Stellar Astronomy and Astrophysics (SS09):

Exercise 1 (for April 20, 2008)

1. Pressure-free collapse of homogeneous isothermal spheres

Take an isothermal sphere with constant density. Neglecting the effects of pressure, one can analytically derive the free-fall time as well as the time evolution of the density. Start doing this by looking at the equations of hydrodynamics and consider them in one dimension.

$\rho \frac{dv}{dt} = -\vec{\nabla}P - \rho \vec{\nabla}\Phi$	equation of motion
$\frac{d\rho}{dt} + \rho \vec{\nabla} \cdot \vec{v} = 0$	continuity equation
$\vec{\nabla}^2 \Phi = 4\pi G \rho$	Poisson equation
$\left(rac{dP}{d ho} ight) = c_s^2$	equation of state

Here ρ , \vec{v} , P, and Φ are density, velocity, pressure and gravitational potential, respectively. And G and c_s are gravitational constant and isothermal sound speed.

Combine these equations to find $\vec{v}(t)$ as function of radius $\vec{r}(t)$. Solve to find the collapse time. Consider again the continuity equation to find $\rho(t)$.

Note, that this exercise is optional and should be regarded as a help for a more troughoutly understanding of the lecture on star formation. It does not need to be solved at home but will be discussed during the tutorial.

2. Intensity, total flux:

Suppose that the intensity of a light bulb varies with direction as

$$I(\theta) = \frac{1}{2}I(0)(1 + \cos\theta)$$

Draw this intensity distribution vs. θ and vs. $\mu = \cos \theta$. What do you obtain for J, F, and K in terms of the forward intensity I(0)?

3. Blackbody:

1. By what factor should the temperature of a black body be increased so that

a: The integrated flux (over all frequencies) is doubled?

b: The frequency at which the intensity is greatest is doubled?

2. What is the total number of photons inside an oven set at 200 Celsius with a volume of 1 m³.

3. The tungsen filament of a light bulb has a temperature of 2700 K. If we assume blackbody radiation:

- a: What amount of the energy is radiated in the visible range of the electromagnetic spectrum (4000-7000 Å).
- **b**: What is the energy per blackbody photon at the center of the sun $(T = 1.58 \cdot 10^7 \text{ K} \text{ and}$ in the solar photosphere (T = 5770 K) expressed in electron Volts $(1 \text{ eV} = 1.6 \cdot 10^{-12} \text{ erg})$.

4. Energy density:

Calculate and plot the energy density u_{ν} and u_{λ} of the cosmic background radiation ($T = 2.725 \,\mathrm{K}$) and the integrated energy density.