Stellar Astronomy and Astrophysics (SS12)

Stefan Jordan and Ralf Klessen

Exercise 4 for May 22, 2012

1. Absorption of a photon by an isolated electron:

Use the laws of the conservation of relativistic energy and momentum in order to show that an isolated electron cannot absorb a photon

2. Mean free path of a photon:

Assume that we have pure (true) absorption, i.e. there is not way of replenishing the photons lost from the beam. In the solar photosphere the typical density is about $\rho=2.1 \cdot 10^{-4} \mathrm{~kg} \mathrm{~m}^{-3}$, the opacity at $5000 \AA$ is $\kappa=0.03 \mathrm{~m}^{2} \mathrm{~kg}^{-1}$.
a What is the characteristic distance traveled by a photon before being removed from the beam?
b Assume that we had the same opacity in the Earth's atmosphere $\left(\rho=1.2 \mathrm{~kg} \mathrm{~m}^{-3}\right)$. How far could we see?

3. Blackbody:

1. By what factor should the temperature of a black body be increased so that
a: The integrated flux (over all frequencies) is doubled?
b: The frequency at which the intensity is greatest is doubled?
2.a Find an expression for $n_{\lambda} \mathrm{d} \lambda$, the number density of blackbody photons (the number of blackbody photons per cm^{3}) with a wavelength between λ and $\lambda+\mathrm{d} \lambda$.
2.b What is the total number of photons inside an oven set at 200 Celsius with a volume of $1 \mathrm{~m}^{3}$.
2. The tungsten filament of a light bulb has a temperature of 2700 K . If we assume blackbody radiation:
a: What amount of the energy is radiated in the visible range of the electromagnetic spectrum (4000-7000 \AA).
b: What is the energy per blackbody photon at the center of the $\operatorname{sun}\left(T=1.58 \cdot 10^{7} \mathrm{~K}\right.$ and in the solar photosphere $(T=5770 \mathrm{~K})$ expressed in electron Volts $\left(1 \mathrm{eV}=1.6 \cdot 10^{-12} \mathrm{erg}\right)$.
