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Simple models for stellar structure

6.1 Hertzsprung-Russell Diagram for Simple Model Stars

Consider a family of chemically homogeneous stars that are similar in every respect except for
their masses M and radii R. Using a dimensionless radius variable, x = r/R, we can define
similarity functions F (x) such that

ρ(r) =
M

R3
Fρ(x) and m(r) = M Fm(x) .

Assume an ideal equation of state for the stellar material, i.e. P = ρkBT/µm with Boltzmann’s
constant kB and mean molecular mass µm = µmp (where µ =mean molecular weight and
mp =proton mass) and with P and T being pressure and temperature. Assume furthermore
that energy is transported radiatively with an opacity obeying Kramer’s law (κ ∝ ρT−7/2)
and that nuclear energy is generated by the PP chain where the energy production scales as
εPP ∝ ρ2T 4.

a) Use the fundamental equations of stellar structure as outlined in the lecture to derive the
following scaling relations for pressure P , temperature T , and energy flux due to radiatve
transport Lrad as well as due to nuclear fusion Lnuc:

P (r) =
M2

R4
FP (x) ,

T (r) =
M

R
FT (x) ,

Lrad(r) =
M5.5

R0.5
Frad(x) ,

Lnuc(r) =
M6

R7
Fnuc(x) ,

where again the F -functions are common to all family members.

b) Note that the energy flux transported by radiative diffusion increases slowly while the flux
generated by nuclear fusion rises rapidly as the star contracts. Sketch Lrad and Lnuc as
function of radius. Find the radius and luminosity as function of total mass at which the
PP chain can produce enough energy to compensate the radiative losses at the surface.
This is when the star reaches a quasi-equilibrium state: the stellar main sequence.

c) Demonstrate that all stars of the homologous family in this phase lie on a line in the
Hertzsprung-Russell diagram with

L ∝ T 4.12
E

with TE being the effective temperature at the surface.



6.2 Polytropic spheres:

The Lane-Emden equation for a polytropic index n (P = Kργ = Kρ(n+1)/n) is

1

ξ2

d

dξ

[
ξ2 dDn

dξ

]
= −Dn

n ,

where ρ(r) = ρc[Dn(r)]n with 0 ≤ Dn ≤ 1, and where r = λnξ with λn =
[
(n+ 1)

(
Kρ

(1−n)/n
c

4πG

)]1/2
.

The surface is defined by Dn(ξsurf) = 0, and the inner boundary is dDn/dξ = 0 at ξ = 0. Usu-
ally, solutions can only be obtained numerically. However, there are three values of n for which
analytic expressions can be obtained.

(a) Show that the n = 0 polytrope has a solution given by

D0(ξ) = 1− ξ2

6
, with ξsurf =

√
6.

(b) Show that for n = 1 the solution is

D1(ξ) =
sin ξ

ξ
, with ξsurf = π.

(c) There is also an analytic solution for n = 5. It is given by

D5(ξ) = (1 + ξ2/3)−1/2, with ξsurf →∞.

Is the total mass finite?

(d) Plot the density structure for n = 0, 1, and 5 (ρn/ρc vs. r/λn).

This exercise is voluntary.
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