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Overview

@ concept of gravoturbulent star formation

@ three ,steps” of star formation:

1. formation of molecular clouds in the disk of our
galaxy

¢ intermezzo:
properties of molecular cloud turbulence

2. formation of protostellar cores

3. formation of stars: protostellar collapse
and the stellar mass spectrum

@ summary
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Gravoturbulent star formation

@ ldea:

Star formation is controllzd
by inverplay beiween

gravity and
supersonic turbulence!

@ Dual role of turbulence:

e Stability on large scales
e Initiating collapse on small scales

(e.g., Larson, 2003, Rep. Prog. Phys, 66, 1651;
or Mac Low & Klessen, 2004, Rev. Mod. Phys., 76, 125) Ralf Klessen: PPV, Oct. 24, 2005



Gravoturbulent star formation

@ ldea:
Star formation is conirolled
by inverplay beiween
gravity and
supersonic turbulence!
o Validity:

This hold on all scales and applies to build-up of stars and
star clusters within molecular clouds as well as to the
formation of molecular clouds in galactic disk.

(e.g., Larson, 2003, Rep. Prog. Phys, 66, 1651;
or Mac Low & Klessen, 2004, Rev. Mod. Phys., 76, 125) Ralf Klessen: PPV, Oct. 24, 2005
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Gravoturbulent star formation

@ interstellar gas is highly inhomogeneous

A
o thermal instability /\/\,\/\’\/ \'\/\/\/\

e gravitational instability space

density

o turbulent compression (in shocks dp/p « M2; in atomic gas: M = 1...3)

@ cold molecular clouds can form rapidly in high-density regions at
Stagnation points of convergent large-scale flows
e chemical phase transition: atomic - molecular
e process is modulated by large-scale dynamics in the galaxy
@ inside cold clouds: turbulence is highly supersonic (M = 1...20)

— turbulence creates large density contrast,
gravity selects for collapse

GRAVOTUBULENT FRAGMENTATION

@ furbulent cascade: local compression within a cloud provokes collapse
- formation of individual stars and star clusters

(e.g. Mac Low & Klessen, 2004, Rev. Mod. Phys., 76, 125-194) Ralf Klessen: PPV, Oct. 24, 2005






Molecular cloud formation

. In convergent
large-scale flows

.. setting up the
turbulent cascade

@ Mach 3 colliding flow

e Vishniac instability +
thermal instability

@ compressed sheet
breaks up and builds
up cold, high-density
,blobs® of gas

@ --> molecular cloud

formation

@ cold cloud motions
correspond to Heitseh, Burkert, Hartmann, S1yZ % Devriendt 2005
supersonic turbulence

(e.g. Koyama & Inutsuka 2002, Heitsch et al., 2005, Vazquez-Semadeni et al. 2004;
also posters 8577, 8302) Ralf Klessen: PPV, Oct. 24, 2005



density

Correlation with large-scale
perturbations

(e.g.offarm)  gensityftemperature
fluctuations in warm
atomar ISM are caused
by thermal/gravitational
instability and/or
supersonic turbulence

density

space

some fluctuations are
dense enough to form H,
within “reasonable time”
e.g.onarm) > molecular cloud
"""""" - (poster 8577: Glover & Mac Low)

SRR,

external perturbuations
(i.e. potential changes)

space increase likelihood
(poster 8170: Dobbs & Bonnell)
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Star formation on global scales
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Star formation on global scales
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for n,= 100 cm3, H,
forms within 10Myr, this
is about the lifetime of
typical MC'’s.

log N
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in turbulent gas, the
H, fraction can
become very high on

short timescale
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Correlation between H, and HI

Compare H, - HI
in M33:

@ H,: BIMA-SONG
Survey, see Blitz
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| ’ o HI: Observations with
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H, clouds are seen in
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density
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(Deul & van der Hulst 1987, Blitz et al. 2004)
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Properties of turbulence

@ laminar flows turn turbulent
at high Reynolds numbers

advection VL
Re=—"—"—=
dissipation v

V= typical velocity on scale L, v =viscosity, Re > 1000

@ vortex streching --> turbulence

IS intrinsically anisotropic
(only on large scales you may get
homogeneity & isotropy in a statistical sense;

see Landau & Lifschitz, Chandrasekhar, Taylor, etc.)

(ISM turbulence: shocks & B-field cause
additional inhomogeneity)
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Vortex Formation

Vortices are streched and folded in three dimensions
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Turbulent cascade

Kolmogorov (1941) theory

o log E inertial range:
A .

= scale-free behavior
2T T~ @ of turbulence
o |
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Shock-dominated turbulence

Turbulent cascade

inertial range:
scale-free behavior
of turbulence

,Size"“ of inertial range:

L
= R

Mk

log k

energy
iInput
scale

ng \

energy
dissipation
scale

Ralf Klessen: PPV, Oct. 24, 2005



Turbulent cascade in ISM

dense
¢ T~ Jmolecular clouds protostellar
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energy source & scale ¢ <<1km/s dissipation scale not known
NOT known M. <1 (ambipolar diffusion,
(supernovae, winds, L=0.1pc molecular diffusion?)

spiral density waves?)
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Density structure of MC's

1.3mm meosaic of p Oph main ¢loud

1 B I
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—24°20'00"
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molecular clouds
are highly
inhomogeneous

stars form in the
densest and
coldest parts of
the cloud

p-Ophiuchus
cloud seen in dust
emission

16"25™00° 16"24™00° 16
a {1950)
(Motte, André, & Neri 1998)

let's focus on
a cloud core
like this one
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Evolution of cloud cores

@ Does core form single massive star
or cluster with mass distribution?

@ Turbulent cascade ,goes through® cloud
core
--> NO scale separation possible
--> NO effective sound speed

@ Turbulence is supersonic!
--> produces strong density contrasts:

dp/p = M?
--> with typical M = 10 --> §p/p = 100!
@ many of the shock-generated
fluctuations are Jeans unstable and go
into collapse
@ --> core breaks up and forms a
cluster of stars




Evolution of cloud cores
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indeed p-Oph B1/2 contains several

cores (“starless” cores are denoted by x,
cores with embedded protostars by %)

(Motte, André, & Neri 1998)




Formation and evolution of cores

DDO Q

@ protostellar cloud cores form at O

the stagnation points of convergent D O@
turbulent flows

o ifM>M,,, xp 2 T3 collapse and star formatlon

o ifM<M,,, xp 2 T3 reexpansion after external

compression fades away
(e.g. Vazquez-Semadeni et al 2005)

o typical timescales: t=10% ... 10° yr

@ because turbulent ambipolar diffusion time is short, this
time estimate still holds for the presence of magnetic
fields, in magnetically critical cores
(e.g. Fatuzzo & Adams 2002, Heitsch et al. 2004)
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Formation and evolution of cores

What happens to distribution =~ Two exteme cases:
of cloud cores? (1) turbulence dominates energy budget:
=B/ |Epoil >1
O --> individual cores do not interact
--> collapse of individual cores

dominates stellar mass growth
Q QQ Q --> |oose cluster of low-mass stars
O O (2) turbulence decays, i.e. gravity

dominates: .=E ;. /|E | <1

Q D --> global contraction

Q --> core do interact while collapsing
O --> competition influences mass growth

O --> dense cluster with high-mass stars
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as turbulence decays locally, co
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individual clumps collapse to form stars



individual clumps collapse to form stars



In dense clusters, clumps may merge while collapsing
--> then contain multiple protostars

Ralf Klessen: PPV, Oct. 24, 2005



In dense clusters, clumps may merge while collapsing
--> then contain multiple protostars
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In dense clusters, clumps may merge while collapsing
--> then contain multiple protostars
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In dense clusters, competitive mass growth
becomes important

Ralf Klessen: PPV, Oct. 24, 2005
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In dense clusters, competitive mass growth
becomes important
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in dense clusters, N-body effects influence mass growth

Ralf Klessen: PPV, Oct. 24, 2005



low-mass objects may
become ejected --> accretion stops

Ralf Klessen: PPV, Oct. 24, 2005



feedback terminates star formation

Ralf Klessen: PPV, Oct. 24, 2005
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result: star cluster, possibly with Hil region
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Predictions

@ global properties (statistical properties)
o SF efficiency and timescale
e stellar mass function -- IMF
e dynamics of young star clusters
@ description of self-gravitating turbulent systems (pdf's, A-var.)
@ chemical mixing properties
@ local properties (properties of individual objects)
@ properties of individual clumps (e.g. shape, radial profile, lifetimes)
@ accretion history of individual protostars (dM/dt vs. t, j vs. t)
@ binary (proto)stars (eccentricity, mass ratio, etc.)
o SED's of individual protostars
e dynamic PMS tracks: T, -L,,, evolution
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Examples and predictions

example 1: transient structure of turbulent clouds

example 2: quiescent and coherent appearence of
molecular cloud cores

example 3: speculations on the origin of the stellar
mass spectrum (IMF)
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Transient cloud structure

Gravoturbulent fragmentation of turbulent self-gravitating clouds

r

Xy projection R XZ projection - yZ projection

- SPH model with . Mach number M =6
1.6x10° particles - periodic boundaries

- large-scale driven . physical scaling: “Taurus’
turbulence

Ralf Klessen: PPV, Oct. 24, 2005



Gravoturbulent fragmentation

Gravoturbulent fragmen-
tation in molecular clouds:

- SPH model with
1.6x106 particles

- large-scale driven
turbulence

- Mach number M =6

- periodic boundaries

- physical scaling:

“Taurus™:
— density n(H,)=10%2cm3
— L=6pc, M=5000M,

Ralf Klessen: PPV, Oct. 24, 2005
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Star-
forming
filaments in
the Taurus
molecular
cloud
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(from Klessen et al. 2005, ApJ, 620, 768 - 794; also poster 8415)

Quiescent & coherent cores

&  tor ' .
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(from Klessen et al. 2005, ApJ, 620, 768 - 794; also poster 8415)

Quiescent & coherent cores
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correlation between

linewidth and column

density

(e.g. Goodman et al. 1998;
Barranco & Goodman 1998

Caselli et al. 2002; Tafalla et al. 2004)

map of linewidth

(contours column
density)

column density map

(contours column
density)
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cores form at stagnation
points of convergent
large-scale flows

--> often are bounded by

.'.
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coherent cores

correlation between

linewidth and column

density

(e.g. Goodman et al. 1998;
Barranco & Goodman 1998

Caselli et al. 2002; Tafalla et al. 2004)

map of linewidth

(contours column
density)

column density map

(contours column
density)
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Quiescent & coherent cores

istics:
large-scale turb. Statistics

[ 1small-scale turb.
23% of our cores are

quiescent (i.e. with
Orms S CS)

48% of our cores are

| tfransonic (i.e. with
; Cs< O, < 2C,)

s™ ~rms

L‘LI : half of our cores are
] IJ I coherent (i.e. with o

(i i ) A n ala independent of N)

rms

(from Klessen et al. 2005, Apd, 620, 768 - 794; also poster 8415)
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Quiescent & coherent cores

(from Klessen et al. 2005, Apd, 620, 768 - 794; also poster 8415)

Statistics:

most cores have masses
smaller than M,

(should reexpand once
external compresseion
fades)

some core have more
mass than M,
(should collapse)

(indeed all cores with
protostars have M>M,,,)
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IMF

@ distribution of stellar masses depends on

¢ turbulent initial conditions
--> mass spectrum of prestellar cloud cores

¢ collapse and interaction of prestellar cores
--> competitive accretion and N-body effects

¢ thermodynamic properties of gas
--> balance between heating and cooling
--> EOS (determines which cores go into collapse)

¢ (proto) stellar feedback terminates star formation
lonizing radiation, bipolar outflows, winds, SN

(e.g. Larson 2003, Prog. Rep. Phys.; Mac Low & Klessen, 2004, Rev. Mod. Phys, 76, 125 - 194)
Ralf Klessen: PPV, Oct. 24, 2005



Star cluster formation

Most stars form in clusters = star formation = cluster formation

« O
OQ@Q O QQ*[?}N O
D D O —> **f***:* f *

G~
0 @ N

How to get from cloud cores to star clusters?
How do the stars acquire mass?

(e.g. Larson 2003, Prog. Rep. Phys.; Mac Low & Klessen, 2004, Rev. Mod. Phys, 76, 125 - 194)
Ralf Klessen: PPV, Oct. 24, 2005



Star cluster formation

Most stars form in clusters = star formation = cluster formation

|

time 5{ 87

Trajectories of protostars in a nascent dense cluster created by gravoturbulent fragmentation
(from Klessen & Burkert 2000, ApJS, 128, 287) Ralf Klessen: PPV, Oct. 24, 2005



Mass accretion
rates vary with
fime and are
strongly
influenced by
the cluster
environment.

(Klessen 2001, ApJ, 550, L77;

also Schmeja & Klessen,
2004, A&A, 419, 405)
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Dependency on EOS

o degree of fragmentation depends on EQOS!

o polytropic EOS: p «pY
¢ y<1: dense cluster of low-mass stars
¢ v>1: isolated high-mass stars

(see Li, Klessen, & Mac Low 2003, ApJ, 592, 975; also Kawachi & Hanawa 1998, Larson 2003)

Ralf Klessen: PPV, Oct. 24, 2005
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for y<1 fragmentation is enhanced - cluster of low-mass stars
for y>1 it is suppressed - formation of /solated massive stars

(from Li, Klessen, & Mac Low 2003, ApJ, 592, 975)
Ralf Klessen: UCB, 08/1b(§g5



How does that work?

1) pxp! > pocP“Y

2) Migans x Y¥2 pOr-4)2

o y<1: 2 large density excursion for given pressure
= (Mjeans) beCOmMes small

4_& —~ number of fluctuations with M > M, . is large

o v>1: - small density excursion for given pressure
> (Micans) 18 large

/ﬂfew and massive clumps exceed M,
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Implications

o degree of fragmentation depends on EQOS!

o polytropic EOS: p «pY
¢ y<1: dense cluster of low-mass stars

¢ v>1: isolated high-mass stars

(see Li, Klessen, & Mac Low 2003, ApJ, 592, 975; Kawachi & Hanawa 1998; Larson 2003;
also Jappsen, Klessen, Larson, Li, Mac Low, 2005, 435, 611)

¢ implications for extreme environmental conditions
- expect Pop lll stars to be massive and form in isolation
- expect IMF variations in warm & dusty starburst regions
(Spaans & Silk 2005; Klessen, Spaans, & Jappsen 2005)
o Observational findings: isolated O stars in LMC (and M51)?

(Lamers et al. 2002, Massey 2002; see however, de Witt et al. 2005 for Galaxy)
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More realistic EOS

o But EOS depends on chemical state, on
balance between heating and cooling

n(H,).i = 2.5x10°cm™3

pcrit = 10_18 g Cm_s

o
-
©
“é_ PocpY
()
> PopT

— v = 1+dlogT/dlop

log density

(Larson 2005; Jappsen et al. 2005, A&A, 435, 611) Rl Klessen: PPV, Oct. 24. 2005



IMF in nearby molecular clouds

207
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o R single stars
0.5 (e.g. Scalo 1998,
= Kroupa 2002)
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(Jappsen et al. 2005, A&A, 435, 611) Ralf Klessen: PPV, Oct. 24, 2005
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Summary

interstellar gas is highly inhomogeneous
e thermal instability
@ gravitational instability
e turbulent compression (in shocks 8p/p =~ M2; in atomic gas: M = 1...3)

cold molecular clouds form rapidly in high-density regions

e chemical phase transition: atomic - molecular

@ process is modulated by large-scale dynamics in the galaxy

inside cold clouds: turbulence is highly supersonic (M = 1...20)
— turbulence creates density structure, gravity selects for collapse

GRAVOTUBULENT FRAGMENTATION

turbulent cascade: local compression within a cloud provokes collapse
individual stars and star clusters form through sequence of highly stochastic events:
e collapse of cloud cores in turbulent cloud (cores change during collapse)

o plus mutual interaction during collapse (importance depends on ratio
of potential energy to turbulent energy) (buzz word: competitive accretion)

Ralf Klessen: PPV, Oct. 24, 2005



Ralf Klessen: PPV, Oct. 24, 2005



SF Flow Chart

High SFR

rms

4 N Y

Starburst

Size

- /

Local
Burst
(Orion)

Low SFR

7

\.

Warm gas Toomre
unstable?

In

|

Is warm gas
compressed and
cooled?

Iv

N

[

-

Can cold gas

overwhelm turbulent

support?

J_:>\

7" s o m

galaxies,
outer disks

LSB

9

Isolated SF
(Taurus)




