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1. Parker wind solution 25 pt

Consider a steady, radial flow of an ideal gas in the gravitational field of a star. Assume
a polytropic equation of state,

P = K ργ , (1)

where K is constant along the streamlines and γ < 5/3.

(a) Show that the continuity equation can be written as

4π r2 ρ v = Ṁ , (2)

where v is the radial velocity and Ṁ is the constant rate of change of mass. Derive
the relevant Euler equation for this spherically symmetric system.

(b) Show that a smooth solution containing both sub- and supersonic regions of the
flow exists only if

v2 = c2s at r =
GM

2c2s
, (3)

where cs =
√
γP/ρ is the speed of sound (which depends on r!).

(c) Imposing this condition and the boundary conditions

ρ = ρ∗ and cs = c∗ (4)

at the surface r = r∗ of the star, find the mass loss rate in the wind in the limit of
low surface velocity v∗ ≪ c∗, given that the surface temperature is large compared
to the “virial” temperature, i.e. c2∗ ≫ GM/r∗.

(d) Find the location of the sonic point and discuss the behavior of the solutions as
γ → 5/3.



2. Evolution of a supernova remnant 25 pt

Assume first the supernova remnant in its “adiabatic” phase: all the mass of the
remnant is concentrated in a thin shell located at the position of the shock at radius,
r = rs(t), where M ≈ 4πr3sρ1/3 with ρ1 being the density of the interstellar medium.
Furthermore, the pressure P (t) interior to the shock can be considered uniform and
the equations of motion for the thin shell is then

d

dt
(Mṙs) = 4π r2s P (5)

where ṙs ≡ drs/dt.

(a) Use the jump conditions for a strong shock of an ideal gas with an adiabatic index
γ = 5/3 to estimate the thickness ∆r of the shell in terms of rs (assume the shell
density equals the post-shock density).

(b) Given that in the Sedov phase the total internal energy of the gas in the remnant
equals 80% of the explosion energy ESN, show that the equations of motion have
a solution of the form

rs = A tα . (6)

Find the constants α and A.

Assume now that the shell cools rapidly. Because the cooling rate in the gas is propor-
tional to the density squared there is a phase in the evolution when the thermal energy
of the freshly shocked gas can no longer be shared evenly throughout the remnant, as
it was in the adiabatic phase discussed above. Most of the energy is radiated away
and a cool dense shell forms around the still hot interior. To a good approximation
the interior can be described as a hot adiabatic gas bubble of constant mass (again
equation of state P ∝ ργ with γ = 5/3). The evolution of the blast wave is now driven
by the adiabatic expansion of this bubble.

(c) Show that this pressure-driven snow plow phase admits again a solution of the
form

rs ∝ tβ , (7)

and find the index β.


