star formation in disk galaxies

Ralf Klessen

Zentrum für Astronomie der Universität Heidelberg Institut für Theoretische Astrophysik

phenomenology

stars

• gas

Interplay between gravity and turbulence

- examples and predictions
 - transient cloud structure
 - stellar initial mass function

young stars in spiral galaxies

 Star formation always is associated with clouds of gas and dust.

Star formation
 is essentially a
 local phenomenon (on ~pc scale)

 HOW is star formation is *influenced* by global properties of the galaxy?

(NGC 4622 from the Hubble Heritage Team)

young stars in the Milky Way

On the night sky, you see *stars* and *dark clouds*:
The brightest stars are massive and therefore young.
→ Star formation is important for understanding the structure of our Galaxy

star formation in Orion

We see

- *Stars* (in visible light)
- Atomic hydrogen (in Hα -- red)
- Molecular hydrogen H₂ (radio emission -color coded)

local star forming region: ONC - Orion nebula cluster

Orion molecular cloud

The Orion molecular cloud is the birth-place of several young embedded star clusters.

The Trapezium cluster is only visible in the IR and contains about 2000 newly born stars.

Trapezium cluster

ONC (detail)

- stars form
 in clusters
- stars form
 in molecular
 clouds
- (proto)stellar
 feedback is
 important

(color composite J,H,K by M. McCaughrean, VLT, Paranal, Chile)

Rait Klessen:

center of ONC: the trapezium

lonizing radiation from central star Θ1C Orionis **Proplyds:** Evaporating ``protoplanetary´´ disks around young low-mass protostars

siluette disks in Orion

protostellar disks: dark shades in front of the photodissociation (data: Mark McCaughrean) region in the background. Each image is 750 AU x 750 AU.

how to observe star forming clouds?

Different wavelength give different information.

 \rightarrow astronomer use the full electromagnetic spectrum

•	Radio:	interstellar gas (line emission -> velocity information)
•	sub-mm range:	dust (thermal emission)
•	infrared & optical:	stars
•	x-rays:	stars (coronae), supernovae remnants (very hot gas)
•	γ -rays :	supernovae remnants (radioactive decay, e.g. ²⁶ Al), compact objects, merging of neutron stars (γ-ray burst)

interstellar matter: ISM

Abundances, scaled to 1.000.000 H atoms element atomic number abundance Wasserstoff H 1 1.000.000 Deuterium $_1$ H² 16 1 2 68.000 Helium He Kohlenstoff С 6 420 Stickstoff 7 90 Ν 8 Sauerstoff 700 Ο Neon Ne 10 100 2 Natrium Na 11 12 Magnesium Mg 40 3 Aluminium AI 13 Si Silicium 14 38 Schwefel S 16 20 Calcium 20 2 Са Fisen 26 Fe 34 Ni 28 2 Nickel

Hydrogen is by far the most abundant element (more than 90% in number).

phases of the ISM

Because hydrogen is the dominating element, the classification scheme is based on its chemical state:

ionized atomic hydrogeN neutraler atomic hydrogen molecular hydrogen

different regions consist of almost 100% of the appropriate phase, the transition regions between HII, H and H_2 are very thin.

star formation always takes place in dense and cold molecular clouds.

phases of the ISM

correlation between H₂ and HI

⁽Deul & van der Hulst 1987, Blitz et al. 2004)

gravoturbulent star formation

idea:

Star formation is controlled by interplay between gravity and supersonic turbulence!

• dual role of turbulence:

stability on large scales

initiating collapse on small scales

(e.g., Larson, 2003, Rep. Prog. Phys, 66, 1651; or Mac Low & Klessen, 2004, Rev. Mod. Phys., 76, 125)

gravoturbulent star formation

idea:

Star formation is controlled by interplay between gravity and supersonic turbulence!

validity:

This hold on *all* scales and applies to build-up of stars and star clusters within molecular clouds as well as to the formation of molecular clouds in galactic disk.

(e.g., Larson, 2003, Rep. Prog. Phys, 66, 1651; or Mac Low & Klessen, 2004, Rev. Mod. Phys., 76, 125)

gravoturbulent star formation

- interstellar gas is highly inhomogeneous
 - thermal instability
 - gravitational instability

- *turbulent compression* (in shocks $\delta \rho / \rho \propto M^2$; in atomic gas: $M \approx 1...3$)
- cold molecular clouds can form rapidly in high-density regions at stagnation points of convergent large-scale flows
 - chemical phase transition: atomic → molecular
 - process is modulated by large-scale dynamics in the galaxy
- inside cold clouds: turbulence is highly supersonic ($M \approx 1...20$)
 - → *turbulence* creates large density contrast, *gravity* selects for collapse

GRAVOTUBULENT FRAGMENTATION

 turbulent cascade: local compression within a cloud provokes collapse → formation of individual stars and star clusters

molecular cloud formation

⁽Deul & van der Hulst 1987, Blitz et al. 2004)

correlation with large-scale perturbations

density/temperature fluctuations in warm atomar ISM are caused by *thermal/gravitational instability* and/or *supersonic turbulence*

some fluctuations are dense enough to form H₂ within "reasonable time" → molecular cloud (Glover & Mac Low 2007a,b)

external perturbuations (i.e. potential changes) increase likelihood (Dobbs & Bonnell 2006)

star formation on global scales

mass weighted ρ -pdf, each shifted by $\Delta logN=1$

(from Klessen, 2001; also Gazol et al. 2005, Mac Low et al. 2005)

star formation on global scales

(rate from Hollenback, Werner, & Salpeter 1971)

H₂ formation rate:

$$\tau_{\rm H_2} \approx \frac{1.5\,\rm Gyr}{n_{\rm H}\,/\,\rm 1cm^{-3}}$$

for $n_{\rm H} \ge 100 \, {\rm cm}^{-3}$, ${\rm H}_2$ forms within 10Myr, this is about the lifetime of typical MC's.

in turbulent gas, the H_2 fraction can become very high on short timescale

(for models with coupling between cloud dynamics and time-dependent chemistry, see Glover & Mac Low 2007a,b)

modeling galactic SF

SPH calculations of self-gravitating disks of stars and (isothermal) gas in dark-matter potential, sink particles measure local collapse --> star formation

Modeling galactic SF

- Evolution of 42 isolated disk galaxies
 - DM halo, stellar disk & gas disk
 - SPH code GADGET with accretion particles (resolution: 5×10⁵ to 3×10⁶ gas particles)
 - 50 km/s $\leq V_{circ} \leq 250$ km/s
 - fraction of disk mass: $m_d = 5\% 10\%$
 - gas fraction in disk: $f_d = 20\%$, 50%, & 90%
 - total mass: $4.15 \times 10^{10} M_{\odot} \le M_{200} \le 357.14 \times 10^{10} M_{\odot}$

(corresponds to mass resolution of $138 M_{\odot} \le M_{SPH} \le 10^5 M_{\odot}$ in models with $3x10^6$ gas particles)

Molecular cloud formation

- ... in convergent large-scale flows
- ... setting up the turbulent cascade
 - Mach 3 colliding flow
 - Vishniac instability + thermal instability
 - compressed sheet
 breaks up and builds
 up cold, high-density
 "blobs" of gas
 - --> molecular cloud formation
 - cold cloud motions correspond to supersonic turbulence

(e.g. Koyama & Inutsuka 2002, Heitsch et al., 2005, Vazquez-Semadeni et al. 2004; also posters 8577, 8302)

We find correlation between star formation rate and gas surface density:

global Schmidt Iaw

Observed Schmidt law

(from Kennicutt 1998)

observed Schmidt law

Properties of turbulence

 laminar flows turn *turbulent* at *high Reynolds* numbers

 $Re = \frac{advection}{dissipation} = \frac{VL}{v}$

V= typical velocity on scale L, $\nu = viscosity$, Re > 1000

• vortex streching --> turbulence is intrinsically anisotropic

is intrinsically anisotropic

(only on large scales you *may* get homogeneity & isotropy in a statistical sense; see Landau & Lifschitz, Chandrasekhar, Taylor, etc.)

(ISM turbulence: shocks & B-field cause additional inhomogeneity)

Vortex Formation

Vortices are streched and folded in three dimensions

turbulent cascade

turbulent cascade

turbulent cascade in ISM

NOT known (supernovae, winds, spiral density waves?) $\sigma_{\rm rms} \ll 1$ km/s $M_{\rm rms} \le 1$ $L \approx 0.1$ pc dissipation scale not known (ambipolar diffusion, molecular diffusion?)

density structure of MCs

molecular clouds are highly inhomogeneous

stars form in the densest and coldest parts of the cloud

ρ-Ophiuchus cloud seen in dust emission

let's focus on a cloud core like this one

evolution of cloud cores

- Does core form single massive star or cluster with mass distribution?
- Turbulent cascade "goes through" cloud core --> NO scale separation possible
 - --> NO effective sound speed
- Turbulence is supersonic!
 - --> produces strong density contrasts: $\delta \rho / \rho \approx M^2$
 - --> with typical $M \approx 10 \rightarrow \delta \rho / \rho \approx 100!$
- many of the shock-generated fluctuations are Jeans unstable and go into collapse
- --> core breaks up and forms a cluster of stars

evolution of cloud cores

formation and evolution of cores

 protostellar cloud cores form at the stagnation points of convergent turbulent flows

- if M > M_{Jeans} $\propto \rho^{-1/2} T^{3/2}$: collapse and star formation
- if M < M_{Jeans} $\propto \rho^{-1/2} T^{3/2}$: reexpansion after external compression fades away

(e.g. Vazquez-Semadeni et al 2005)

- typical timescales: $t \approx 10^4 \dots 10^5$ yr
- because *turbulent* ambipolar diffusion time is *short*, this time estimate still holds for the presence of magnetic fields, in *magnetically critical cores*

formation and evolution of cores

What happens to distribution of cloud cores?

Two externe cases:

- (1) turbulence dominates energy budget:
 - $\alpha = E_{kin} / |E_{pot}| > 1$
 - --> individual cores do not interact
 - --> collapse of individual cores dominates stellar mass growth
 - --> loose cluster of low-mass stars
- (2) turbulence decays, i.e. gravity dominates: α=E_{kin}/|E_{pot}| <1
 --> global contraction
 - --> core do *interact* while collapsing
 - --> competition influences mass growth
 - --> dense cluster with high-mass stars

turbulence creates a hierarchy of clumps

as turbulence decays locally, contraction sets in

as turbulence decays locally, contraction sets in

while region contracts, individual clumps collapse to form stars

while region contracts, individual clumps collapse to form stars

individual clumps collapse to form stars

individual clumps collapse to form stars

in *dense clusters*, clumps may merge while collapsing --> then contain multiple protostars

in *dense clusters*, clumps may merge while collapsing --> then contain multiple protostars

in *dense clusters*, clumps may merge while collapsing --> then contain multiple protostars

in *dense clusters*, competitive mass growth becomes important

in *dense clusters*, competitive mass growth becomes important

in dense clusters, N-body effects influence mass growth

feedback terminates star formation

result: star cluster, possibly with HII region

predictions

- global properties (statistical properties)
 - SF efficiency and timescale
 - stellar mass function -- IMF
 - dynamics of young star clusters
 - description of self-gravitating turbulent systems (pdf's, Δ-var.)
 - chemical mixing properties
- local properties (properties of individual objects)
 - properties of individual clumps (e.g. shape, radial profile, lifetimes)
 - accretion history of individual protostars (dM/dt vs. t, j vs. t)
 - binary (proto)stars (eccentricity, mass ratio, etc.)
 - SED's of individual protostars
 - dynamic PMS tracks: T_{bol}-L_{bol} evolution

examples and predictions

example 1: transient structure of turbulent clouds *example 2:* speculations on the origin of the stellar mass spectrum (IMF)

Transient cloud structure

Gravoturbulent fragmentation of turbulent self-gravitating clouds

Gravoturbulent fragmentation

<u>Gravoturbulent fragmen-</u> tation in molecular clouds:

- SPH model with 1.6x10⁶ particles
- large-scale driven turbulence
- Mach number \mathcal{M} = 6
- periodic boundaries
- physical scaling:

"Taurus":

- → density $n(H_2) \approx 10^2 \text{ cm}^{-3}$
- \rightarrow L=6pc, M=5000 M_{\odot}

IMF

distribution of stellar masses depends on

turbulent initial conditions

--> mass spectrum of prestellar cloud cores

collapse and interaction of prestellar cores competitive accretion and N-body effects

--> competitive accretion and *N*-body effects

thermodynamic properties of gas

--> balance between heating and cooling

- --> EOS (determines which cores go into collapse)
- (proto) stellar feedback terminates star formation ionizing radiation, bipolar outflows, winds, SN

Star cluster formation

Most stars form in clusters \rightarrow star formation = cluster formation

How to get from cloud cores to star clusters? How do the stars acquire mass?

Star cluster formation

in dense clusters protostellar interaction may be come important!

Trajectories of protostars in a nascent dense cluster created by gravoturbulent fragmentation (from Klessen & Burkert 2000, ApJS, 128, 287) Ralf Klessen: Heidelberg Summer School, 03.09.2007

fragmentation depends on EOS (1) $\mathbf{p} \propto \rho^{\gamma} \rightarrow \rho \propto p^{1/\gamma}$ (2) $M_{jeans} \propto \gamma^{3/2} \rho^{(3\gamma-4)/2}$ • $\gamma < 1$: \rightarrow *large* density excursion for given pressure $\rightarrow \langle M_{ieans} \rangle$ becomes small \rightarrow number of fluctuations with M > M_{ieans} is large • $\gamma > 1$: \rightarrow small density excursion for given pressure $\rightarrow \langle M_{ieans} \rangle$ is large \rightarrow only few and massive clumps exceed M_{ieans}

fragmentation depends on EOS

for γ <1 fragmentation is enhanced \rightarrow *cluster of low-mass stars* for γ >1 it is suppressed \rightarrow formation of *isolated massive stars*

(from Li, Klessen, & Mac Low 2003, ApJ, 592, 975)

IMF from simple piece-wise polytropic EOS

 $\mathsf{T} \sim \rho^{\gamma-1}$

IMF in nearby molecular clouds

- Supersonic turbulence is scale free process

 POWER LAW BEHAVIOR
- But also: turbulence and fragmentation are highly stochastic processes → central limit theorem
 - → GAUSSIAN DISTRIBUTION

Ralf Klessen: Heidelberg Summer School, 03.09.2007

summary

- interstellar gas is highly inhomogeneous
 - thermal instability
 - gravitational instability
 - *turbulent compression* (in shocks $\delta \rho / \rho \approx M^2$; in atomic gas: $M \approx 1...3$)
- cold molecular clouds form rapidly in high-density regions
 - chemical phase transition: atomic \rightarrow molecular
 - process is *modulated* by large-scale *dynamics* in the galaxy
- inside cold clouds: turbulence is highly supersonic (M ≈ 1...20)
 → turbulence creates density structure, gravity selects for collapse

\rightarrow **GRAVOTUBULENT FRAGMENTATION**

- *turbulent cascade:* local compression *within* a cloud provokes collapse
- individual stars and star clusters form through sequence of highly stochastic events:
 - *collapse* of cloud cores in turbulent cloud (cores change during collapse)
 - plus mutual *interaction* during collapse (importance depends on ratio of potential energy to turbulent energy) (buzz word: *competitive accretion*)

Gravitational collapse within MCs

today: SPH with $N > 10^7$ particles

model for the Orion cloud: M = $10^4 M_{sun}$, isothermal EOS

still no *chemistry*, no *stellar feedback*, no *radiation*

(Bonnell et al. 2006)

Ralf Klessen: Heidelberg Summer School, 03.09.2007

Gravitational collapse within MCs

Gravitational collapse within MCs

immediate future: SPH with radiation feedback (first validation runs)

