

ISM Turbulence

Ralf Klessen

Zentrum für Astronomie der Universität Heidelberg Institut für Theoretische Astrophysik

Agenda

some phenomenology

• turbulence in the ISM

a simple cartoon picture

 relation between ISM turbulence and star formation

some basic thoughts

- accretion driven turbulence
- the stellar mass function
- formation first (strong) magnetic fields in the universe
- mixing in supersonic turbulence

summary

Interstellar Matter: ISM

Abundances, scaled to 1.000.000 H atoms element atomic number abundance			
hydrogen	Н	1	1.000.000
deuterium	${}_{1}H^{2}$	² 1	16
helium	He	2	68.000
carbon	С	6	420
nitrogen	Ν	7	90
oxygen	0	8	700
neon	Ne	10	100
sodium	Na	11	2
magnesium	Mg	12	40
aluminium	Al	13	3
silicium	Si	14	38
sulfur	S	16	20
calcium	Ca	20	2
iron	Fe	26	34
nickel	Ni	28	2

hydrogen is by far the most abundant element (more than 90% in number).

nearby molecular clouds

(from A. Goodman)

nearby molecular clouds

scales to same scale

(from A. Goodman)

velocity distribution in Perseus

(movie from Christoph Federrath)

Turbulent cascade

Turbulent cascade

Turbulent cascade in ISM

Large-eddy simulations

- We use **LES** to model the large-scale dynamics
- Principal problem: only large scale flow properties
 - Reynolds number: Re = LV/v (Re_{nature} >> Re_{model})
 - o dynamic range much smaller than true physical one
 - need subgrid model (in our case simple: only dissipation)
 - but what to do for more complex when processes on subgrid scale determine large-scale dynamics (chemical reactions, nuclear burning, etc)
 - Turbulence is "space filling" --> difficulty for AMR (don't know what criterion to use for refinement)
- How large a Reynolds number do we need to catch basic dynamics right?

Density structure of MC's

molecular clouds are highly inhomogeneous

stars form in the densest and coldest parts of the cloud

 $\rho\text{-Ophiuchus cloud}$ seen in dust emission

let's focus on a cloud core like this one

Evolution of cloud cores

- How does this core evolve?
 Does it form one single massive star or cluster with mass distribution?
- Turbulent cascade "goes through" cloud core
 - --> NO scale separation possible
 - --> NO effective sound speed
- Turbulence is supersonic!
 --> produces strong density contrasts:

δρ/ρ **≈ M**²

- --> with typical $M \approx 10 \rightarrow \delta \rho / \rho \approx 100!$
- many of the shock-generated fluctuations are Jeans unstable and go into collapse
- --> expectation: core breaks up and forms a cluster of stars

Evolution of cloud cores

Formation and evolution of cores

What happens to distribution of cloud cores?

Two externe cases:

(1) turbulence dominates energy budget:

 $\alpha = E_{kin} / |E_{pot}| > 1$

- --> individual cores do not interact
- --> collapse of individual cores dominates stellar mass growth
- --> loose cluster of low-mass stars
- (2) turbulence decays, i.e. gravity dominates: $\alpha = E_{kin} / |E_{pot}| < 1$
 - --> global contraction
 - --> core do interact while collapsing
 - --> competition influences mass growth
 - --> dense cluster with high-mass stars

turbulence creates a hierarchy of clumps

as turbulence decays locally, contraction sets in

as turbulence decays locally, contraction sets in

while region contracts, individual clumps collapse to form stars

while region contracts, individual clumps collapse to form stars

individual clumps collapse to form stars

individual clumps collapse to form stars

in *dense clusters*, clumps may merge while collapsing --> then contain multiple protostars

in *dense clusters*, clumps may merge while collapsing --> then contain multiple protostars

in *dense clusters*, clumps may merge while collapsing --> then contain multiple protostars

in *dense clusters*, competitive mass growth becomes important

in *dense clusters*, competitive mass growth becomes important

in dense clusters, N-body effects influence mass growth

become ejected --> accretion stops

feedback terminates star formation

result: star cluster, possibly with HII region

NGC 602 in the LMC: Hubble Heritage Image

result: star cluster with HII region

some details

what drives turbulence?

- accretion driven turbulence on ALL scales galaxies, molecular clouds, protostellar disks
- stellar initial mass function (IMF)
 - focus on effects of thermodynamics
- formation of molecular cloud in the turbulent ISM

• combining MHD with time-dependent chemistry

- the first (strong) B-fields in the universe
 - the turbulent dynamo in action
- diffusion in supersonic turbulence
 - mixing length approach

accretion driven turbulence

- •thesis:
 - astrophysical objects *form* by *accretion* of ambient material
 - the kinetic energy associated with this process is a key agent driving internal turbulence.
 - this works on **ALL** scales:
 - galaxies
 - molecular clouds
 - protostellar accretion disks

concept

• turbulence decays on a crossing time

$$\tau_{\rm d} \approx \frac{L_{\rm d}}{\sigma}$$
• energy decay rate $\dot{E}_{\rm decay} \approx \frac{E}{\tau_{\rm d}} = -\frac{1}{2} \frac{M\sigma^3}{L_{\rm d}}$

kinetic energy of infalling material

$$\dot{E}_{\rm in} = \frac{1}{2} \dot{M}_{\rm in} v_{\rm in}^2$$

• can both values match, modulo some efficiency?

$$= \left| \frac{\dot{E}_{\text{decay}}}{\dot{E}_{\text{in}}} \right|$$

 ϵ

(Field et al.. 2008, MNRAS, 385, 181, Mac Low & Klessen 2004, RMP, 76, 125)

some estimates from convergent flow studies

application to galaxies

- underlying assumption
 - galaxy is in steady state
 - ---> accretion rate equals star formation rate
 - •what is the required efficiency for the method to work?
- study Milky Way and 11 THINGS

 excellent observational data in HI: velocity dispersion, column density, rotation curve

M83 HI column

M83 HI velocity dispersion

11 THINGS galaxies

galactic disks

- method works for Milky Way type galaxies:
 - required efficiencies are ~1% only!
- relevant for outer disks (extended HI disks)
 - there are not other sources of turbulence (certainly not stellar sources, maybe MRI)
- works well for molecular clouds
 - example clouds in the LMC (Fukui et al.)
- optentially interesting for TTS
 - model reproduces dM/dt M relation (e.g Natta et al. 2006, Muzerolle et al. 2005, Muhanty et al. 2005, Calvet et al. 2004, etc.)

distribution of stellar masses depends on

turbulent initial conditions

--> mass spectrum of prestellar cloud cores

collapse and interaction of prestellar cores --> competitive accretion and N-body effects

• thermodynamic properties of gas

--> balance between heating and cooling

- --> EOS (determines which cores go into collapse)
- (proto) stellar feedback terminates star formation ionizing radiation, bipolar outflows, winds, SN

distribution of stellar masses depends on

turbulent initial conditions

--> mass spectrum of prestellar cloud cores

collapse and interaction of prestellar cores
 --> competitive accretion and N-body effects

• thermodynamic properties of gas

--> balance between heating and cooling

- --> EOS (determines which cores go into collapse)
- (proto) stellar feedback terminates star formation ionizing radiation, bipolar outflows, winds, SN

Star cluster formation

Most stars form in clusters \rightarrow star formation = cluster formation

How to get from cloud cores to star clusters? How do the stars acquire mass?

(e.g. Larson 2003, Prog. Rep. Phys.; Mac Low & Klessen, 2004, Rev. Mod. Phys, 76, 125 - 194)

Dynamics of nascent star cluster

in dense clusters protostellar interaction may be come important!

Trajectories of protostars in a nascent dense cluster created by gravoturbulent fragmentation (from Klessen & Burkert 2000, ApJS, 128, 287) Ralf Klessen: PKU/KIAA, 17.03.2008

distribution of stellar masses depends on

turbulent initial conditions

--> mass spectrum of prestellar cloud cores

collapse and interaction of prestellar cores

--> competitive accretion and *N*-body effects

thermodynamic properties of gas

--> balance between heating and cooling

--> EOS (determines which cores go into collapse)

 (proto) stellar feedback terminates star formation ionizing radiation, bipolar outflows, winds, SN

dependency on EOS

• degree of fragmentation depends on EOS!

polytropic EOS: $\mathbf{p} \propto \mathbf{\rho}^{\gamma}$

- γ <1: dense cluster of low-mass stars
- $\gamma > 1$: isolated high-mass stars

(see Li, Klessen, & Mac Low 2003, ApJ, 592, 975; also Kawachi & Hanawa 1998, Larson 2003)

dependency on EOS

for γ <1 fragmentation is enhanced \rightarrow *cluster of low-mass stars* for γ >1 it is suppressed \rightarrow formation of *isolated massive stars*

how does that work?

- (1) $\mathbf{p} \propto \rho^{\gamma} \rightarrow \rho \propto \mathbf{p}^{1/\gamma}$
- (2) $M_{jeans} \propto \gamma^{3/2} \rho^{(3\gamma-4)/2}$
- $\gamma < 1: \rightarrow$ large density excursion for given pressure $\rightarrow \langle M_{jeans} \rangle$ becomes small
 - \rightarrow number of fluctuations with M > M_{jeans} is large
- $\gamma > 1: \rightarrow$ small density excursion for given pressure $\rightarrow \langle M_{ieans} \rangle$ is large

→ only few and massive clumps exceed M_{jeans}

EOS for solar neighborhood

IMF from simple piece-wise polytropic EOS

 $\gamma_1 = 0.7$ $\gamma_2 = 1.1$

IMF from simple piece-wise EOS

(Jappsen et al. 2005)

IMF in nearby molecular clouds

(Jappsen et al. 2005, A&A, 435, 611)c

how to make strong B-fields

- we know the universe is magnetized (now)
- knowledge about B-fields in the high-redshift universe is extremely uncertain
 - inflation / QCD phase transition / Biermann battery / Weibel instability
- they are thought to be extremely small
- however, THIS MAY BE WRONG!

small-scale turbulent dynamo

- idea: the small-scale turbulent dynamo can generate strong magnetic fields from very small seed fields
- *approach:* model collapse of primordial gas ---> formation of the first stars in low-mass halo at redshift z ~ 20
- method: solve ideal MHD equations with very high resolution
 - grid-based AMR code FLASH
 - resolution up to 128³ cells per Jeans volume (effective resolution 65536³ cells)

turbulence developing in an atomic cooling halo

small-scale turbulent dynamo

density, xy-velocity

B-field amplitude, xy-component

decay of turbulence

Ari-ita-LSW

decay of turbulence

ARI+ITA-LSW

gravitational collapse, accretion driven turbulence

Ralf Klessen: Santa Cruz, July 9.2010

decay of turbulence

Ralf Klessen: Santa Cruz, July 9.2010

gravitational collapse,

accretion driven turbulence

small-scale turbulent dynamo

- small-scale turbulent dynamo can generate dynamically significant B-fields in the during first star formation!
- expected saturation level ~10% 20% of equipartition value (Subramanian & Brandenburg 2005)
- needs very high resolution to be seen:

cells per	max.	max. effective	min.cell	mean growth
Jeans length	refinement	resolution	size [cm]	rate Γ
8	10	4096	$1.17 imes 10^{16}$	
16	11	8192	$5.86 imes10^{15}$	0.021
32	12	16384	$2.93 imes 10^{15}$	0.108
64	13	32768	1.46×10^{15}	0.188
128	14	65536	7.32×10^{14}	0.25

similar processes on scales of galaxy clusters

Turbulent diffusion I

- Observations of young star clusters exhibit an enormous degree of chemical homogeity (e.g. in the Pleiades: Wilden et al. 2002)
- Star-forming gas must be well mixed.
- How does this constrain models of interstellar turbulence?
- \rightarrow Study mixing in supersonic compressible turbulence....

$$\frac{\partial n}{\partial t} = D\nabla^2 n \qquad D(t) = \frac{d\xi_r^2(t)}{dt} = 2\langle \vec{r}_i(t) \cdot \vec{v}_i(t) \rangle_i$$
mean particle displacement
for a given time interval
$$\frac{\partial n}{\partial t} = D\nabla^2 n \qquad D(t) = \frac{d\xi_r^2(t)}{dt} = 2\langle \vec{r}_i(t) \cdot \vec{v}_i(t) \rangle_i$$

Turbulent diffusion II

Large-scale turbulence associated with bulk motion.

Super-diffusive behavior.

(from Klessen & Lin 2003, PRE)

Turbulent diffusion III

- Mean-motion corrected diffusion
- Simple mixing-length approach:

•D(t)
$$\approx V_{rms}^2 t$$
 t< τ
•D(t) $\approx V_{rms}^2 \tau$

 With v_{rms} = rms velocity and l = L/k = shock sep.

(from Klessen & Lin 2003, PRE, 67, 046311)

2

summary

• modeling ISM turbulence & star formation is feasable

- more physics is needed (chemistry, radiation field, realistic sources of turbulence, etc.)
- caveat: all LES of ISM turbulence model "crude oil" not interstellar gas

examples

- stellar mass spectrum
- molecular cloud formation
- generation of the first dynamically significant magnetic fields in the universe
- effective diffusivity in isotropic supersonic turbulence

