Molecular Cloud Turbulence and Star Formation

Javier Ballesteros-Paredes1, Ralf Klessen2, Mordecai-Mark Mac Low3, Enrique Vazquez-Semadeni1

1UNAM Morelia, Mexico, 2AIP, Potsdam, Germany, 3AMNH New York, USA
Overview

- concept of gravoturbulent star formation
- three „steps“ of star formation:
 1. formation of molecular clouds in the disk of our galaxy
 - intermezzo: properties of molecular cloud turbulence
 2. formation of protostellar cores
 3. formation of stars: protostellar collapse and the stellar mass spectrum
- summary
the idea
Gravoturbulent star formation

Idea:

Star formation is controlled by interplay between gravity and supersonic turbulence!

Dual role of turbulence:

- stability on large scales
- initiating collapse on small scales

(e.g., Larson, 2003, Rep. Prog. Phys, 66, 1651; or Mac Low & Klessen, 2004, Rev. Mod. Phys., 76, 125)
Gravoturbulent star formation

Idea:

Star formation is controlled by interplay between gravity and supersonic turbulence!

Validity:

This hold on all scales and applies to build-up of stars and star clusters within molecular clouds as well as to the formation of molecular clouds in galactic disk.

(e.g., Larson, 2003, Rep. Prog. Phys, 66, 1651; or Mac Low & Klessen, 2004, Rev. Mod. Phys., 76, 125)
Competing approaches in SF theory:

quasistatic theories:
magnetically mediated star formation
Shu, Adams, & Lizano (1987, ARAA)

dynamical theories:
turbulent control of star formation
Mac Low & Klessen (2004, RMP, 76, 125)
Elmegreen & Scalo (2004, ARAA)
Scalo & Elmegreen (2004, ARAA)
Gravoturbulent star formation

interstellar gas is highly \textit{inhomogeneous}

- thermal instability
- gravitational instability
- turbulent compression (in shocks $\delta \rho / \rho \propto M^2$; in atomic gas: $M \approx 1...3$)

cold \textit{molecular clouds} can form rapidly in high-density regions at \textit{stagnation points} of convergent \textit{large-scale flows}

- chemical \textit{phase transition}: atomic \rightarrow molecular
- process is \textit{modulated} by large-scale \textit{dynamics} in the galaxy

inside \textit{cold clouds}: turbulence is highly supersonic ($M \approx 1...20$)

\rightarrow turbulence creates large density contrast,

\textit{gravity} selects for collapse

\textbf{GRAVOTUBULENT FRAGMENTATION}

\textit{turbulent cascade}: local compression \textit{within} a cloud provokes collapse

\rightarrow formation of individual \textit{stars} and \textit{star clusters}

\textit{(e.g. Mac Low \\& Klessen, 2004, Rev. Mod. Phys., 76, 125-194)}
cloud formation
Molecular cloud formation

... in convergent large-scale flows

... setting up the turbulent cascade

- Mach 3 colliding flow
- Vishniac instability + thermal instability
- compressed sheet breaks up and builds up cold, high-density „blobs“ of gas

--> molecular cloud formation

- cold cloud motions correspond to supersonic turbulence

(e.g. Koyama & Inutsuka 2002, Heitsch et al., 2005, Vazquez-Semadeni et al. 2004; also posters 8577, 8302)
Correlation with large-scale perturbations

Density/temperature fluctuations in warm atomar ISM are caused by thermal/gravitational instability and/or supersonic turbulence. Some fluctuations are dense enough to form H_2 within "reasonable time" → molecular cloud.

External perturbations (i.e. potential changes) increase likelihood.

(e.g. off arm)

(e.g. on arm)

Poster 8170: Dobbs & Bonnell
Poster 8577: Glover & Mac Low
Star formation on global scales

\[\rho \text{-pdf, each shifted by } \Delta \log N = 1 \]

\[M_1 > M_2 > M_3 > M_4 > 0 \]

probability distribution function of the density (\(\rho \text{-pdf} \))

varying rms Mach numbers:

(from Klessen, 2001; also Gazol et al. 2005, Mac Low et al. 2005)
Star formation on global scales

H_2 formation rate:

$$\tau_{H_2} \approx \frac{1.5 \text{ Gyr}}{n_H / 1 \text{ cm}^{-3}}$$

for $n_H \geq 100 \text{ cm}^{-3}$, H_2 forms within 10 Myr, this is about the lifetime of typical MC's.

In turbulent gas, the H_2 fraction can become very high on short timescale

(for models with coupling between cloud dynamics and time-dependent chemistry, see Glover & Mac Low 2005)

Mass weighted ρ-pdf, each shifted by $\Delta \log N = 1$

(rate from Hollenback, Werner, & Salpeter 1971, see also poster 8577)
Correlation between H_2 and HI

Compare H_2 - HI in M33:
- H_2: BIMA-SONG Survey, see Blitz et al.
- HI: Observations with Westerbork Radio T.

H_2 clouds are seen in regions of high HI density (in spiral arms and filaments)

(Deul & van der Hulst 1987, Blitz et al. 2004)
turbulence
Properties of turbulence

- Laminar flows turn turbulent at high Reynolds numbers

\[
\text{Re} = \frac{\text{advection}}{\text{dissipation}} = \frac{V L}{\nu}
\]

- V = typical velocity on scale L, \(\nu = \text{viscosity}, \) \(\text{Re} > 1000 \)

- Vortex stretching \(\rightarrow \) turbulence is intrinsically anisotropic

 (only on large scales you may get homogeneity & isotropy in a statistical sense; see Landau & Lifschitz, Chandrasekhar, Taylor, etc.)

 (ISM turbulence: shocks & B-field cause additional inhomogeneity)
Vortex Formation

Vortices are stretched and folded in three dimensions

Porter et al. ASCI, 1997
Turbulent cascade

Inertial range:

scale-free behavior of turbulence

\(\frac{L}{\eta_K} \approx \text{Re}^{3/4} \)

Kolmogorov (1941) theory

incompressible turbulence
Turbulent cascade

Shock-dominated turbulence

energy input scale

energy dissipation scale

log E

log k

k^{-2}

transfer

inertial range:

"scale-free behavior of turbulence"

"size" of inertial range:

$$\frac{L}{\eta_K} \approx \text{Re}^{3/4}$$

Ralf Klessen: PPV, Oct. 24, 2005
Turbulent cascade in ISM

- Energy source & scale NOT known (supernovae, winds, spiral density waves?)
- Supersonic scale: $\sigma_{\text{rms}} \approx \text{several km/s}$, $M_{\text{rms}} > 10$, $L > 10$ pc
- Subsonic scale: $\sigma_{\text{rms}} \approx \text{few km/s}$, $M_{\text{rms}} \approx 5$, $L \approx 1$ pc
- Dissipation scale not known (ambipolar diffusion, molecular diffusion?)

Ralf Klessen: PPV, Oct. 24, 2005
molecular clouds are highly inhomogeneous

stars form in the densest and coldest parts of the cloud

ρ-Ophiuchus cloud seen in dust emission

let’s focus on a cloud core like this one

(Motte, André, & Neri 1998)
Evolution of cloud cores

- Does core form single massive star or cluster with mass distribution?

- Turbulent cascade "goes through" cloud core
 --> NO scale separation possible
 --> NO effective sound speed

- Turbulence is supersonic!
 --> produces strong density contrasts:
 \[\frac{\delta \rho}{\rho} \approx M^2 \]
 --> with typical \(M \approx 10 \) --> \(\frac{\delta \rho}{\rho} \approx 100! \)

- many of the shock-generated fluctuations are Jeans unstable and go into collapse
 --> core breaks up and forms a cluster of stars
Evolution of cloud cores

indeed ρ-Oph B1/2 contains several cores ("starless" cores are denoted by x, cores with embedded protostars by ★)

(Motte, André, & Neri 1998)
Formation and evolution of cores

- protostellar cloud cores form at the stagnation points of convergent turbulent flows

- if $M > M_{\text{Jeans}} \propto \rho^{-1/2} T^{3/2}$: collapse and star formation

- if $M < M_{\text{Jeans}} \propto \rho^{-1/2} T^{3/2}$: reexpansion after external compression fades away

 (e.g. Vazquez-Semadeni et al. 2005)

- typical timescales: $t \approx 10^4 \ldots 10^5$ yr

- because turbulent ambipolar diffusion time is short, this time estimate still holds for the presence of magnetic fields, in magnetically critical cores

 (e.g. Fatuzzo & Adams 2002, Heitsch et al. 2004)
What happens to distribution of cloud cores?

Two extreme cases:

1. Turbulence dominates energy budget:
 \[\alpha = \frac{E_{\text{kin}}}{|E_{\text{pot}}|} > 1 \]
 --> individual cores do not interact
 --> collapse of individual cores dominates stellar mass growth
 --> loose cluster of low-mass stars

2. Turbulence decays, i.e. gravity dominates:
 \[\alpha = \frac{E_{\text{kin}}}{|E_{\text{pot}}|} < 1 \]
 --> global contraction
 --> core do interact while collapsing
 --> competition influences mass growth
 --> dense cluster with high-mass stars
turbulence creates a hierarchy of clumps
as turbulence decays locally, contraction sets in
as turbulence decays locally, contraction sets in
while region contracts, individual clumps collapse to form stars
while region contracts, individual clumps collapse to form stars
individual clumps collapse to form stars
individual clumps collapse to form stars
in *dense clusters*, clumps may merge while collapsing
--> then contain multiple protostars
in *dense clusters*, clumps may merge while collapsing
--> then contain multiple protostars
in *dense clusters*, clumps may merge while collapsing
--> then contain multiple protostars
in *dense clusters*, competitive mass growth becomes important
in *dense clusters*, competitive mass growth becomes important
in dense clusters, \(N \)-body effects influence mass growth
low-mass objects may become ejected --> accretion stops
feedback terminates star formation
result: *star cluster*, possibly with H\textsubscript{II} region
Predictions

global properties (statistical properties)
- SF efficiency and timescale
- stellar mass function -- IMF
- dynamics of young star clusters
- description of self-gravitating turbulent systems (pdf's, Δ-var.)
- chemical mixing properties

local properties (properties of individual objects)
- properties of individual clumps (e.g. shape, radial profile, lifetimes)
- accretion history of individual protostars (dM/dt vs. t, j vs. t)
- binary (proto)stars (eccentricity, mass ratio, etc.)
- SED's of individual protostars
- dynamic PMS tracks: T_{bol}-L_{bol} evolution
Examples and predictions

example 1: transient structure of turbulent clouds

example 2: quiescent and coherent appearance of molecular cloud cores

example 3: speculations on the origin of the stellar mass spectrum (IMF)
example 1
Transient cloud structure

Gravoturbulent fragmentation of turbulent self-gravitating clouds

- SPH model with \(1.6 \times 10^6\) particles
- large-scale driven turbulence

- Mach number \(M = 6\)
- periodic boundaries
- physical scaling: “Taurus”
Gravoturbulent fragmentation

Gravoturbulent fragmentation in molecular clouds:
- SPH model with 1.6×10^6 particles
- large-scale driven turbulence
- Mach number $M = 6$
- periodic boundaries
- physical scaling:

“Taurus”:
- density $n(H_2) \approx 10^2 \text{ cm}^{-3}$
- $L = 6 \text{ pc}$, $M = 5000 \, M_\odot$
Star-forming filaments in the Taurus molecular cloud

Quiescent & coherent cores

correlation between linewidth and column density
(e.g. Goodman et al. 1998; Barranco & Goodman 1998; Caselli et al. 2002; Tafalla et al. 2004)

map of linewidth (contours column density)

column density map (contours column density)
Quiescent & coherent cores

correlation between linewidth and column density
(e.g. Goodman et al. 1998; Barranco & Goodman 1998; Caselli et al. 2002; Tafalla et al. 2004)

map of linewidth (contours column density)

column density map (contours column density)
cores form at stagnation points of convergent large-scale flows
--> often are bounded by ram pressure
--> velocity dispersion highest at boundary

correlation between linewidth and column density

(e.g. Goodman et al. 1998; Barranco & Goodman 1998
Caselli et al. 2002; Tafalla et al. 2004)

map of linewidth
(contours column density)

column density map
(contours column density)
Quiescent & coherent cores

Statistics:

23% of our cores are **quiescent** (i.e. with $\sigma_{\text{rms}} \leq c_s$)

48% of our cores are **transonic** (i.e. with $c_s \leq \sigma_{\text{rms}} \leq 2c_s$)

half of our cores are **coherent** (i.e. with σ_{rms} independent of N)

Quiescent & coherent cores

Statistics:

- Most cores have masses smaller than M_{vir} (should reexpand once external compression fades).
- Some cores have more mass than M_{vir} (should collapse).
- Indeed, all cores with protostars have $M > M_{\text{vir}}$.

distribution of stellar masses depends on
- turbulent initial conditions
 --> mass spectrum of prestellar cloud cores
- collapse and interaction of prestellar cores
 --> competitive accretion and N-body effects
- thermodynamic properties of gas
 --> balance between heating and cooling
 --> EOS (determines which cores go into collapse)
- (proto) stellar feedback terminates star formation
 ionizing radiation, bipolar outflows, winds, SN

(e.g. Larson 2003, Prog. Rep. Phys.; Mac Low & Klessen, 2004, Rev. Mod. Phys, 76, 125 - 194)
Star cluster formation

Most stars form in clusters \(\rightarrow\) \textit{star formation} = \textit{cluster formation}

How to get from \textit{cloud cores} to \textit{star clusters}?

How do the stars acquire mass?

(e.g. Larson 2003, Prog. Rep. Phys.; Mac Low & Klessen, 2004, Rev. Mod. Phys, 76, 125 - 194)
Star cluster formation

Most stars form in clusters → star formation = cluster formation

Trajectories of protostars in a nascent dense cluster created by gravoturbulent fragmentation
Mass accretion rates vary with time and are strongly influenced by the cluster environment.

Dependency on EOS

- degree of fragmentation depends on EOS!
 - polytropic EOS: $p \propto \rho^\gamma$
 - $\gamma < 1$: dense cluster of low-mass stars
 - $\gamma > 1$: isolated high-mass stars

Dependency on EOS

for $\gamma<1$ fragmentation is enhanced \rightarrow *cluster of low-mass stars*

for $\gamma>1$ it is suppressed \rightarrow *formation of isolated massive stars*

(from Li, Klessen, & Mac Low 2003, ApJ, 592, 975)
How does that work?

(1) \(p \propto \rho^\gamma \Rightarrow \rho \propto p^{1/\gamma} \)

(2) \(M_{\text{jeans}} \propto \gamma^{3/2} \rho^{(3\gamma-4)/2} \)

\(\gamma < 1: \Rightarrow \text{large} \) density excursion for given pressure
- \(\langle M_{\text{jeans}} \rangle \) becomes small
- number of fluctuations with \(M > M_{\text{jeans}} \) is large

\(\gamma > 1: \Rightarrow \text{small} \) density excursion for given pressure
- \(\langle M_{\text{jeans}} \rangle \) is large
- only few and massive clumps exceed \(M_{\text{jeans}} \)
Implications

degree of fragmentation depends on EOS!

- polytropic EOS: $p \propto \rho^\gamma$
- $\gamma < 1$: dense cluster of low-mass stars
- $\gamma > 1$: isolated high-mass stars

implications for extreme environmental conditions
- expect Pop III stars to be massive and form in isolation
- expect IMF variations in warm & dusty starburst regions
 (Spaans & Silk 2005; Klessen, Spaans, & Jappsen 2005)

Observational findings: isolated O stars in LMC (and M51)?
 (Lamers et al. 2002, Massey 2002; see however, de Witt et al. 2005 for Galaxy)
More realistic EOS

But EOS depends on chemical state, on balance between heating and cooling.

\[P \propto \rho^\gamma \]
\[\rho_{\text{crit}} \approx 10^{-18} \text{ g cm}^{-3} \]
\[n(\text{H}_2)_{\text{crit}} \approx 2.5 \times 10^5 \text{ cm}^{-3} \]
\[\gamma = 0.7 \]
\[\gamma = 1.1 \]

\[\rightarrow \gamma = 1 + d\log T / d\log \rho \]

IMF in nearby molecular clouds

\[
\rho_{\text{crit}} \approx 2.5 \times 10^5 \text{ cm}^{-3}
\]

at SFE \(\approx 50\% \)

"Standard" IMF of single stars (e.g. Scalo 1998, Kroupa 2002)

Summary

- interstellar gas is highly inhomogeneous
 - *thermal instability*
 - *gravitational instability*
 - *turbulent compression* (in shocks \(\delta \rho/\rho = M^2 \); in atomic gas: \(M \approx 1...3 \))

- cold *molecular clouds* form rapidly in high-density regions
 - chemical *phase transition*: atomic \(\rightarrow \) molecular
 - process is *modulated* by large-scale *dynamics* in the galaxy

- inside *cold clouds*: turbulence is highly supersonic (\(M \approx 1...20 \))
 \(\rightarrow \) turbulence creates density structure, *gravity* selects for collapse

\[\text{GRAVOTUBULENT FRAGMENTATION} \]

- *turbulent cascade*: local compression within a cloud provokes collapse

- individual *stars* and *star clusters* form through *sequence* of highly *stochastic* events:
 - *collapse* of cloud cores in turbulent cloud (cores change during collapse)
 - plus mutual *interaction* during collapse (importance depends on ratio of potential energy to turbulent energy) (buzz word: *competitive accretion*)
Thanks!
SF Flow Chart

High SFR → Starburst → Warm gas Toomre unstable? → Is warm gas compressed and cooled? → Can cold gas overwhelm turbulent support?

- Y → Local Burst (Orion)
- N → Is LSB galaxies, outer disks

Low SFR → Isolated SF (Taurus)

V_{rms} from SFR → Σ from dynamics

(from Mc Low & Klessen, 2004, Rev. Mod. Phys., 76, 125 - 194)