Homework Assignment \#7 is due Wednesday, Dec. 2, 2015

Theoretical Astrophysics (MKTP2)

Winter Semester 2015/2016
Ralf Klessen, ZAH/ITA, Albert-Ueberle-Str. 2, 69120 Heidelberg

1. Stability of magnetized gas clouds

Consider a spherical, self-gravitating gas cloud with homogeneous density which is threaded by a uniform magnetic field of strength \vec{B}. Assume that the cloud has a radius of $r=0.1 \mathrm{pc}$ and a mean density of $\bar{\rho}_{n}=1.67 \times 10^{-20} \mathrm{~g} \mathrm{~cm}^{-3}$.
(a) Calculate the mass-to-flux ratio given by $\mu=M_{\mathrm{cl}} / \Phi$, where M_{cl} is the total mass of the cloud and $\Phi=\pi r^{2}|\vec{B}|$ is the total magnetic flux in the scenario under consideration. Assume a magnetic field strength of $B=30 \mu \mathrm{G}$.
(b) The critical mass-to-flux ratio for gravitational collapse of the magnetized cloud can be derived as $\mu_{\text {crit }}=0.13 G^{-1 / 2}$, where G is the gravitational constant. Calculate the critical magnetic field strength $B_{\text {crit }}$ for which the cloud is stable against gravitational collapse.
(c) The ambipolar diffusion timescale is defined as

$$
\begin{equation*}
\tau_{A}=4 \pi \gamma \rho_{i} \rho_{n} L^{2} / B^{2} \tag{1}
\end{equation*}
$$

where ρ_{i} and ρ_{n} denote the density of the ions and neutrals in the gas, respectively, and L corresponds to the size of the cloud. Assuming that ρ_{i} is given by $3.3 \times$ $10^{-27} \mathrm{~g} \mathrm{~cm}^{-3} \cdot\left(\rho_{n} /\left[3.85 \times 10^{-19} \mathrm{~g} \mathrm{~cm}^{-3}\right]\right)^{1 / 2}$ and the friction coefficient is $\gamma=3.3 \times$ $10^{13} \mathrm{~g}^{-1} \mathrm{~cm}^{3} \mathrm{~s}^{-1}$, calculate τ_{A} for the magnetic cloud considered above.
Note that in steady state, the rate of recombinations of electrons and ions is proportional to ρ_{i}^{2} and that it equals the rate at which cosmic rays ionize neutrals, which is proportional to ρ_{n}. Therefore we get $\rho_{i} \propto \rho_{n}^{1 / 2}$, explaining the above relation.
Also calculate the corresponding gravitational free-fall timescale $\tau_{\mathrm{ff}}=\left(3 \pi / 32 \mathrm{G} \rho_{n}\right)^{1 / 2}$ of the system. Discuss the consequences of the difference between the two timescales. What do you conclude about the evolution of the gas cloud?

Consider a uniform gaseous disk of density ρ_{cl} and half-thickness Z rotating rigidly with an initial angular velocity Ω_{0}. Furthermore assume the disk is threaded with a magnetic field \vec{B} of strength B_{0}, initially uniform and parallel to the rotation axis. The magnetic field links the disk with the external medium of density $\rho_{\text {ext }}$ which is initially at rest. Assume axisymmetry and use cylindrical coordinates (R, φ, z) for the calculations.
(a) Derive the evolution equations for the toroidal magnetic field B_{φ} and the angular velocity Ω (where $v_{\varphi}=R \Omega$) outside of the disk, i.e. $|z|>Z$, assuming that the radial velocity v_{r} and the poloidal velocity v_{z} are negligible small (compared to the Alfvén velocity).
(b) Show that the evolution of the external medium can be expressed by the wave equation

$$
\begin{equation*}
\frac{\partial^{2} \Omega}{\partial t^{2}}=v_{\mathrm{A}, \mathrm{ext}}^{2} \frac{\partial^{2} \Omega}{\partial z^{2}} \tag{2}
\end{equation*}
$$

where $v_{\mathrm{A}, \text { ext }}=B_{0} / \sqrt{4 \pi \rho_{\mathrm{ext}}}$ is the Alfvén velocity in this medium.
(c) Derive the evolution equation of the angular velocity at the surface of the disk, i.e. $|z|=Z$, using the torque per unit area, $N=R B_{0} B_{\varphi} / 4 \pi$, which the magnetic field exerts on the surface of the disk. Result:

$$
\begin{equation*}
\frac{\partial^{2} \Omega_{\mathrm{cl}}}{\partial t^{2}}=\left.\frac{1}{Z} \frac{\rho_{\mathrm{ext}}}{\rho_{\mathrm{cl}}} v_{\mathrm{A}, \mathrm{ext}}^{2} \frac{\partial \Omega}{\partial z}\right|_{|z|=Z} \tag{3}
\end{equation*}
$$

(d) Bonus: Combine equations (2) and (3) to calculate the spin-down time of the disk.

$$
(+10 \mathrm{pt})
$$

Hint: Use the solution of equation (2) at the disk surface $|z|=Z$.

