

◦ pressure is defined via the equation of state (for example for

isothermal gas pi = c2
sρi)



SPH Basics:

• the fluid equations in SPH

◦ velocity — Navier Stokes equation (conservation of momentum)

→ consider for now only pressure contributions: Euler’s equa-

tion

d~v

dt
=

∂~v

∂t
+ (~v · ~∇)~v = −1

ρ
~∇p = −~∇





p

ρ



− p

ρ2
~∇ρ (∗)

here, the identity ~∇(pρ−1) = ρ−1~∇p− pρ−2~∇ρ is used

→ in the SPH formalism this reads as

d~vi

dt
= −

Ni
∑

j=1
mj







pi

ρ2
i

+
pj

ρ2
j







~∇iW (rij, hij)

where the first term in (*) is neglected because it leads to

surface terms in the averaging procedure; it is assumed that

either the pressure or the kernel becomes zero at the inte-

gration border; if this is not the case correction terms need

to be added above.

the equation is anti-symmetric in i and j and conserves mo-

mentum locally and globally.

→ if self-gravity is taken into account, the gravitational force

needs to be added on the RHS

~FG = −~∇φi = −G
N
∑

j=1

mj

r2
ij

rij

rij

note that the sum needs to be taken over ALL particles←−
computationally expensive



SPH Basics:

• the fluid equations in SPH

◦ velocity — Navier Stokes equation (conservation of momentum)

→ the contribution of viscosity:
· converts ordered kinetic energy into random kinetic energy (heat)

· molecular viscosity in most astrophysical problems is small (except
maybe in shocks) −→ SPH normally has NO explicit treatment of

physical viscosity.

· however, artificial viscosity is needed to prevent particle interpene-
tration.

· this is achieved by smearing out shocks and by introducing dissi-

pation in regions with strong velocity divergence

· there are MANY ways to formulate artificial viscosity!!

→ the standard formulation of viscous pressures is

pα = Παρ
2 = −αρℓcs(~∇ · ~v) ,

and

pβ = Πβρ
2 = −βρℓ2(~∇ · ~v)2 .

α and β are free parameters and control the strength of the

viscous terms (typical values are α = 1 and β = 2); ℓ is the

scale over which shocks are smeared out (typically ℓ ≈ 2h).

· pα is a combined shear and bulk viscosity – it dampens

post-shock oscillations

· pβ is a von Neumann-Richtmyer viscosity – necessary to

prevent interpenetration in high Mach number shocks



SPH Basics:
• the fluid equations in SPH
◦ velocity — Navier Stokes equation (conservation of momentum)

→ the SPH implementation of the standard artificial viscosity is

~F visc
i = −

Ni
∑

j=1
mjΠij

~∇iW (rij, hij) ,

where the viscosity tensor Πij is defined by

Πij =











(−αcijµij + βµ2
ij)/ρij for ~vij · ~rij ≤ 0 ,

0 for ~vij · ~rij > 0 ,

where

µij =
h~vij · ~rij

~r2
ij + 0.01h2

.

with ~rij = ~ri − ~rj, ~vij = ~vi − ~vj, mean density ρij =

(ρi + ρj)/2, and mean sound speed cij = (ci + cj)/2.

→ Advantages of the standard artificial viscosity
· Galilean invariant

· vanishes for rigid body rotation (but not for differential rotation!!!)

· conserved linear and angular momenta

→ Disadvantages of the standard formula
· generates entropy in shear flows −→ Balsara viscosity

· leads to strong dissipation (one simulates ‘honey’ instead of inter-

stellar gas) −→ time-dependent viscosity & XSPH

· arbitrariness (no physical motivation) −→ Flebbe-type viscosities

→ many alternative formulations exist

→ set together, the momentum equation is

d~vi

dt
= −

Ni
∑

j=1
mj







pi

ρ2
i

+
pj

ρ2
j

+ Πij







~∇iW (rij, hij)−∇φi



SPH Basics:

• the fluid equations in SPH

◦ energy equation (conservation of momentum)

→ recall the hydrodynamic energy equation:

dǫ

dt
=

∂ǫ

∂t
+ ~v · ~∇ǫ =

ds

dt
− p

ρ
~∇ · ~v

→ for adiabatic systems (c = const) the SPH form follows as

dǫi

dt
=

pi

ρ2
i

Ni
∑

j=1
mj ~vij · ~∇iW (rij, hij) ,

(note that the alternative form

dǫi

dt
=

1

2

Ni
∑

j=1

mj





pi

ρ2
i

+
pj

ρ2
j



~vij · ~∇iW (rij, hij)

can lead to unphysical solutions, like negative internal energy)

→ dissipation due to (artificial) viscosity leads to a term

dǫi

dt
=

1

2

Ni
∑

j=1
mjΠij ~vij · ~∇iW (rij.hij)

→ the presence of heating sources or cooling processes can be

incorporated into a function Γi.

→ altogether:

dǫi

dt
=

pi

ρ2
i

Ni
∑

j=1
mj ~vij · ~∇iWij +

1

2

Ni
∑

j=1
mjΠij ~vij · ~∇iWij + Γi



SPH Basics:

• the fluid equations in SPH

◦ entropy equation

→ alternatively to the energy equation one can integrate an

equation for the ‘entropy’

→ the entropic function A(s) is defined by

p = A(s)ργ .

the internal energy follows as

ǫ =
A(s)

γ − 1
ργ−1 (∗)

→ the time evolution of A(s) depends on the emissivity per unit

volume Γ (heat sources and sinks) and on the viscosity; one

possible SPH implementation is

dAi

dt
= −γ − 1

ρi
Γi +

1

2

γ − 1

ργ−1
i

Ni
∑

=1
mjΠij~vij · ~∇iW (rij, hij) .

→ the time evolution of ǫi is then derived from this equation via

(*), the temperature Ti of particle i is directly proportional

to ǫi.



SPH Basics:

• time integration

◦ time integration is done similar to N -body methods

◦ there are two main schemes: leap-frog and predictor-corrector

methods

◦ variable timesteps

→ efficient use of CPU power in strongly inhomogeneous sys-

tems

→ typically, the lengths of timestep bins differ by factor 2

→ criteria for chosing the timestep

· Courant-Friedrichs-Lewy plus viscosity criterion

δtcv =
0.3 h

cs + h|~∇ · ~v | + 1.2(αcs + βh|~∇ · ~v |)
.

· force criterion

δtf = 0.3

√

√

√

√

√

√

h

| ~F |
,

· global error tolerance criteria are possible in Runge-Kutta

schemes

• boundary conditions

◦ closed (or periodic) boundaries can be handled by introducing

‘ghost’ particles

◦ open boundaries are difficult, because of large pressure gradients

(e.g. water surface on air)



Modifications of SPH:
o

• alternative ways to force anti-symmetry
◦ instead of using one kernel and take a mean value for h, average

of the kernel contributions of each particle:

W



|~ri − ~rj|,
hi + hj

2



→1

2

{

W (|~ri − ~rj|, hi) + W (|~ri − ~rj|, hj)
}

◦ instead of the artithmetic mean for the quantity p/ρ2 use the

geometric one:

1

2







pi

ρ2
i

+
pj

ρ2
j





 −→
√

pipj

ρiρj

• XSPH (Monaghan 1989)

◦ in the standard formulation the particle is advanced by integrat-

ing
d~ri

dt
= ~vi

◦ it may be more physical (and in the spirit of SPH) when moving

the particle with the smoothed flow velocity

d~ri

dt
= ~̂vi with ~̂vi = ~vi + η

Ni
∑

j=1

mj

ρij
(~vi − ~vj)W (|~ri − ~rj|, hij)

where η ≈ 0.5.

◦ this allows for a strongly reduced artificial viscosity term −→
reach higher Reynolds numbers when modeling interstellar tur-

bulence

◦ XSPH also allows for the introduction of the Cassama-Holm

subgrid model of turbulence (Monaghan 2002 – astro-ph/0204118)



Modifications of SPH:

• alternative formulations of viscosity

◦ Balsara viscosity:

→ standard viscosity generates entropy in shear flows (Balsara

1989)

→ add a correction term ∝ ~∇× ~v

→ new viscosity:

Πij =











(−αcijµij + βµ2
ij)/ρij for ~vij · ~rij ≤ 0 ,

0 for ~vij · ~rij > 0 ,

where now

µij =
h~vij · ~rij

~r2
ij + 0.01h2

fi + fj

2

with

fi =
|~∇ · ~v|i

|~∇ · ~v|i + |~∇× ~v|i + 0.0001ci/h

→ this representation vanishes in pure shear flows, but is iden-

tical to the standard version in purely compressional flows

◦ for more physically motivated viscosity see

→ Flebbe et al., ApJ, 431, 754 (1994)

→ Watkins et al., ApJS, 119, 177 (1996)

→ etc



Modifications of SPH:

• alternative formulations of viscosity

◦ switch to reduce viscosity (Morris & Monaghan 1997)

→ artificial viscosity is a strongly undesired quantity, as it leads

to dissipation that is much higher than in astrophysical gases

→ for realistic models one wants as little artificial viscosity as

possible (e.g. important for turbulence simulations — we

model ‘honey’ instead of interstellar gas)

→ in priciple, artificial viscosity is only needed in regions of

strong compression (shocks)

→ introduce a switch which leads to high Πij when ~∇ · ~v be-

comes strongly negative and then let Πij ‘decay’ to zero af-

terwards

→ implementation:

· each particle i carries its own value αi (and βi, e.g. with

βi = 2αi)

· time evolution

αi = αmin + A exp(−t/τ )

with decay time τ ≈ 10h/cs.



Modifications of SPH:

• fully conservative formulation using Lagrange
multipliers

- Springel & Hernquist (2002, astro-ph/0111016)

- Monaghan (2002, astro-ph/0204118)

◦ the Lagrangian for compressible flows which are generated by

the thermal energy ǫ(ρ, s) acts as effective potential is

L =
∫

ρ







1

2
v2 − u(ρ, s)







d3r.

equations of motion follow with s = const from

d

dt

∂L
∂~v
− ∂L

∂~r
= 0

◦ after some SPH arithmetics, one can derive the following accel-

eration equation for particle i

d~vi

dt
= −

Ni
∑

j=1
mj











1

fi

pi

ρ2
i

~∇iW (rij, hi) +
1

fj

pj

ρ2
j

~∇iW (rij, hj)











where

fi =



1 +
hi

3ρi

∂ρi

∂hi





◦ the Lagrange multiplier used here is the constraint that hi is ad-

justed such that each smoothing volume contains a fixed amount

of mass

◦ under this contraint, the formulation conserves energy, entropy,

linear and angular momentum (~∇h terms are taken into account

implicitely)



Properties of SPH:

• no clear mathematical convergence study−→ reliability of method

needs to rely on comparison with analytic solutions and on empirical

tests (e.g. comparing results obtained with different particle num-

bers)

• SPH is more dissipative than most grid-based methods

• SPH is Lagrangian, it can resolve large density contrasts whereever

needed (regions of interest need not to be defined in advance)

• SPH provides good resolution in high-density regions, however, only

poorly resolves low-density regions

• SPH generally performes poorly when handling shocks (but see

GPH)

• SPH is a particle scheme −→ good for describing the transition

from gaseous to stellar-dynamical systems (i.e. good for describing

the formation of stellar clusters)

• SPH cannot (yet) handle magnetic field satisfactory (problems with

stability and with ~∇ · ~B = 0 requirement)

• SPH can be combined with the special purpose hardware GRAPE


