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OverviewOverview

concept of gravoturbulent star formation
three „steps“ of star formation:

1.1. formation of molecular clouds in the disk of ourformation of molecular clouds in the disk of our
galaxygalaxy

2.2. formation of protostellar coresformation of protostellar cores

3.3. formation of stars: protostellar collapseformation of stars: protostellar collapse
and the stellar mass spectrumand the stellar mass spectrum

summary

 intermezzo:
   properties of molecular cloud turbulenceproperties of molecular cloud turbulence



Ralf Klessen: PPV, Oct. 24,  2005

the idea
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Gravoturbulent Gravoturbulent star formationstar formation

Idea:

Dual roleDual role of turbulence:
stability on large scalesstability on large scales

initiating collapse on small scalesinitiating collapse on small scales

Star formation is controlledStar formation is controlled
by interplay betweenby interplay between

gravitygravity and and
supersonic turbulencesupersonic turbulence!!

 (e.g., Larson, 2003, Rep. Prog. Phys, 66, 1651; 
or Mac Low & Klessen, 2004, Rev. Mod. Phys., 76, 125)
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Gravoturbulent Gravoturbulent star formationstar formation

Idea:

Validity:Validity:

Star formation is controlledStar formation is controlled
by interplay betweenby interplay between

gravitygravity and and
supersonic turbulencesupersonic turbulence!!

This hold on all scales and applies to build-up of stars and
star clusters within molecular clouds as well as to the
formation of molecular clouds in galactic disk.
 (e.g., Larson, 2003, Rep. Prog. Phys, 66, 1651; 
or Mac Low & Klessen, 2004, Rev. Mod. Phys., 76, 125)
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Gravoturbulent Gravoturbulent star formationstar formation
interstellar gas is highly inhomogeneous

thermal instabilitythermal instability

gravitational instabilitygravitational instability

turbulent compressionturbulent compression (in shocks δρ/ρ ∝ M2; in atomic gas: M ≈ 1...3)

cold molecular cloudsmolecular clouds can form rapidly in high-density regions at
stagnation points of convergent large-scale flows

chemical phase transitionphase transition:  atomic atomic  molecular molecular
process is modulatedmodulated by large-scale dynamics dynamics in the galaxy

inside cold clouds:  cold clouds: turbulence is highly supersonic (M ≈ 1...20)
→ turbulenceturbulence creates large density contrast,
    gravitygravity selects for collapse

→ GRAVOTUBULENT FRAGMENTATIONGRAVOTUBULENT FRAGMENTATION
turbulent cascade:turbulent cascade: local compression withinwithin a cloud provokes collapse
 formation of individual stars stars and star clusters star clusters

 (e.g. Mac Low & Klessen, 2004, Rev. Mod. Phys., 76, 125-194)
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cloud

formation
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 Mach 3 colliding flow
 Vishniac instability +

   thermal instability
 compressed sheet

   breaks up and builds
   up cold, high-density
   „blobs“ of gas

 --> molecular cloudmolecular cloud
        formation        formation
 cold cloud motions

   correspond to
   supersonic turbulence

Molecular cloud formationMolecular cloud formation
... in convergentconvergent

large-scale flowslarge-scale flows

... setting up the
turbulent cascadeturbulent cascade

 (e.g. Koyama & Inutsuka 2002, Heitsch et al., 2005, Vazquez-Semadeni et al. 2004; 
 also posters 8577, 8302)
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Correlation with large-scaleCorrelation with large-scale
perturbationsperturbations

density/temperaturedensity/temperature
fluctuationsfluctuations in warm
atomar ISM are caused
by thermal/gravitational
instability and/or
supersonic turbulence

some fluctuations are
densedense enough to form Hform H22
within “reasonable time”
 molecular cloud molecular cloud

external external perturbuationsperturbuations
(i.e. potential changes)
increaseincrease likelihood
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(e.g. off arm)

(e.g. on arm)

(poster 8170: Dobbs & Bonnell)

(poster 8577: Glover & Mac Low)
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Star formation on Star formation on globalglobal scales scales

probability distribution
function of the density
((ρρ--pdfpdf))

mass weighted ρ-pdf, each shifted by Δlog N = 1

varying rms Mach
numbers:

M1M1 >  > M2M2 > >
M3M3 >  > M4M4 >  > 00

(from Klessen, 2001; also Gazol et al. 2005, Mac Low et al. 2005)
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Star formation on Star formation on globalglobal scales scales
H2 formation rate:

mass weighted ρ-pdf, each shifted by Δlog N = 1

(rate from Hollenback, Werner, & Salpeter 1971, see also poster  8577)
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for nH≥ 100 cm-3, H2
forms within 10Myr, this
is about the lifetime of
typical MC’s.

in turbulent gas, the
H2 fraction can
become very high on
short timescale
(for models with coupling
between cloud dynamics and
time-dependent chemistry,
see Glover & Mac Low 2005)
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Correlation between HCorrelation between H22 and H and HII

(Deul & van der Hulst 1987, Blitz et al. 2004)

Compare H2 - HI
in M33:
  H2: BIMA-SONG 

    Survey, see Blitz
    et al.

  HI: Observations with
    Westerbork Radio T.
   

H2 clouds are seen in
regions of high HI
density
(in spiral arms and
filaments)
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turbulence
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Properties of turbulenceProperties of turbulence

laminar flows turn turbulent
at highhigh Reynolds numbers

V= typical velocity on scale L,     ν = viscosity,    Re > 1000

vortex streching --> turbulence
is intrinsically anisotropicanisotropic
(only on large scales you may get
homogeneity & isotropy in a statistical sense;
see Landau & Lifschitz, Chandrasekhar, Taylor, etc.)

(ISM turbulence: shocks & B-field cause
additional inhomogeneity)
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Vortex FormationVortex Formation

Vortices are streched and folded in three dimensions
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Turbulent cascadeTurbulent cascade
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Turbulent cascadeTurbulent cascade
log E
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 molecular clouds 

σrms  ≈ several km/s
Mrms > 10
    L  > 10 pc

Turbulent cascade in ISMTurbulent cascade in ISM
lo

g 
E

log kL-1 ηK
-1

energy source & scale
NOT known
(supernovae, winds,
spiral density waves?)

dissipation scale not known
(ambipolar diffusion,
molecular diffusion?)

supersonic

subsonic
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c 
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 massive cloud cores 

σrms  ≈ few km/s        
Mrms ≈ 5
      L ≈ 1 pc 

dense 
protostellar 
cores 

σrms << 1 km/s         
Mrms ≤ 1   
     L ≈ 0.1 pc 
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Density structure of MCDensity structure of MC’’ss

(Motte, André, & Neri 1998)

molecular clouds
are highly
inhomogeneous

stars form in the
densest and
coldest parts of
the cloud

ρ-Ophiuchus
cloud seen in dust
emission

let‘s focus on
a cloud core
like this one
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Evolution of cloud coresEvolution of cloud cores
Does core form single massive star
or cluster with mass distribution?

Turbulent cascade „goes through“ cloud
core
--> NO scale separation possible
--> NO effective sound speed
Turbulence is supersonic!
--> produces strong density contrasts:
     δρδρ//ρρ  ≈≈  MM22

--> with typical M M ≈≈ 10 10 --> δρδρ//ρρ  ≈≈ 100 100!
many of the shock-generated
fluctuations are Jeans unstable and go
into collapse
-->  core breaks up and forms acore breaks up and forms a
      cluster of stars      cluster of stars
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Evolution of cloud coresEvolution of cloud cores

indeed ρ-Oph B1/2 contains several
cores (“starless” cores are denoted by ,
cores with embedded protostars by )

(Motte, André, & Neri 1998)
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Formation and evolution of coresFormation and evolution of cores

protostellar cloud cores form at
the stagnation pointsstagnation points of convergentconvergent
turbulent flowsturbulent flows

if M > MJeans ∝ρ-1/2 T3/2: collapse and star formationcollapse and star formation

if M < MJeans ∝ρ-1/2 T3/2: reexpansion after externalreexpansion after external
                                      compression fades away                                      compression fades away

typical timescales: t ≈ 104 ... 105 yr

because turbulent ambipolar diffusion time is short, this
time estimate still holds for the presence of magnetic
fields, in magnetically critical cores

(e.g. Vazquez-Semadeni et al 2005)

(e.g. Fatuzzo & Adams 2002, Heitsch et al. 2004)
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What happens to distribution
of cloud cores?

Two exteme cases:
(1)  turbulence dominates energy budget:

αα==EEkinkin/|E/|Epotpot| >1| >1
--> individual cores do not interact
--> collapse of individual cores
     dominates stellar mass growth
--> loose cluster of low-mass starsloose cluster of low-mass stars

(2)  turbulence decays, i.e. gravity
dominates: αα==EEkinkin/|E/|Epotpot| <1| <1
--> global contraction
--> core do interact while collapsing
--> competition influences mass growth
--> dense cluster with high-mass starsdense cluster with high-mass stars

Formation and evolution of coresFormation and evolution of cores
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turbulence creates a hierarchy of clumps
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as turbulence decays locally, contraction sets in
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as turbulence decays locally, contraction sets in



Ralf Klessen: PPV, Oct. 24,  2005

while region contracts, individual clumps collapse to form stars
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while region contracts, individual clumps collapse to form stars
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individual clumps collapse to form stars
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individual clumps collapse to form stars
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in dense clustersdense clusters, clumps may merge while collapsing 
--> then contain multiple protostars
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in dense clustersdense clusters, clumps may merge while collapsing 
--> then contain multiple protostars
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in dense clustersdense clusters, clumps may merge while collapsing 
--> then contain multiple protostars
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in dense clustersdense clusters, competitive mass growth 
becomes important 
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in dense clustersdense clusters, competitive mass growth 
becomes important 
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in dense clustersdense clusters, N-body effects influence mass growth
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low-mass objects may
become ejected --> accretion stops
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feedback terminates star formation
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result: star clusterstar cluster, possibly with HII region



Ralf Klessen: PPV, Oct. 24,  2005

predictions
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PredictionsPredictions
global properties (statistical properties)

SF efficiency and timescale
stellar mass function -- IMF
dynamics of young star clusters
description of self-gravitating turbulent systems (pdf's, Δ-var.)

chemical mixing properties

local properties (properties of individual objects)
properties of individual clumps (e.g. shape, radial profile, lifetimes)

accretion history of individual protostars (dM/dt vs. t, j vs. t)

binary (proto)stars (eccentricity, mass ratio, etc.)

SED's of individual protostars
dynamic PMS tracks: Tbol-Lbol evolution
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Examples and predictionsExamples and predictions

example 1: transient structure of turbulent clouds

example 2: quiescent and coherent appearence of
             molecular cloud cores

example 3: speculations on the origin of the stellar
             mass spectrum (IMF)
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example 1
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• SPH model with
  1.6x106 particles
• large-scale driven
  turbulence

Transient cloud structureTransient cloud structure

• Mach number M = 6
• periodic boundaries
• physical scaling: “Taurus”

Gravoturbulent fragmentation of turbulent self-gravitating clouds

xy projection xz projection yz projection
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Gravoturbulent Gravoturbulent fragmentationfragmentation
Gravoturbulent fragmen-
tation in molecular clouds:
• SPH model with
  1.6x106 particles
• large-scale driven
  turbulence
• Mach number M = 6
• periodic boundaries
• physical scaling:

   “Taurus”:
   → density n(H2) ≈ 102 cm-3

   → L = 6 pc, M = 5000 M
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TaurusTaurus
cloudcloud

Star-
forming
filaments in
the TaurusTaurus
molecular
cloud

(from Hartmann 2002, ApJ)

20pc~4pc
~4pc
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example 2
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Quiescent & coherent coresQuiescent & coherent cores

column density map
(contours column
density)

map of linewidth
(contours column
density)

correlation between
linewidth and column
density
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(e.g. Goodman et al. 1998; 
Barranco & Goodman 1998
Caselli et al. 2002; Tafalla et al. 2004) 
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Quiescent & coherent coresQuiescent & coherent cores

column density map
(contours column
density)

map of linewidth
(contours column
density)

correlation between
linewidth and column
density
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(e.g. Goodman et al. 1998; 
Barranco & Goodman 1998
Caselli et al. 2002; Tafalla et al. 2004) 
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Quiescent & coherent coresQuiescent & coherent cores

column density map
(contours column
density)

map of linewidth
(contours column
density)

correlation between
linewidth and column
density
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cores form at stagnation
points of convergent
large-scale flows
--> often are bounded by
ram pressure
--> velocity dispersion
highest at boundary

(e.g. Goodman et al. 1998; 
Barranco & Goodman 1998
Caselli et al. 2002; Tafalla et al. 2004) 
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Quiescent & coherent coresQuiescent & coherent cores

23% of our cores are 
quiescentquiescent (i.e. with
σrms ≤ cs)

48% of our cores are 
transonictransonic (i.e. with
cs ≤ σrms ≤ 2cs)

half of our cores are 
coherentcoherent (i.e. with σrms 
independent of N)

Statistics:
large-scale turb.
small-scale turb.
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Quiescent & coherent coresQuiescent & coherent cores

most cores have masses
smaller than Mvir 
(should reexpand once 
external compresseion 
fades)
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some core have more 
mass than Mvir
(should collapse)
(indeed all cores with 
protostars have M>Mvir)

Statistics:M < Mvir

M > Mvir
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example 3
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IMFIMF

distribution of stellar masses depends on
turbulent initial conditions
--> mass spectrum of prestellar cloud cores
collapse and interaction of prestellar cores
--> competitive accretion and N-body effects
thermodynamic properties of gas
--> balance between heating and cooling
--> EOS (determines which cores go into collapse)
(proto) stellar feedback terminates star formation
ionizing radiation, bipolar outflows, winds, SN

(e.g. Larson 2003, Prog. Rep. Phys.; Mac Low & Klessen, 2004, Rev. Mod. Phys, 76, 125 - 194)
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Star cluster formationStar cluster formation

Most stars form in clusters    star formation = cluster formation

How to get from cloud corescloud cores  to star clustersstar clusters?
How do the stars acquireacquire massmass?

(e.g. Larson 2003, Prog. Rep. Phys.; Mac Low & Klessen, 2004, Rev. Mod. Phys, 76, 125 - 194)
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Star cluster formationStar cluster formation

Trajectories of protostars in a nascent dense cluster created by gravoturbulent fragmentation 
(from Klessen & Burkert 2000, ApJS, 128, 287)

Most stars form in clusters    star formation = cluster formation
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Mass accretion
rates  vary with
time and are
strongly
influenced by
the cluster
environment.

Accretion rates in clustersAccretion rates in clusters

(Klessen 2001, ApJ, 550, L77;
also Schmeja & Klessen,
2004, A&A, 419, 405)
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Dependency on EOSDependency on EOS

 degree of fragmentation depends on EOS!EOS!

 polytropic EOS: p p ∝ρ∝ργγ
  γγ<1<1: dense cluster of low-mass stars
 γγ>1:>1: isolated high-mass stars

   (see Li, Klessen, & Mac Low 2003, ApJ, 592, 975; also Kawachi & Hanawa 1998, Larson 2003)
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Dependency on EOSDependency on EOS

(from Li, Klessen, & Mac Low 2003, ApJ, 592, 975)

γ=0.2 γ=1.0 γ=1.2

for γ<1 fragmentation is enhanced  cluster of low-mass stars
for γ>1 it is suppressed  formation of isolated massive stars

Ralf Klessen: UCB, 08/11/04
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How does that work?How does that work?

  (1)(1)    p p ∝∝  ρργγ                ρρ  ∝∝  pp1/ 1/ γγ  

  (2)(2)    MMjeansjeans  ∝∝  γγ3/23/2  ρρ(3(3γγ-4)/2 -4)/2 

  γγ<1:<1:  largelarge density excursion for given pressure 
   〈Mjeans〉 becomes small
   number of fluctuations with M > Mjeans is large

 γγ>1:>1:  smallsmall density excursion for given pressure
   〈Mjeans〉 is large
   only few and massive clumps exceed Mjeans
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ImplicationsImplications

 degree of fragmentation depends on EOS!EOS!

 polytropic EOS: p p ∝ρ∝ργγ
  γγ<1<1: dense cluster of low-mass stars
 γγ>1:>1: isolated high-mass stars

       (see Li, Klessen, & Mac Low 2003, ApJ, 592, 975; Kawachi & Hanawa 1998; Larson 2003;
       also Jappsen, Klessen, Larson, Li, Mac Low, 2005, 435, 611)

 implications for extreme environmental conditions
   - expect Pop III stars to be massive and form in isolation
   - expect IMF variations in warm & dusty starburst regions 
        (Spaans & Silk 2005; Klessen, Spaans, & Jappsen 2005)

 Observational findings: isolated O stars in LMC (and M51)? 
        (Lamers et al. 2002, Massey 2002; see however, de Witt et al. 2005 for Galaxy)
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More realistic EOSMore realistic EOS

 But EOS depends on chemical statechemical state, on
  balancebalance between heatingheating and coolingcooling

 log density

lo
g 

te
m
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tu
re

P ∝ ργ

P ∝ ρT
→ γ = 1+dlogT/dloρ

n(H2)crit ≈ 2.5×105 cm-3

ρcrit
 ≈ 10-18 g cm-3

γ = 1.1γ = 0.7

(Larson 2005; Jappsen et al. 2005, A&A, 435, 611)
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IMF in nearby molecular cloudsIMF in nearby molecular clouds

(Jappsen et al. 2005, A&A, 435, 611)

 “Standard” IMF of 
  single stars
  (e.g. Scalo 1998, 
  Kroupa 2002)

with ρcrit
 ≈ 2.5×105 cm-3 

at SFE  ≈ 50%
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summary
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SummarySummary
interstellar gas is highly inhomogeneous

thermal instabilitythermal instability

gravitational instabilitygravitational instability

turbulent compressionturbulent compression (in shocks δρ/ρ ≈ M2; in atomic gas: M ≈ 1...3)

cold molecular cloudsmolecular clouds form rapidly in high-density regions

chemical phase transitionphase transition:  atomic atomic  molecular molecular

process is modulatedmodulated by large-scale dynamics dynamics in the galaxy

inside cold clouds:  cold clouds: turbulence is highly supersonic (M ≈ 1...20)
→ turbulenceturbulence creates density structure, gravitygravity selects for collapse

→ GRAVOTUBULENT FRAGMENTATIONGRAVOTUBULENT FRAGMENTATION

turbulent cascade:turbulent cascade: local compression withinwithin a cloud provokes collapse

individual stars stars and star clusters star clusters  form through sequence of highly stochastic events:

collapsecollapse of cloud cores in turbulent cloud (cores change during collapse)

plus mutual interactioninteraction during collapse (importance depends on ratio
of potential energy to turbulent energy) (buzz word: competitive accretioncompetitive accretion)
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Thanks!
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SF Flow ChartSF Flow Chart


