GRAVOTURBULENT STAR FORMATION with Smoothed Particle Hydrodynamics

Ralf Klessen

Emmy Noether Research Group (DFG) Astrophysikalisches Institut Potsdam

Los Angeles, IPAM, 20.04.2005

Collaborators

Many thanks to ...

- Javier Ballesteros-Paredes (UNAM, Morelia)
- Peter Bodenheimer (UC Santa Cruz)
- Andreas Burkert (Uni. München)
- Fabian Heitsch (Uni. München)
- Dirk Froebrich (Dublin University)
- Simon Glover (AMNH, New York)
- Eva Grebel (Universität Basel)
- Spyros Kitsionas (U. Athens)
- Pavel Kroupa (Universität Bonn)
- Katharina Jappsen (AIP, Potsdam)
- Richard Larson (Yale University)

- Yuexing Li (Columbia University)
- Doug Lin (UC Santa Cruz)
- Mordecai-Mark Mac Low (AMNH, New York)
- Stefan Schmeja (AIP, Potsdam)
- Michael Smith (Armagh University)
- Marco Spaans (RU Groningen)
- Rainer Spurzem (ARI, Heidelberg)
- Enrique Vazquez-Semadeni (UNAM, Morelia)
- HongSheng Zhao (IoA, Cambridge)
- Hans Zinnecker (AIP, Potsdam)

Overview

1. Physics of star formation

- a) How do stars form?
- b) Where do stars form?
- c) Theory of *gravoturbulent star formation*
- 2. Numerical approach to star formation
 - 1. Large-eddy simulations *(LES)* with smoothed particle hydrodynamics *(SPH)*
 - Transition to stellar-dynamics: introducing *"sink particles"* to represent protostars (i.e. to describe *subgrid-scale physics*)

Star formation in "typical" spiral:

(from the Hubble Heritage Team)

NGC4622

- Star formation always is associated with clouds of gas and dust.
- Star formation
 is essentially a
 local phenomenon

(on ~pc scale)

 HOW is star formation is *influenced* by *global* properties of the galaxy?

Local star forming region: The Trapezium Cluster in Orion

Orion molecular cloud

The Orion molecular cloud is the birth- place of several young embedded star clusters.

The Trapezium cluster is only visible in the IR and contains about 2000 newly born stars.

Trapezium cluster

Trapezium Cluster (detail)

- stars form
 in clusters
- stars form
 in molecular
 clouds
- (proto)stellar
 feedback is
 important

(color composite J,H,K by M. McCaughrean, VLT, Paranal, Chile)

Taurus molecular cloud

star-forming filaments in the *Taurus* cloud

 Structure and dynamics of young star clusters is coupled to structure of mol. cloud

The star formation process

- How do stars form?
- What determines *when* and *where* stars form?
- What regulates the process and determines its efficiency?
- How do global properties of the galaxy influence star formation (a local process)?
- Are there different modes of SF? (Starburst galaxies vs. LSBs, isolated SF vs. clustered SF)

What physical processes initiate and control the formation of stars?

Gravoturbulent star formation

New theory of star formation:

Star formation is controlled by interplay between gravity and supersonic turbulence!

• Dual role of turbulence:

- stability on large scales
- initiating collapse on small scales

(full detail in Mac Low & Klessen, 2004, Rev. Mod. Phys., 76, 125-194) Ra

Gravoturbulent star formation

New theory of star formation:

Star formation is controlled by interplay between gravity and supersonic turbulence!

This hold on *all* scales and applies to build-up of stars and star clusters within molecular clouds as well as to the formation of molecular clouds in galactic disk.

Gravoturbulent Star Formation

- Supersonic turbulence in the galactic disk creates strong density fluctuations (in shocks: δρ/ρ ≈ M²)
 - chemical phase transition: atomic \rightarrow molecular
 - cooling instability
 - gravitational instability
- Cold *molecular clouds* form at the high-density peaks.
- Turbulence creates density structure, gravity selects for collapse

> GRAVOTUBULENT FRAGMENTATION

 Turbulent cascade: Local compression within a cloud provokes collapse → individual stars and star clusters

Star formation on global scales

density fluctuations in warm atomar ISM caused by supersonic turbulence

some are dense enough to form H2 within "reasonable timescale" →molecular clouds

external perturbuations (i.e. potential changes) increase likelihood

Taurus SF cloud

> forming filaments in the Taurus molecular

Gravoturbulent fragmentation

<u>Gravoturbulent fragmen-</u> tation in molecular clouds:

- SPH model with 1.6x10⁶ particles
- large-scale driven turbulence
- Mach number \mathcal{M} = 6
- periodic boundaries
- physical scaling:

"Taurus":

- → density $n(H_2) \approx 10^2 \text{ cm}^{-3}$:
- → L = 6 pc, M = 5000 M/

What can we learn from that?

• global properties (statistical properties)

- SF efficiency
- SF time scale
- IMF
- description of self-gravitating turbulent systems (pdf's, Δ -var.)
- chemical mixing properties
- local properties (properties of individual objects)
 - properties of individual clumps (e.g. shape, radial profile)
 - accretion history of individual protostars (dM/dt vs. t, j vs. t)
 - binary (proto)stars (eccentricity, mass ratio, etc.)
 - SED's of individual protostars
 - dynamic PMS tracks: T_{bol}-L_{bol} evolution

Turbulent diffusion I

- Observations of young star clusters exhibit an enormous degree of chemical homogeity (e.g. in the Pleiades: Wilden et al. 2002)
- Star-forming gas must be well mixed.
- How does this constrain models of interstellar turbulence?
- → Study mixing in supersonic compressible turbulence....

Turbulent diffusion II

Method:

• second central moment of displacement:

$$\xi_{\vec{r}}^2(t-t') = \left\langle \left[\vec{r}_i(t) - \vec{r}_i(t')\right]^2 \right\rangle_i$$

• classical diffusion equation:

$$\frac{dn}{dt} = D\vec{\nabla}^2 n$$

• relation between D and ξ :

$$D(t-t') = \frac{d\xi_{\vec{r}}^2(t-t')}{dt} = 2\left\langle \vec{v}_i(t-t') \cdot \vec{r}_i(t-t') \right\rangle_i$$

Turbulent diffusion III

Time evolution of diffusion coefficient

(mean motion corrected).

Turbulent diffusion IV

- Mean-motion corrected diffusion
- Simple mixing-length approach works!

•
$$D(t) \approx V_{rms}^2 t$$
 $t < \tau$

$$D(t) \approx V_{rms}^{2} \tau$$

= $V_{rms} \ell \quad t > \tau$

 With v_{rms} = rms velocity and l = L/k = shock sep.

(from Klessen & Lin 2003, PRE, 67, 046311)

What can we learn from that?

- global properties (statistical properties)
 - SF efficiency and timescale
 - stellar mass function -- IMF
 - dynamics of young star clusters
 - description of self-gravitating turbulent systems (pdf's, Δ -var.)
 - chemical mixing properties
- *local properties* (properties of individual objects)
 - properties of individual clumps (e.g. shape, radial profile)
 - accretion history of individual protostars (dM/dt vs. t, j vs. t)
 - binary (proto)stars (eccentricity, mass ratio, etc.)
 - SED's of individual protostars
 - dynamic PMS tracks: T_{bol}-L_{bol} evolution

Star cluster formation

Most stars form in clusters \rightarrow star formation = cluster formation

Trajectories of protostars in a nascent dense cluster created by gravoturbulent fragmentation (from Klessen & Burkert 2000, ApJS, 128, 287) Ralf Klessen: IPAM, 20.04,2005

Klessen: IPAM, 20.04.2005

Influence of EOS

 But EOS depends on *chemical state*, on *balance* between *heating* and *cooling*

log density

Influence of EOS

(1) $\mathbf{p} \propto \rho^{\gamma} \rightarrow \rho \propto p^{1/\gamma}$

(2) $M_{jeans} \propto \gamma^{3/2} \rho^{(3\gamma-4)/2}$

γ<1: → large density excursion for given pressure
 → ⟨M_{jeans}⟩ becomes small
 → number of fluctuations with M > M_{ieans} is large

• $\gamma > 1: \rightarrow small$ density excursion for given pressure $\rightarrow \langle M_{ieans} \rangle$ is large

 \rightarrow only few and massive clumps exceed M_{ieans}

(Jappsen, Klessen, Larson, Li, Mac Low, 2004, A&A submitted)

- Supersonic turbulence is scale free process

 POWER LAW BEHAVIOR
- But also: turbulence and fragmentation are highly stochastic processes → central limit theorem
 - → GAUSSIAN DISTRIBUTION

IMF: Summary

- To get the stellar mass function (IMF) we need to:
 - describe supersonic turbulence (LES)
 - include self-gravity
 - model thermodynamic balance of the gas (heating, cooling, time-dependent chemistry, EOS)
 - follow formation of compact collapsed cores (transition from hydro to stellar dynamcis)
 - treat stellar dynamical processes
 (protostellar collisions, ejection by close encounters)

ATELLAR DYNAMICS

Goal

 We want to understand the formation of star clusters in turbulent interstellar gas clouds.

--> We want to describe the transition from a hydrodynamic system (the self-gravitating gas cloud) to one that is dominated by (collisional) stellar dynamics (the final star cluster).

• How can we do that?

Numerical approach I

- Problem of star formation is very complex. It involves many scales (10⁷ in length, and 10²⁰ in density) and many physical processes
 — NO analytic solution
 — NUMERICAL APPROACH
- BUT, we need to.
 - solve the MHD equations in 3 dimensions
 - solve Poisson's equation (self-gravity)
 - follow the full turbulent cascade (in the ISM + in stellar interior)
 - Include heating and cooling processes (EOS)
 - treat radiation transfer
 - describe energy production by nuclear burning processes

Numerical approach II

Simplify!

Divide problem into little bits and pieces....

- GRAVOTURBULENT CLOUD FRAGMENTATION
- We try to...
 - solve the HD equations in 3 dimensions
 - solve Poisson's equation (self-gravity)
 - include a (humble) approach to supersonic turbulence
 - describe perfect gas (with polytropic EOS)
 - follow collapse: include "sink particles" (this will "handle" our subgrid-scale physics)

Intermezzo: HD & SPH

- derivation of equations of hydrodynamics
 - Boltzmann equation for 1D distribution function:

$$\frac{df}{dt} \equiv \frac{\partial f}{\partial t} + \dot{\vec{q}} \cdot \vec{\nabla}_{\!\!\mathbf{q}} f_{\!_{\vec{p}}} + \dot{\vec{p}} \cdot \vec{\nabla}_{\!_{\!\!\mathbf{p}}} f$$

• moments of distribution function: density ρ , momentum \vec{p} , energy ϵ

SPH: smoothed particle hydrodynamics

- particle-based scheme to solve eqn.'s of hydrodynamics
- thermodynamic behavior --> equation of state (EOS)
- o gases and fluids are *large* ensembles of interacting particles
- \longrightarrow state of system is described by location in 6N dimensional phase space $f^{(N)}(\vec{q_1}...\vec{q_N}, \vec{p_1}...\vec{p_N})d\vec{q_1}...d\vec{q_N}d\vec{p_1}...d\vec{p_N}$
- ${\rm \circ}$ time evolution governed by 'equation of motion' for $6N{\rm -dim}$ probability distribution function $f^{(N)}$
- $f^{(N)} \rightarrow f^{(n)}$ by integrating over all but n coordinates \longrightarrow BBGKY hierarchy of equations of motion (after Born, Bogoliubov, Green, Kirkwood and Yvon)
- ${\rm \circ}$ physical observables are typically associated with 1- or 2-body probability density $f^{(1)}$ or $f^{(2)}$
- at lowest level of hierarchy: 1-body distribution function describes the probability of finding a particle at time t in the volume element $d\vec{q}$ at \vec{q} with momenta in the range $d\vec{p}$ at \vec{p} .
- \circ Boltzmann equation equation of motion for $f^{(1)}$

$$egin{aligned} rac{df}{dt} &\equiv & rac{\partial f}{\partial t} + \dot{ec{q}} \cdot ec{
abla_{ ext{q}}} f + \dot{ec{p}} \cdot ec{
abla_{ ext{p}}} f \ &= & rac{\partial f}{\partial t} + ec{v} \cdot ec{
abla_{ ext{q}}} f + ec{F} \cdot ec{
abla_{ ext{p}}} f = f_{ ext{c}} \end{aligned}$$

• Boltzmann equation

$$egin{aligned} rac{df}{dt} &\equiv & rac{\partial f}{\partial t} + \dot{ec{q}} \cdot ec{
abla_{ ext{q}}} f + \dot{ec{p}} \cdot ec{
abla_{ ext{p}}} f \ &= & rac{\partial f}{\partial t} + ec{v} \cdot ec{
abla_{ ext{q}}} f + ec{F} \cdot ec{
abla_{ ext{p}}} f = f_{ ext{c}}. \end{aligned}$$

- → first line: transformation from comoving to spatially fixed coordinate system.
- \rightarrow second line: velocity $\vec{v}=\dot{\vec{q}}$ and force $\vec{F}=\dot{\vec{p}}$
- \rightarrow all higher order terms are 'hidden' in the collision term $f_{\mathbf{c}}$
- observable quantities are typically (velocity) moments of the Boltzmann equation, e.g.

 \rightarrow density:

$$\rho = \int \mathbf{m} f(\vec{q}, \vec{p}, t) d\vec{p}$$

 \rightarrow momentum:

$$\rho \vec{v} = \int \, \boldsymbol{m} \vec{v} \, f(\vec{q}, \vec{p}, t) d\vec{p}$$

 \rightarrow kinetic energy density:

$$\rho \vec{v}^{\,2} = \int \, \boldsymbol{m} \vec{v}^{\,2} \, f(\vec{q}, \vec{p}, t) d\vec{p}$$

• in general: the *i*-th velocity moment $\langle \xi_i \rangle$ (of $\xi_i = m\vec{v}^{i}$) is

$$\langle \xi_i \rangle = \frac{1}{n} \int \xi_i f(\vec{q}, \vec{p}, t) d\vec{p}$$

with the mean particle number density n defined as

$$n = \int f(\vec{q}, \vec{p}, t) \, d\vec{p}$$

• the equation of motion for $\langle \xi_i \rangle$ is

$$\int \xi_i \left\{ \frac{\partial f}{\partial t} + \vec{v} \cdot \vec{\nabla}_{\!\!\!\!\mathrm{q}} f + \vec{F} \cdot \vec{\nabla}_{\!\!\!\mathrm{p}} f \right\} d\vec{p} = \int \xi_i \left\{ f_{\mathbf{c}} \right\} d\vec{p} \,,$$

which after some complicated rearrangement becomes

$$\frac{\partial}{\partial t}n\langle\xi_i\rangle + \vec{\nabla}_{\!\scriptscriptstyle \mathrm{q}}\left(n\langle\xi_i\vec{v}\rangle\right) + n\vec{F}\langle\vec{\nabla}_{\!\scriptscriptstyle \mathrm{p}}\,\xi_i\rangle = \int\xi_i f_{\mathbf{c}}\,d\vec{p}$$

(Maxwell-Boltzmann transport equation for $\langle \xi_i \rangle$)

- if the RHS is zero, then ξ_i is a conserved quantity. This is only the case for first three moments, mass $\xi_0 = m$, momentum $\vec{\xi_1} = m\vec{v}$, and kinetic energy $\xi_2 = m\vec{v}^2/2$.
- MB equations build a hierarically nested set of equations, as $\langle \xi_i \rangle$ depends on $\langle \xi_{i+1} \rangle$ via $\vec{\nabla}_q (n \langle \xi_i \vec{v} \rangle)$ and because the collision term cannot be reduced to depend on ξ_i only.

 \longrightarrow need for a closure equation

 \longrightarrow in hydrodynamics this is typically the equation of state.

assumptions

• continuum limit:

- \rightarrow distribution function f must be a 'smoothly' varying function on the scales of interest \longrightarrow local average possible
- \rightarrow stated differently: the averaging scale (i.e. scale of interest) must be larger than the mean free path of individual particles
- \rightarrow stated differently: microscopic behavior of particles can be neglected
- \rightarrow concept of fluid element must be meaningful

only 'short range forces':

- \rightarrow forces between particles are short range or saturate \longrightarrow collective effects can be neglected
- → stated differently: correlation length of particles in the system is finite (and smaller than the scales of interest)

limitations

- o shocks (scales of interest become smaller than mean free path)
- o phase transitions (correlation length may become infinite)
- description of self-gravitating systems
- o description of fully fractal systems

the equations of hydrodynamics

• hydrodynamics \equiv book keeping problem

One must keep track of the 'change' of a fluid element due to various physical processes acting on it. How do its 'properties' evolve under the influence of compression, heat sources, cooling, etc.?

• Eulerian vs. Lagrangian point of view

consider spatially fixed volume element

following motion of fluid element

• hydrodynamic equations = set of equations for the five conserved quantities $(\rho, \rho \vec{v}, \rho \vec{v}^2/2)$ plus closure equation (plus transport equations for 'external' forces if present, e.g. gravity, magnetic field, heat sources, etc.)

• equations of hydrodynamics

$$\begin{split} \frac{d\rho}{dt} &= \frac{\partial\rho}{\partial t} + \vec{v} \cdot \vec{\nabla}\rho = -\rho \vec{\nabla} \cdot \vec{v} \qquad \text{(continuity equation)} \\ \frac{d\vec{v}}{dt} &= \frac{\partial\vec{v}}{\partial t} + (\vec{v} \cdot \vec{\nabla})\vec{v} = -\frac{1}{\rho}\vec{\nabla}p - \vec{\nabla}\phi + \eta \vec{\nabla}^2 \vec{v} + \left(\zeta + \frac{\eta}{3}\right)\vec{\nabla}(\vec{\nabla} \cdot \vec{v}) \\ & \text{(Navier-Stokes equation)} \\ \frac{d\epsilon}{dt} &= \frac{\partial\epsilon}{\partial t} + \vec{v} \cdot \vec{\nabla}\epsilon = T\frac{ds}{dt} - \frac{p}{\rho}\vec{\nabla} \cdot \vec{v} \qquad \text{(energy equation)} \\ \vec{\nabla}^2 \phi = 4\pi G\rho \qquad \text{(Poisson's equation)} \\ p &= \mathcal{R}\rho T \qquad \text{(equation of state)} \end{split}$$

$$\vec{F}_B = -\vec{\nabla} \frac{\vec{B}^2}{8\pi} + \frac{1}{4\pi} (\vec{B} \cdot \vec{\nabla}) \vec{B} \quad \text{(magnetic force)}$$
$$\frac{\partial \vec{B}}{\partial t} = \vec{\nabla} \times (\vec{v} \times \vec{B}) \qquad \text{(Lorentz equation)}$$

 $ho = \text{density}, \ \vec{v} = \text{velocity}, \ p = \text{pressure}, \ \phi = \text{gravitational potential}, \ \zeta \ \text{and} \ \eta \ \text{viscosity coefficients}, \ \epsilon =
ho \vec{v}^{\,2}/2 = \text{kinetic energy} \ \text{density}, \ T = \text{temperature}, \ s = \text{entropy}, \ \mathcal{R} = \text{gas constant}, \ \vec{B} = \text{magnetic field} \ (\text{cgs units})$

• mass transport – continuity equation

$$\frac{d\rho}{dt} = \frac{\partial\rho}{\partial t} + \vec{v}\cdot\vec{\nabla}\rho = -\rho\vec{\nabla}\cdot\vec{v}$$

(conservation of mass)

• transport equation for momentum – Navier Stokes equation

 $\begin{aligned} \frac{d\vec{v}}{dt} &= \frac{\partial \vec{v}}{\partial t} + (\vec{v} \cdot \vec{\nabla})\vec{v} = -\frac{1}{\rho}\vec{\nabla}p - \vec{\nabla}\phi + \eta\vec{\nabla}^2\vec{v} + \left(\zeta + \frac{\eta}{3}\right)\vec{\nabla}(\vec{\nabla} \cdot \vec{v}) \\ \text{momentum change due to} \\ &\rightarrow \text{ pressure gradients: } (-\rho^{-1}\vec{\nabla}p) \\ &\rightarrow \text{ (self) gravity: } -\vec{\nabla}\phi \\ &\rightarrow \text{ viscous forces (internal friction, contains } \operatorname{div}(\partial v_i/\partial x_j) \text{ terms}): \\ &\eta\vec{\nabla}^2\vec{v} + \left(\zeta + \frac{\eta}{3}\right)\vec{\nabla}(\vec{\nabla} \cdot \vec{v}) \\ \text{ (conservation of momentum, general form of momentum transport: } \partial_t(\rho v_i) = -\partial_i\Pi_{ij}) \end{aligned}$

• transport equation for internal energy

$$\frac{d\epsilon}{dt} = \frac{\partial\epsilon}{\partial t} + \vec{v}\cdot\vec{\nabla}\epsilon = T\frac{ds}{dt} - \frac{p}{\rho}\vec{\nabla}\cdot\vec{v}$$

 → follows from the thermodynamic relation de = T ds-p dV = T ds + p/p²dp which described changes in e due to entropy changed and to volume changes (compression, expansion)
 → for adiabatic gas the first term vanishes (s =constant)

 \rightarrow heating sources, cooling processes can be incorporated in ds (conservation of energy)

closure equation – equation of state

- \rightarrow general form of equation of state $p=p(T,\rho,\ldots)$
- \rightarrow ideal gas: $p = \mathcal{R}\rho T$

 \rightarrow special case – isothermal gas: $p = c_{\rm s}^2 T$ (as $\mathcal{R}T = c_{\rm s}^2$)

Note:

- in reality, computing the EOS is VERY complex!
- depends on detailed balance between heating and cooling
- these depend on *chemical composition* (which atomic and molecular species, dust)
- and on the ability to radiate away "cooling lines" and black body radiation

--> problem of *radiation transfer* (see, e.g., IPAM III)

In general:

- the "standard way" of solving the equations of (magneto) hydrodynamics is using finite differences on a grid
- alternative use particle-based scheme: SPH
- see IPAM workshop I

S

concept of SPH

- 'invented' independently by Lucy (1977) and Gingold & Monaghan (1977)
- originally proposed as Monte Carlo approach to calculate the time evolution of gaseous systems
- more intuitively understood as interpolation scheme:

The fluid is represented by an ensemble of particles i, each carrying mass m_i , momentum $m_i \vec{v}_i$, and hydrodynamic properties (like pressure p_i , temperature T_i , internal energy ϵ_i , entropy s_i , etc.). The time evolution is governed by the equation of motion plus additional equations to modify the hydrodynamic properties of the particles. Hydrodynamic observables are obtained by a local averaging process.

• local averages $\langle f(\vec{r}) \rangle$ for any quantity $f(\vec{r})$ can be obtained by convolution with an appropriate smoothing function $W(\vec{r}, \vec{h})$:

 $\langle f(\vec{r}) \rangle \equiv \int f(\vec{r}') W(\vec{r} - \vec{r}', \vec{h}) d^3r'$.

the function $W(\vec{r},\vec{h})$ is called smoothing kernel

• the kernel must satisfy the following two conditions:

 $\int W(\vec{r},\vec{h}) \, d^3r = 1 \quad \text{ and } \quad \langle f(\vec{r}) \rangle \longrightarrow f(\vec{r}) \, \text{ for } \, \vec{h} \to 0$

the kernel W therefore follows the same definitions as Dirac's delta function $\delta(\vec{r})$: $\lim_{h\to 0} W(\vec{r}, h) = \delta(\vec{r})$.

o most SPH implementations use spherical kernel functions

 $W(\vec{r},\vec{h})\equiv W(r,h) \quad \text{ with } \quad r=|\vec{r}| \ \text{ and } \ h=|\vec{h}|.$

(one could also use triaxial kernels, e.g. Martel et al. 1995)

• as the kernel function W can be seen as approximation to the δ -function for small but finite h we can expand the averaged function $\langle f(\vec{r}) \rangle$ into a Taylor series for h to obtain an estimate for $f(\vec{r})$; if W is an even function, the first order term vanishes and the errors are second order in h

 $\langle f(\vec{r}) \rangle = f(\vec{r}) + \mathcal{O}(h^2)$

this holds for functions f that are smooth and do not exhibit steep gradients over the size of W (\rightarrow problems in shocks). (more specifically the expansion is $\langle f(\vec{r}) \rangle = f(\vec{r}) + \kappa h^2 \vec{\nabla}^2 f(\vec{r}) + \mathcal{O}(h^3)$)

• within its intrinsic accuracy, the smoothing process therefore is a linear function with respect to summation and multiplication:

 $\begin{array}{l} \langle f(\vec{r}) + g(\vec{r}) \rangle \ = \ \langle f(\vec{r}) \rangle + \langle g(\vec{r}) \rangle \\ \langle f(\vec{r}) \cdot g(\vec{r}) \rangle \ = \ \langle f(\vec{r}) \rangle \cdot \langle g(\vec{r}) \rangle \end{array}$

(one follows from the linearity of integration with respect to summation, and two is true to $\mathcal{O}(h^2)$)

derivatives can be 'drawn into' the averaging process:

$$\frac{d}{dt} \langle f(\vec{r}) \rangle = \left\langle \frac{d}{dt} f(\vec{r}) \right\rangle$$
$$\vec{\nabla} \langle f(\vec{r}) \rangle = \left\langle \vec{\nabla} f(\vec{r}) \right\rangle$$

Furthermore, the spatial derivative of f can be transformed into a spatial derivative of W (no need for finite differences or grid):

 $\vec{\nabla} \langle f(\vec{r}) \rangle = \left\langle \vec{\nabla} f(\vec{r}) \right\rangle = \int f(\vec{r}\,') \, \vec{\nabla} W(|\vec{r} - \vec{r}\,'|, h) \, d^3r' \, .$

(shown by integrating by parts and assuming that the surface term vanishes; if the solution space is extended far enough, either the function f itself or the kernel approach zero)

o basic concept of SPH is a particle representation of the fluid
 → integration transforms into *summation* over discrete set of
 particles; example density *ρ*:

$$\langle \rho(\vec{r}_i) \rangle = \sum_j m_j W(|\vec{r}_i - \vec{r}_j|, h) .$$

in this picture, the mass of each particle is smeared out over its kernel region; the density at each location is obtained by summing over the contributions of the various particles \longrightarrow *smoothed particle hydrodynamics!*

the kernel function

• different functions meet the requirement $\int W(|\vec{r}|, h) d^3r = 1$ and $\lim_{h\to 0} \int W(|\vec{r} - \vec{r'}|, h) f(\vec{r'}) d^3r' = f(\vec{r})$:

 \rightarrow Gaussian kernel:

$$W(r,h) = \frac{1}{\pi^{3/2}h^3} \exp\left(-\frac{r^2}{h^2}\right)$$

- · pro: mathematically sound
- \cdot pro: derivatives exist to all orders and are smooth
- \cdot contra: all particles contribute to a location
- \rightarrow spline functions with compact support

the kernel function

- different functions meet the requirement $\int W(|\vec{r}|, h) d^3r = 1$ and $\lim_{h\to 0} \int W(|\vec{r} - \vec{r}'|, h) f(\vec{r}') d^3r' = f(\vec{r})$:
 - \rightarrow the standard kernel: cubic spline

with $\xi = r/h$ it is defined as

$$W(r,h) \equiv \frac{1}{\pi h^3} \begin{cases} 1 - \frac{3}{2}\xi^2 + \frac{3}{4}\xi^3, & \text{for } 0 \le \xi \le 1; \\ \frac{1}{4}(2 - \xi)^3, & \text{for } 1 \le \xi \le 2; \\ 0, & \text{otherwise.} \end{cases}$$

· pro: compact support \longrightarrow all interactions are zero for $r > 2h \longrightarrow$ number of particles involved in the average remains small (typically between 30 and 80)

- \cdot pro: second derivative is continuous
- \cdot pro: dominant error term is second order in h

- there is an infinite number of possible SPH implementations of the hydrodynamic equations!
- some notation: $h_{ij} = (h_i + h_j)/2$, $\vec{r}_{ij} = \vec{r}_i \vec{r}_j$, $\vec{v}_{ij} = \vec{v}_i \vec{v}_j$, and $\vec{\nabla}_i$ is the gradient with respect to the coordinates of particle *i*; all measurements are taken at particle positions (e.g. $\rho_i = \rho(\vec{r}_i)$)
- general form of SPH equations:

$$\langle f_i \rangle = \sum_{j=1}^{N_i} \frac{m_j}{\rho_j} f_j W(r_{ij}, h_{ij})$$

or

• *density* — continuity equation (conservation of mass)

$$\rho_i = \sum_{j=1}^{N_i} m_j W(r_{ij}, h_{ij})$$

$$\frac{\mathrm{d}\rho_i}{\mathrm{d}t} = \sum_{j=1}^{N_i} m_j \vec{v}_{ij} \cdot \vec{\nabla}_i W(r_{ij}, h_{ij})$$

(the second implementation is almost never used, see however Monaghan 1991 for an application to water waves)

important

density is needed for *ALL* particles *BEFORE* computing other averaged quantities \longrightarrow at each timestep, SPH computations consist of *TWO* loops, first the *density* is obtained for each particle, and then in a second round, all *other* particle properties are updated.

 \circ pressure is defined via the equation of state (for example for isothermal gas $p_i=c_{\rm s}^2\rho_i)$

• *velocity* — Navier Stokes equation (conservation of momentum)

$$\frac{d\vec{v}}{dt} = \frac{\partial\vec{v}}{\partial t} + \left(\vec{v}\cdot\vec{\nabla}\right)\vec{v} = \sum_{i}\vec{F}_{i} = \vec{F}_{\text{pressure}} + \vec{F}_{\text{viscosity}} + \vec{F}_{\text{gravity}}$$

rate of change of momentum of fluid element depends on sum of all forces acting on it.

- *velocity* Navier Stokes equation (conservation of momentum)
 - → consider for now *only* pressure contributions: Euler's equation

$$\frac{\mathrm{d}\vec{v}}{\mathrm{d}t} = \frac{\partial\vec{v}}{\partial t} + (\vec{v}\cdot\vec{\nabla})\vec{v} = -\frac{1}{\rho}\vec{\nabla}p = -\vec{\nabla}\left(\frac{p}{\rho}\right) - \frac{p}{\rho^2}\vec{\nabla}\rho \qquad (*)$$

here, the identity $\vec{\nabla}(p\rho^{-1}) = \rho^{-1}\vec{\nabla}p - p\rho^{-2}\vec{\nabla}\rho$ is used \rightarrow in the SPH formalism this reads as

$$\frac{d\vec{v}_i}{dt} = -\sum_{j=1}^{N_i} m_j \left(\frac{p_i}{\rho_i^2} + \frac{p_j}{\rho_j^2}\right) \vec{\nabla}_i W(r_{ij}, h_{ij})$$

where the first term in (*) is neglected because it leads to surface terms in the averaging procedure; it is assumed that either the pressure or the kernel becomes zero at the integration border; if this is not the case *correction terms* need to be added above.

velocity — Navier Stokes equation (conservation of momentum)
 → the SPH implementation of the standard artificial viscosity is

$$\vec{F}_i^{\text{visc}} = -\sum_{j=1}^{N_i} m_j \Pi_{ij} \vec{\nabla}_i W(r_{ij}, h_{ij}) ,$$

where the viscosity tensor Π_{ij} is defined by

$$\Pi_{ij} = \begin{cases} (-\alpha c_{ij}\mu_{ij} + \beta \mu_{ij}^2)/\rho_{ij} & \text{for} \quad \vec{v}_{ij} \cdot \vec{r}_{ij} \leq 0, \\ 0 & \text{for} \quad \vec{v}_{ij} \cdot \vec{r}_{ij} > 0, \end{cases}$$

where

$$\mu_{ij} = \frac{h\vec{v}_{ij} \cdot \vec{r}_{ij}}{\vec{r}_{ij}^2 + 0.01h^2} \; .$$

with $\vec{r}_{ij} = \vec{r}_i - \vec{r}_j$, $\vec{v}_{ij} = \vec{v}_i - \vec{v}_j$, mean density $\rho_{ij} = (\rho_i + \rho_j)/2$, and mean sound speed $c_{ij} = (c_i + c_j)/2$.

- *velocity* Navier Stokes equation (conservation of momentum)
 - \rightarrow if self-gravity is taken into account, the gravitational force needs to be added on the RHS

$$\vec{F}_{\rm G} = -\vec{\nabla}\phi_i = -G\sum_{j=1}^N \frac{m_j}{r_{ij}^2} \frac{r_{ij}}{r_{ij}}$$

note that the sum needs to be taken over ALL particles \leftarrow computationally expensive

 \rightarrow set together, the momentum equation is

$$\frac{d\vec{v}_i}{dt} = -\sum_{j=1}^{N_i} m_j \left(\frac{p_i}{\rho_i^2} + \frac{p_j}{\rho_j^2} + \Pi_{ij}\right) \vec{\nabla}_i W(r_{ij}, h_{ij}) - \nabla\phi_i$$

• energy equation (conservation of momentum)

 \rightarrow recall the hydrodynamic energy equation:

$$\frac{d\epsilon}{dt} = \frac{\partial\epsilon}{\partial t} + \vec{v}\cdot\vec{\nabla}\epsilon = \frac{ds}{dt} - \frac{p}{\rho}\vec{\nabla}\cdot\vec{v}$$

 \rightarrow for *adiabatic* systems (c = const) the SPH form follows as

$$\frac{d\epsilon_i}{dt} = \frac{p_i}{\rho_i^2} \sum_{j=1}^{N_i} m_j \, \vec{v}_{ij} \cdot \vec{\nabla}_i W(r_{ij}, h_{ij}) \,,$$

(note that the alternative form

$$\frac{d\epsilon_i}{dt} = \frac{1}{2} \sum_{j=1}^{N_i} m_j \left(\frac{p_i}{\rho_i^2} + \frac{p_j}{\rho_j^2}\right) \vec{v}_{ij} \cdot \vec{\nabla}_i W(r_{ij}, h_{ij})$$

can lead to unphysical solutions, like negative internal energy)

• energy equation (conservation of momentum)

 \rightarrow dissipation due to (artificial) viscosity leads to a term

$$\frac{d\epsilon_i}{dt} = \frac{1}{2} \sum_{j=1}^{N_i} m_j \Pi_{ij} \, \vec{v}_{ij} \cdot \vec{\nabla}_i W(r_{ij}.h_{ij})$$

- \rightarrow the presence of *heating* sources or *cooling* processes can be incorporated into a function Γ_i .
- \rightarrow altogether:

$$\left| \frac{d\epsilon_i}{dt} = \frac{p_i}{\rho_i^2} \sum_{j=1}^{N_i} m_j \, \vec{v}_{ij} \cdot \vec{\nabla}_i W_{ij} + \frac{1}{2} \sum_{j=1}^{N_i} m_j \Pi_{ij} \, \vec{v}_{ij} \cdot \vec{\nabla}_i W_{ij} + \Gamma_i \right|$$

can lead to unphysical solutions, like negative internal energy)

fully conservative formulation using Lagrange multipliers

• the Lagrangian for compressible flows which are generated by the thermal energy $\epsilon(\rho,s)$ acts as effective potential is

$$\mathcal{L} = \int \rho \left\{ \frac{1}{2} v^2 - u(\rho, s) \right\} d^3 r.$$

equations of motion follow with $s={\rm const}$ from

$$\frac{d}{dt}\frac{\partial \mathcal{L}}{\partial \vec{v}} - \frac{\partial \mathcal{L}}{\partial \vec{r}} = 0$$

 \circ after some SPH arithmetics, one can derive the following acceleration equation for particle i

$$\frac{d\vec{v}_i}{dt} = -\sum_{j=1}^{N_i} m_j \left\{ \frac{1}{f_i} \frac{p_i}{\rho_i^2} \vec{\nabla}_i W(r_{ij}, h_i) + \frac{1}{f_j} \frac{p_j}{\rho_j^2} \vec{\nabla}_i W(r_{ij}, h_j) \right\}$$

where

$$f_i = \left[1 + \frac{h_i}{3\rho_i} \frac{\partial \rho_i}{\partial h_i}\right]$$

Large-eddy simulations

- We use LES to models the large-scale dynamics
- Principal problem: only large scale flow properties
 - Reynolds number: Re = LV/v (Re_{nature} >> Re_{model})
 - dynamic range much smaller than true physical one
 - need subgrid model (in our case simple: only dissipation) more complex when processes (chemical reactions, nuclear burning, etc) on subgrid scale determine large-scale dynamics
- Also: stochasticity of the flow ⇒ unpredictable when and where "interesting things" happen
 - occurance of localized collapse
 - location and strength of shock fronts
 - etc.

LES with SPH

- For self-gravitating gases SPH is probably okay …
 - fully Lagrangian (particles are free to move where needed)
 - good resolution in high-density regions (in collapse)
 - particle based --> good for transition from hydrodynamics to stellar dynamics
- BUT:
 - low resolution in low-density region
 - difficult to reach very high levels of refinement (however, particle splitting may be promising path)
 - dissipative and need for artificial viscosity
 - how to handle subgrid scales?

Gravoturbulent SF with SPH

 Comparison between particle-based and gridbased methods: SPH vs. ZEUS

> Klessen, Heitsch, Mac Low (2000) Heitsch, Mac Low, Klessen (2001) Ossenkopf, Klessen, Heitsch (2001)

Both methods are complementary...

Bracketing reality!

• As a crude estimage:

SPH is better in high-density regions

ZEUS is better in low-density regions
SPH vs. ZEUS

length scale

SPH vs. ZEUS

time

SPH with sink particles I

length scale

SPH with sink particles I

length scale

SPH with sink particles II

SPH with sink particles III

SPH with sink particles IV

SPH with sink particles V

Some final remarks...

• GRAVOTURBULENT STAR FORMATION:

This dynamic theory can explain and reproduce many features of star-forming regions on small as well as on large galactic scales.

- Some open questions:
 - role of magnetic fields?
 - role of thermodynamic state of the gas?
 - what drives turbulence?
 - how are small scales (local molecular clouds) connected to large-scale dynamics?
 - what terminates star formation locally?

Some final remarks...

• NUMERICS:

SPH appears able to describe gravoturbulent fragmentation and star formation in molecular clouds.

Pro: • Lagrangian character of method.

- can resolve large density contrasts.
- good for transition from hydro- to stellar dynamics
 --> accreting sink particles describe protostars
- Ocn: In low resolution in low-density regions.
 - difficulties with shock-capturing and treating B-fields.
- Next steps:
 particle-splitting to locally increase resolution,
 GPM, XSPH with "physical" viscosity
 - Ralf Klessen: IPAM, 20.04.2005

Outlook & First Examples

• WHAT WE <u>REALLY</u> NEED: more physics!!

We need good *subgrid-scale models* for unresolved scales in our calculations.

• 2 Examples:

 LOCAL SCALES: so far, we use dumb sink particles to protostellar collapse --> we do not know how the star "inside" forms and how it backreacts onto the ambient environment
 --> combine 3D hydro with 1D/2D PMS models

 GALACTIC SCALES: can gravoturbulent models give us some handle on star-formation efficiency?
 --> some thoughts...

Towards a complete picture...

COMBINE:

• 3D hydrodynamic simulations of the *turbulent fragmentation* of *entire molecular cloud regions*.

(using SPH with GRAPE: Klessen & Burkert 2000, 2001, Klessen, Heitsch & Mac Low 2000, Klessen 2001b)

WITH:

• detailed 2D hydrodynamic modelling of protostellar accretion disks.(e.g. Yorke & Bodenheimer 1999)

 \rightarrow with rad. transfer \rightarrow SED, T_{bol} , L_{bol} , etc.

AND/OR:

 Implicit 1D radiation-hydrodynamic scheme with timedependend convection and D network following the collapse of individual cores towards the MS (Wuchterl & Tscharnuter 2002)
 → PMS tracks, absolute stellar ages for cluster stars

Formation of a $1 M_{\odot}$ star

Dynamical evolution of a molecular cloud region of size $(0.32pc)^3$ containing 200 M_{\odot} of gas (from Klessen & Burkert 2000)

Within two free-fall times the system builds up a *cluster* of deeply embedded accreting *protostellar cores.*

We select the protostellar core with mass closest to $1M_{\odot}$ and use its mass accretion rate as *input* for the detailed 1D-RHD calculation (see Wuchterl & Tscharnuter 2002)

The system is shown initially, and at a stage when the $1M_{\odot}$ -fragment reaches zero age (i.e. when it becomes optically thick for the first time).

PMS tracks

D'Antona & Mazzitelli track

For ages less than 10⁶ years, different collapse conditions lead to different evolutionary tracks. Later the dynamical tracks converge.

There are large differences to the hydrostatic track, due to different stellar structure.

(from Wuchterl & Klessen 2001)

SED's of a 1 M_{\odot} star

Dynamical evolution of a molecular cloud region of size $(0.32pc)^3$ containing 200 M_{\odot} of gas (from Klessen & Burkert 2000)

Within one to two free-fall times the system builds up a *cluster* of deeply embedded accreting *protostellar cores.*

We select a protostellar core which will form a *single* star and use its *mass accretion rate* and *angular momentum gain* into a controll volume containing the core as *input* for a detailed 2D calculation (Bodenheimer & Klessen, in preparation)

SED's of a 1 M_{\odot} star

(Bodenheimer & Klessen, in preparation)

Star formation on global scales

- SF on global scales $\stackrel{!}{=}$ formation of molecular clouds
- MC's form at stagnation points of convergent largescale flows (need ~0.5kpc³ of gas) → high density → enhanced cooling → fast H₂ formation & gravitational instability → local collapse and star formation
- External perturbations *increase* the local likelihood of MC formation (e.g. in spiral density waves, galaxy interactions, etc.)

Star formation on global scales

density fluctuations in warm atomar ISM caused by supersonic turbulence

some are dense enough to form H2 within "reasonable timescale" →molecular clouds

external perturbuations (i.e. potential changes) increase likelihood

Correlation between H_2 and HI

⁽Deul & van der Hulst 1987, Blitz et al. 2004)

Star formation on global scales

mass weighted ρ -pdf, each shifted by $\Delta log N=1$

probability distribution function of density (ρ -pdf) for decaying supersonic turbulence

varying rms Mach numbers:

M1 > M2 > M3 > M4 > 0

Star formation on global scales

mass weighted ρ -pdf, each shifted by $\Delta log N=1$

(from Klessen, 2001; rate from Hollenback, Werner, & Salpeter 1971)

H₂ formation rate:

$$au_{\mathrm{H}_2} \approx \frac{1.5\,\mathrm{Gyr}}{n_{\mathrm{H}}\,/\,\mathrm{1cm}^{-3}}$$

For $n_{\rm H} \ge 100 {\rm cm}^{-3}$, H₂ forms within 10Myr, this is about the lifetime of typical MC's.

What fraction of the galactic ISM reaches such densities?