Einführung in die Astronomie und Astrophysik 2

Ralf Klessen, ZAH/ITA, Albert-Ueberle-Str. 2

Physical Processes in the ISM — Hand in on May 12, 2011

4.1 Angular momentum

- 1. Estimate the total angular momentum of a molecular cloud core with a radius of 0.1 pc (pc = 3.08×10^{18} cm), a mean density of $\rho = 1.67 \times 10^{-20}$ g cm⁻³ and a constant angular velocity of $\Omega = 10^{-14}$ rad sec⁻¹.
- 2. Assuming the above cloud collapses to a single solar type star, what would be the rotational velocity at its surface (solar mass $M_{\odot} = 2 \times 10^{33}$ g)?
- 3. Could gravity hold this object together? Discuss this result.
- 4. Calculate the total angular momentum of the Sun assuming a mean rotational period of 30 days. (4 points)

4.2 HI 21cm line emission

The ground state of atomic hydrogen is split into two hyperfine levels, 0 and 1, with statistical weights $g_0 = 1$ and $g_1 = 3$. Radiative transitions from upper level 1 to lower level 0 produce emission at a frequency $\nu_{10} = 1420.40575$ MHz – the famous 21 cm hydrogen line. The spontaneous transition probability for this line is $A_{10} = 2.9 \times 10^{-15}$ s⁻¹.

If we can ignore the effects of indirect radiative pumping, then the number densities of atoms in levels 0 and 1, n_0 and n_1 are related by

$$(C_{01}n_{\rm H} + B_{01}I_{10})n_0 = (C_{10}n_{\rm H} + B_{10}I_{10} + A_{10})n_1, \tag{1}$$

where I_{10} is the specific intensity at ν_{10} and C_{01} and C_{10} are the rate coefficients for the collisional excitation and de-excitation of level 1, which are given approximately by

$$C_{10} = 2.7 \times 10^{-13} T^{1.4} \tag{2}$$

$$C_{01} = 3 C_{10} \exp\left(\frac{-E_{10}}{kT}\right),$$
(3)

for kinetic temperatures in the range 20 < T < 60 K, where $E_{10} = h\nu_{10}$.

- 1. An interstellar cloud of cold atomic hydrogen with kinetic temperature T and number density $n_{\rm H}$ is illuminated by an external radiation field with brightness temperature $T_{\rm b}$ at frequency ν_{10} . Recall that the brightness temperature is defined as $I_{10} = B_{\nu_{10}}(T_{\rm b})$, where B_{ν} is the Planck function. Calculate the excitation temperature $T_{\rm ex}$ (i.e. the *effective* temperature which would correspond to a thermal population with $T_{\rm ex}$) of the cloud if
 - (i) $C_{10}n_{\rm H} \ll A_{10}$;
 - (ii) $C_{10}n_{\rm H} \gg A_{10}$.

Assume that the opacity τ_{10} of the cloud is negligible.

2. Calculate the brightness temperature of the cloud in terms of $T_{\rm b}$ and $T_{\rm ex}$ for the case where the opacity τ_{10} is not negligible. (6 points)