GRAVOTURBULENT STAR FORMATION

Ralf Klessen

Emmy Noether Research Group (DFG) Astrophysikalisches Institut Potsdam

Wengen, September 27, 2004

Collaborators

Many thanks to ...

- Javier Ballesteros-Paredes (UNAM, Morelia)
- Peter Bodenheimer (UC Santa Cruz)
- Andreas Burkert (Uni. München)
- Fabian Heitsch (Uni. München)
- Dirk Froebrich (Dublin University)
- Simon Glover (AMNH, New York)
- Eva Grebel (Universität Basel)
- Spyros Kitsionas (U. Athens)
- Pavel Kroupa (Universität Bonn)
- Katharina Jappsen (AIP, Potsdam)
- Richard Larson (Yale University)

- Yuexing Li (Columbia University)
- Doug Lin (UC Santa Cruz)
- Mordecai-Mark Mac Low (AMNH, New York)
- Stefan Schmeja (AIP, Potsdam)
- Michael Smith (Armagh University)
- Marco Spaans (RU Groningen)
- Rainer Spurzem (ARI, Heidelberg)
- Enrique Vazquez-Semadeni (UNAM, Morelia)
- HongSheng Zhao (IoA, Cambridge)
- Hans Zinnecker (AIP, Potsdam)

Overview

1. Physics of star formation

2. Numerical approach to star formation

Star formation in "typical" spiral:

(from the Hubble Heritage Team)

NGC4622

- Star formation always is associated with clouds of gas and dust.
- Star formation
 is essentially a
 local phenomenon

(on ~pc scale)

 HOW is star formation is *influenced* by *global* properties of the galaxy? Ralf Klessen: Wengen, 27.09.2004

Local star forming region: The Trapezium Cluster in Orion

Orion molecular cloud

The Orion molecular cloud is the birth- place of several young embedded star clusters.

The Trapezium cluster is only visible in the IR and contains about 2000 newly born stars.

Trapezium cluster

Trapezium Cluster (detail)

- stars form
 in clusters
- stars form
 in molecular
 clouds
- (proto)stellar
 feedback is
 important

(color composite J,H,K by M. McCaughrean, VLT, Paranal, Chile)

The star formation process

- How do stars form?
- What determines *when* and *where* stars form?
- What regulates the process and determines its efficiency?
- How do global properties of the galaxy influence star formation (a local process)?
- Are there different modes of SF? (Starburst galaxies vs. LSBs, isolated SF vs. clustered SF)

What physical processes initiate and control the formation of stars?

Gravoturbulent star formation

• New theory of star formation:

Star formation is controlled by interplay between gravity and supersonic turbulence!

• Dual role of turbulence:

- stability on large scales
- initiating collapse on small scales

(full detail in Mac Low & Klessen, 2004, Rev. Mod. Phys., 76, 125-194) Ralf Klessen: Wengen, 27.09.2004

Gravoturbulent Star Formation

- Supersonic turbulence in the galactic disk creates strong density fluctuations (in shocks: δρ/ρ ≈ M²)
 - chemical phase transition: atomic \rightarrow molecular
 - cooling instability
 - gravitational instability
- Cold *molecular clouds* form at the high-density peaks.
- Turbulence creates density structure, gravity selects for collapse

> GRAVOTUBULENT FRAGMENTATION

 Turbulent cascade: Local compression within a cloud provokes collapse → individual stars and star clusters

Star formation on global scales

density fluctuations in warm atomar ISM caused by supersonic turbulence

some are dense enough to form H2 within "reasonable timescale" →molecular clouds

external perturbuations (i.e. potential changes) increase likelihood

Molecular clouds

- MC's are massive $(M_{cloud} = 10^3 \dots 10^6 M_{\odot} \leftrightarrow M_{Jeans} = 1 \dots 100 M_{\odot})$
- MC's are *cold* (T_{cloud} = 10 ... 20 K)
- MC's are *transient* (life time \approx few $\tau_{cross} \approx$ few $\tau_{ff} \approx$ few 10⁶ yr)
- MC structure is determined by *supersonic turbulence*

(density and velocity structure dominated by large-scale modes)

- Energy budget: Turbulent energy
 a gravitational energy > magnetic energy
- BUT: Turbulence decays rapidly $(\tau_{decay} \le \tau_{ff} \approx 10^{6} \text{ yr})$ \rightarrow need for certain degree of energy input
- Typical SF efficiency ~5%

Turbulent Jeans analysis

How do perturbations in self-gravitating supersonically turbulent gas evolve?

• Classical approach: *dispersion relations* $\omega^2 - c_s^2 k^2 + 4\pi G \rho_0 = 0$ (Jeans 1921) to include turbulence: $c_s^2 \rightarrow c_s^2 + 1/3 \langle v^2 \rangle$ (Chandrasekhar 1951)

• Consider wavelength dependence: $c_s^2 \rightarrow c_s^2 + 1/3 v^2(k)$

- For *incompressible turbulence:* support needs to act on wavelengths *below* the *thermal Jeans scale.* (Bonazzola et al. 1992)
- For *compressible turbulence:* 1D simulations show high-Mach number turbulence induces (local) collapse. (Gammie & Ostriker 1996)
- 2000/01: systematic 3D large-eddy simulations of (M)HD turbulence with SPH and ZEUS (Klessen, Heitsch, & Mac Low 2000 + Heitsch, Mac Low, & Klessen 2001)
- In the past 5-6 years: many studies with SPH, different finite difference schemes, spectral codes, BGK, etc....

Model of gravoturbulent fragmentation

- SPH model with
 - 1.6x10⁶ particles
- large-scale driven turbulence
- Mach number \mathcal{M} = 6
- periodic boundaries
- physical scaling:

(from Klessen & Ballesteros, in preparaton)

Gravoturbulent fragmentation

<u>Gravoturbulent fragmen-</u> tation in molecular clouds:

- SPH model with 1.6x10⁶ particles
- large-scale driven turbulence
- Mach number \mathcal{M} = 6
- periodic boundaries
- physical scaling:

"Taurus":

- → density $n(H_2) \approx 10^2 \text{ cm}^{-3}$
- → L = 6 pc, M = 5000 M/

What can we learn from that?

• global properties (statistical properties)

- SF efficiency
- SF time scale
- IMF formation of stellar clusters
- description of self-gravitating turbulent systems (pdf's, Δ -var.)
- chemical mixing properties
- *local properties* (properties of individual objects)
 - properties of individual clumps (e.g. shape, radial profile)
 - accretion history of individual protostars (dM/dt vs. t, j vs. t)
 - binary (proto)stars (eccentricity, mass ratio, etc.)
 - SED's of individual protostars
 - dynamic PMS tracks: T_{bol}-L_{bol} evolution

Star cluster formation

Most stars form in clusters \rightarrow star formation = cluster formation

Trajectories of protostars in a nascent dense cluster created by gravoturbulent fragmentation (from Klessen & Burkert 2000, ApJS, 128, 287) Ralf Klessen: Wengen, 27.09.2004

ssen: Wengen, 27.09.2004

Protostellar mass spectra I

 gravoturbulent fragmentation of self-gravitating isothermal clouds gives mass spectra that come close to IMF

⁽from Klessen & Burkert 2000, ApJS, 128, 287)

Dependency on EOS

• degree of fragmentation depends on EOS!

polytropic EOS: p ∝ρ^γ

• γ <1: dense cluster of low-mass stars

• $\gamma > 1$: isolated high-mass stars

(see Li, Klessen, & Mac Low 2003, ApJ, 592, 975)

Dependency on EOS

for γ <1 fragmentation is enhanced \rightarrow *cluster of low-mass stars* for γ >1 it is suppressed \rightarrow formation of *isolated massive stars*

(from Li, Klessen, & Mac Low 2003, ApJ, 592, 975)

How does that work?

(1) $\mathbf{p} \propto \rho^{\gamma} \rightarrow \rho \propto p^{1/\gamma}$

(2) $M_{jeans} \propto \gamma^{3/2} \rho^{(3\gamma-4)/2}$

γ<1: → large density excursion for given pressure
 → ⟨M_{jeans}⟩ becomes small
 → number of fluctuations with M > M_{ieans} is large

• $\gamma > 1: \rightarrow small$ density excursion for given pressure $\rightarrow \langle M_{ieans} \rangle$ is large

 \rightarrow only few and massive clumps exceed M_{ieans}

Implications

• degree of fragmentation depends on EOS!

- polytropic EOS: p ∝ρ^γ
- γ <1: dense cluster of low-mass stars
- γ>1: isolated high-mass stars
- implications for very *metal-poor* stars (expect Pop III stars in the early universe to be massive and form in isolation)

```
(see Li, Klessen, & Mac Low 2003, ApJ, 592, 975;
also Jappsen, Klessen, Larson, Li, Mac Low,
in preparation)
```

• Observational findings: isolated O stars in LMC (and M51)?

More realistic models

 But EOS depends on *chemical state*, on balance between *heating* and *cooling*

 $\rightarrow \gamma$ is function of $\rho \parallel \parallel$

 New models with piecewise polytropic EOS: (Jappsen, Klessen, Larson, Li, Mac Low, in preparation)

- γ = 0.7 for ρ < ρ_c
- $\gamma = 1.1$ for $\rho \ge \rho_c$
- we vary ρ_c from 4.3×10⁴ cm⁻³ to 4.3×10⁸ cm⁻³

• most realistic case for Galactic MC's: $\rho_c \approx 2 \times 10^6$ cm⁻³

(see, e.g., Spaans & Silk, 2000, ApJ, 538, 115)

(Jappsen, Klessen, Larson, Li, Mac Low, in preparation)

- Supersonic turbulence is scale free process

 POWER LAW BEHAVIOR
- But also: turbulence and fragmentation are highly stochastic processes → central limit theorem
 - → GAUSSIAN DISTRIBUTION

Numerical approach I

- Problem of star formation is very complex. It involves many scales (10⁷ in length, and 10²⁰ in density) and many physical processes
 — NO analytic solution
 — NUMERICAL APPROACH
- BUT, we need to
 - solve the MHD equations in 3 dimensions
 - solve Poisson's equation (self-gravity)
 - follow the full turbulent cascade (in the ISM + in stellar interior)
 - Include heating and cooling processes (EOS)
 - treat radiation transfer
 - describe energy production by nuclear burning processes

Numerical approach II

Simplify!

Divide problem into little bits and pieces....

- GRAVOTURBULENT CLOUD FRAGMENTATION
- We try to...
 - solve the HD equations in 3 dimensions
 - solve Poisson's equation (self-gravity)
 - include a (humble) approach to supersonic turbulence
 - describe isothermal gas ("perfect" cooling)

Large-eddy simulations

- We use LES to models the large-scale dynamics
- Principal problem: only large scale flow properties
 - Reynolds number: Re = LV/v (Re_{nature} >> Re_{model})
 - dynamic range much smaller than true physical one
 - need subgrid model (in our case simple: only dissipation) more complex when processes (chemical reactions, nuclear burning, etc) on subgrid scale determine large-scale dynamics
- Also: stochasticity of the flow ⇒ unpredictable when and where "interesting things" happen
 - occurance of localized collapse
 - location and strength of shock fronts
 - etc.

LES with SPH

- For self-gravitating gases SPH is probably okay …
 - fully Lagrangian (particles are free to move where needed)
 - good resolution in high-density regions (in collapse)
 - particle based --> good for transition from hydrodynamics to stellar dynamics
- BUT:
 - low resolution in low-density region
 - difficult to reach very high levels of refinement (however, particle splitting may be promising path)
 - dissipative and need for artificial viscosity
 - how to handle subgrid scales?

Gravoturbulent SF with SPH

 Comparison between particle-based and gridbased methods: SPH vs. ZEUS

> Klessen, Heitsch, Mac Low (2000) Heitsch, Mac Low, Klessen (2001) Ossenkopf, Klessen, Heitsch (2001)

Both methods are complementary...

Bracketing reality!

• As a crude estimage:

SPH is better in high-density regions

ZEUS is better in low-density regions

SPH vs. ZEUS

length scale

SPH vs. ZEUS

time

Comments on SPH resolution

Resolution study of "standard case" of gravoturbulent SF shows convergence:

SPH runs with 2×10^5 , 10^6 , and 10^7 particles show very little difference!

- Reason: Density fluctuations in molecular clouds are in the strongly NON-LINEAR regime (δρ/ρ ≈ 10 ...100).
 Whether fluctuation collapses depends on the *detailed local balance* between pressure gradient and self-gravity in the numerical scheme.
- This differs from recent study by Fisher et al. who focus on fragmentation from quasi-equilibrium (rot. supported disk).

See also recent studies by Pfalzner (2003, 2004) and Schäfer et al. (2004) on the evolution of self-gravitating disks.

-> Need several 10⁵ SPH particles to resolve disk dvn Barthiless en: Wengen, 27.09.2004

SPH with N= 2×10^5 , 10^6 and 10^7

SPH with sink particles I

length scale

SPH with sink particles II

SPH with sink particles III

SPH with sink particles IV

SPH with sink particles V

Some final questions...

- SELF-GRAVITY: How many particles do we really need to resolve collapse behavior (and not get spurious fragmentation)?
- TURBULENCE: How large Reynolds numbers do we need to catch at least the basic dynamical behavior?
 - How large Reynolds numbers can we actually model?
 - How serious is the discrepancy?
 Or differently speaking, how important are *subgrid* models and where do we need them?