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1. Convection:

In the lecture the Schwartzschild criterion for convection was derived. Convection occurs, if the
logarithmic temperature gradient ∇ =

�
d ln T
d ln P

�
for radition is larger than that for the adiabatic

one:

∇rad > ∇ad = 1− 1

γ
(1)

with γ = cP
cV

being the ratio between the specific heats. This equation was derived under the

assumption that dρblob
dr < dρsur

dr is equivalent to dTblob
dr > dTsur

dr . For this argument we used the
equation of state, which in the case of an ideal gas is P = ρR

µ T . However, the argument is only
valid if the mean molecular weight µ is constant.

Assume now that due to nuclear burning there is a chemical gradient in the star (µ is a
function of the radial coordinate r). How would the convection criterion change if we assume
that such a chemical gradient exists?

Ansatz: dρ
ρ = ρ(r+dr)−ρ(r)

ρ(r) . Convection occurs, if the density ρblob(r + dr) = ρad(r + dr) is

smaller than ρsur(r + dr) . Further assume that the chemical compositon in the blob remains
constant µblob(r + dr) = µblob(r), while it is changing in the surrounding µsur(r) �= µsur(r + dr).

Is convection easier or suppressed if µsur(r + dr) < µsur(r)? Do you see any problem using
the modified convection criterion?

2. Did it ever happen?

In the lecture we have calculated that the thermal energy of protons is by far not high enough
to overcome the Coulomb barrier. Our assumptions were that the protons must come closer to
each other than 10−15 m= 10−13 m. We equate the mean thermal energy 3

2kT with the Coulomb
energy at that distance:

3

2
kT =

Z1Z2e2

r
(2)

with Z1 = Z2 = 1 (charge of the protons), r = 10−13 cm, k = 1.38·10−16 erg K−1 (Boltzmann
constant), e = 4.80 · 10−10 esu.

Then it follows that

T =
2Z1Z2e2

3kr
= 1.1 · 1010 K (3)

The temperature in the sun is, however, only about 14 million K. If we had the temperature
of 1010 K, the fusion would be explosive (because a large fraction of the protons could fuse).
Since the energies are distributed according to the Maxwell-Boltzmann distribution which has
a tail (albeit exponentially suppressed) some particles have energies much higher than the
average. The fraction of particles with the required energy is therefore

fraction = e−
1.1·1010
1.4·107 ≈ 10−341 (4)

If we assume that we have 1080 atoms in the visible universe, we can assume that it is almost
impossible that any particle will ever have the right energy. However, our argument is only
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“instantaneous”. Let us assume that all matter in the visible universe is made up of hydrogen
and has a temperature of 14 million K and a density of the solar center (160 g cm−3). Did it
ever happen in a Hubble time (1010 yrs) that a particle classically had the right energy to fuse?
Assume that large-angle collisions between protons happen when the kinetic energy equals the
Coulomb energy. A proton mass is 1.67 · 10−24 g.

3. Relative Abundances for CNO in equilibrium:

Assume that the CNO cycle is in equilibrium and the temperature is about T = 2 · 107 K.
In this case the lifetimes against proton capture is τ(15N) = 30 years, τ(13C) = 1600 years,
τ(12C) = 6600 years, τ(14N) = 6 · 105 years. Oxygen decays in τ(15O) = 1 minute. What are
the abundances of these CNO isotopes in equilibrium?
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