Stellar Astronomy and Astrophysics (SS09):

Exercise 5 (for June 15, 2009)

1. Period-Luminosity relation for Cepheids:

In the lecture we derived

- 1. the period-density relation $P \propto \rho^{-1/2}$,
- 2. A Mass-Luminosity relation $L \propto M^{\alpha}$,
- 3. and have shown that the instability strip for pulsation is restricted to a narrow strip of almost constant T_{eff} in the HRD.
- a) If we assume that for Cepheids $\alpha = 4$ (a somewhat higher value than for main-sequence stars), show that a period-luminosity relation (log L vs. log P exists. Hint: Use Stefan-Boltzmann's law.
- b) Assume that the instability strip is not at $T_{\text{eff}} = \text{const.}$ but more accurately given by $\log L = \beta \log T_{\text{eff}} + \delta$. How does the period-luminosity function look like in this case?
- c) Is this relation sufficient to determine the distance of a Cepheid from measuring its period and an apparent magnitude?

2. Convection:

In the lecture the Schwartzschild criterion for convection was derived. Convection occurs, if the logarithmic temperature gradient $\nabla = \left(\frac{d \ln T}{d \ln P}\right)$ for radiation is larger than that for the adiabatic one:

$$\nabla_{\rm rad} > \nabla_{\rm ad} = 1 - \frac{1}{\gamma} \tag{1}$$

with $\gamma = \frac{c_P}{c_V}$ being the ratio between the specific heats. This equation was derived under the assumption that $\frac{d\rho_{\text{blob}}}{dr} < \frac{d\rho_{\text{sur}}}{dr}$ is equivalent to $\frac{dT_{\text{blob}}}{dr} > \frac{dT_{\text{sur}}}{dr}$. For this argument we used the equation of state, which in the case of an ideal gas is $P = \frac{\rho R}{\mu}T$. However, the argument is only valid if the mean molecular weight μ is constant.

Assume now that due to nuclear burning there is a chemical gradient in the star (μ is a function of the radial coordinate r). How would the convection criterion change if we assume that such a chemical gradient exists?

Ansatz: $\frac{d\rho}{\rho} = \frac{\rho(r+dr)-\rho(r)}{\rho(r)}$. Convection occurs, if the density $\rho_{\text{blob}}(r+dr) = \rho_{\text{ad}}(r+dr)$ is smaller than $\rho_{\text{sur}}(r+dr)$. Further assume that the chemical compositon in the blob remains constant $\mu_{\text{blob}}(r+dr) = \mu_{\text{blob}}(r)$, while it is changing in the surrounding $\mu_{\text{sur}}(r) \neq \mu_{\text{sur}}(r+dr)$.

Is convection easier or suppressed if $\mu_{sur}(r + dr) < \mu_{sur}(r)$? Do you see any problem using the modified convection criterion?