Molecular cloud dynamics and star formation

Ralf Klessen

Zentrum für Astronomie der Universität Heidelberg Institut für Theoretische Astrophysik

thanks to ...

- ... the organizers for making this school happen!
- ... people in the group in Heidelberg:

Robi Banerjee, Paul Clark, Gustavo Dopcke, Philipp Girichidis, Simon Glover, Christoph Federrath, Milica Milosavljevic, Faviola Molina, Thomas Peters, Stefan Schmeja, Daniel Seifried, Rahul Shetty, Rowan Smith, Sharanya Sur, Hsiang-Hsu Wang

... many collaborators abroad!

Deutsche Forschungsgemeinschaft

DFG

HG

Structured PhD program

- HGSFP: Heidelberg Graduate School for Fundamental Physics
 - ----> http://www.fundamental-physics.uni-hd.de/

UNIVERSITY OF HEIDELBERG

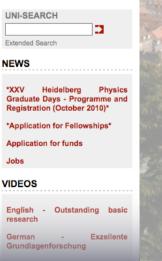
GRADUATE SCHOOL OF FUNDAMENTAL PHYSICS

General Information Research Profile Organisation Applicants Newly Admitted Students Graduate Students Events and Talks Open Positions Glossary Contact Sitemap | Department of Physics and Astronomy | HGSFP | University Directory | Internal

Home ⇒ General Information

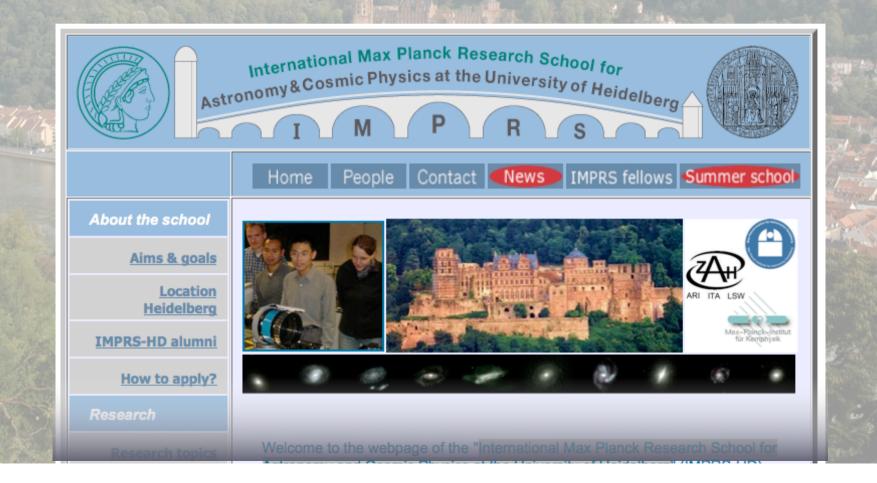
Graduate education at the Heidelberg Graduate School of Fundamental Physics (HGSFP)

The Heidelberg Graduate School provides an excellent and flexible education in the fields of fundamental interactions and cosmology, quantum dynamics and complex quantum systems as well as astrophysics and cosmic physics.


The deep relations emerging between astrophysics, cosmology, particle physics, and the physics of complex quantum systems are at the focus of research in fundamental physics at Heidelberg. These fields are expected to undergo vehement evolution in the years to come: particle physics because of the upcoming Large Hadron Collider at CERN, astronomy because of rapid and ongoing advances in the observational domain, and quantum dynamics and complex quantum systems because of recent breakthroughs in the design of ultra-cold few-body and many-body systems. For developing our understanding further, fundamental physics needs a new generation of researchers which are capable of working across the field boundaries. Their education and training is what the Graduate School of Fundamental Physics strives to achieve.

Three core fields or modern fundamental physics are addressed in the School:

Fundamental Interactions and Cosmology Astronomy and Cosmic Physics Quantum Dynamics and Complex Quantum Systems


The Graduate School of Fundamental Physics combines doctoral projects from the forefront of international research with a broad and deep teaching program in these core areas of fundamental physics and emphasising their interrelations. The modular structure of the teaching program allows the assembly of individual curricula. Our school provides an excellent and flexible education. It introduces the students to modern fundamental physics and offers the excitement of the scientific adventure of cutting educ research.

Structured PhD program

IMPRS-HD: International Max Planck Research School for Astronomy and Cosmic Physics at the University of Heidelberg ---> <u>http://www.mpia-hd.mpg.de/imprs-hd/</u>

Disclaimer

I try to cover the field as broadly as possible, however, there will clearly be a bias towards my personal interests and many examples will be from my own work.

Schedule

11h3012h30 C6.1.	Formation of molecular clouds
16h0017h00 C6.2.	Origin and statistical characteristics of ISM turbulence
17h0018h00 C6.3.	Star (cluster) formation in
	molecular clouds

Literature

Books

- Stahler, S., & Palla, F., 2004, "The Formation of Stars" (Weinheim: Wiley-VCH)
- Osterbrock, D., & Farland, G., 2006, "Astrophysics of Gaseous Nebulae & Active Galactic Nuclei, 2nd ed. (Sausalito: Univ. Science Books)
- Lada, C. F., & Kylafis, N. D. 1999, "The Origin of Stars and Planetary Systems", NATO ASI Series 540 (Kluwer Academic Publisher)
- Reipurth et al. 2007, "Protostars and Planets V" (University of Arizona Press)

Literature

- Review Articles
 - Mac Low, M.-M., Klessen, R.S., 2004, "The control of star formation by supersonic turbulence", Rev. Mod. Phys., 76, 125 - 194
 - Zinnecker, H., Yorke, McKee, C.F., Ostriker, E.C., 2008,
 "Toward Understanding Massive Star Formation", ARA&A, 45, 481 563
 - McKee, C.F., Ostriker, E.C., 2008, "Theory of Star Formation", ARA&A, 45, 565 - 687
 - Bromm, V., Larson, R.B., 2004, "The first stars", ARA&A, 42, 79 - 118

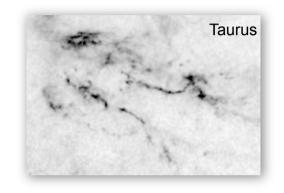
S

Lecture 1+2: ISM dynamics

- ♀ formation of molecular clouds in convergent flows
 - ♀ chemistry
- ♀ origin of ISM turbulence

inventory of Galactic disc component

➤ stellar disc


- thin disc (80% of mass): stars of all ages 0-12Gyr
- thick disc (5% of mass): older stars with lower metallicity

interstellar medium (ISM)

- gas (15% of mass): hot, warm, and cool component (atomic and molecular)
- dust (<1% of gas mass): well mixed with the cool gas</p>
- cosmic rays: relativistic particles
- magnetic fields: frozen to the gas (field lines are co-moving with the gas); energy density comparable to the kinetic energy of gas

Interstellar Matter: ISM

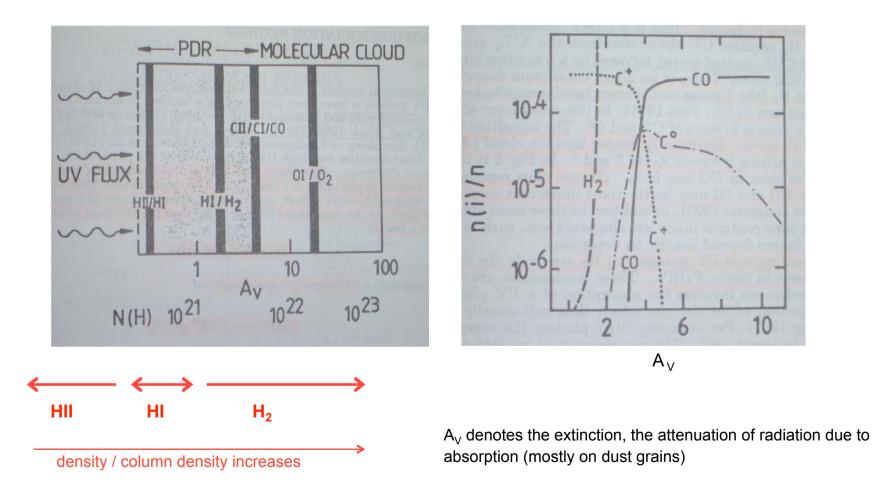
	to 1.000.000 H atoms ber abundance		
hydrogen	Н	1	1.000.000
deuterium	$_1$ H ²	² 1	16
helium	He	2	68.000
carbon	С	6	420
nitrogen	Ν	7	90
oxygen	0	8	700
neon	Ne	10	100
sodium	Na	11	2
magnesium	Mg	12	40
aluminium	Al	13	3
silicium	Si	14	38
sulfur	S	16	20
calcium	Са	20	2
iron	Fe	26	34
nickel	Ni	28	2

hydrogen is by far the most abundant element (more than 90% in number).

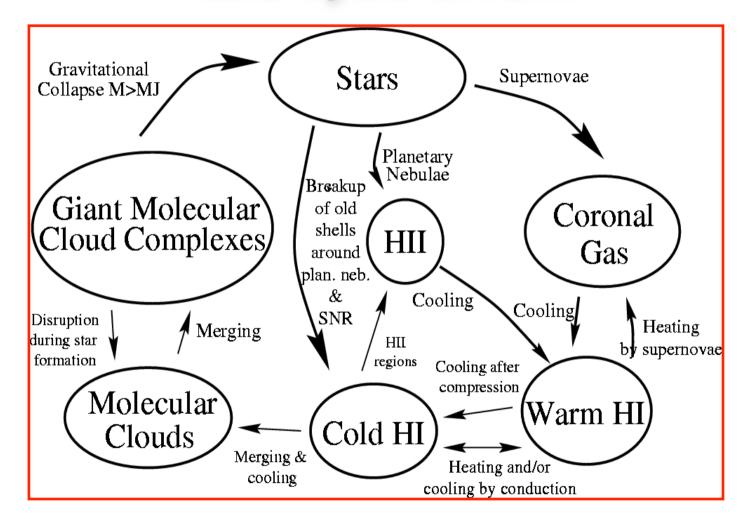
Phases of the ISM

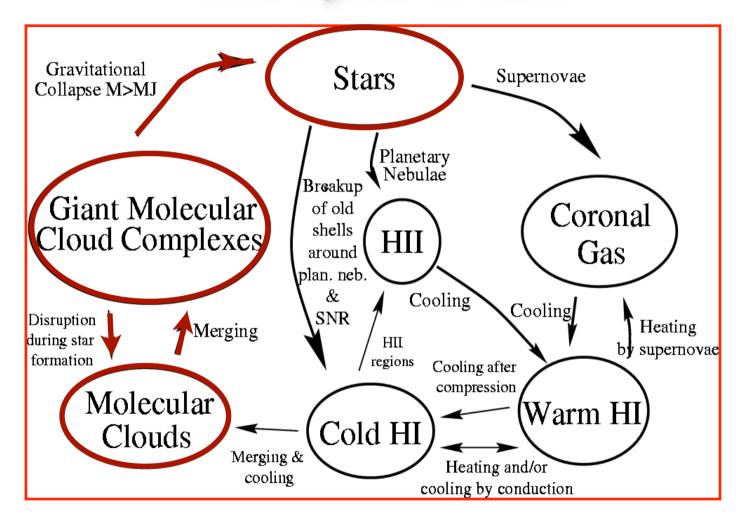
Because hydrogen is the dominating element, the classification scheme is based on its chemical state:

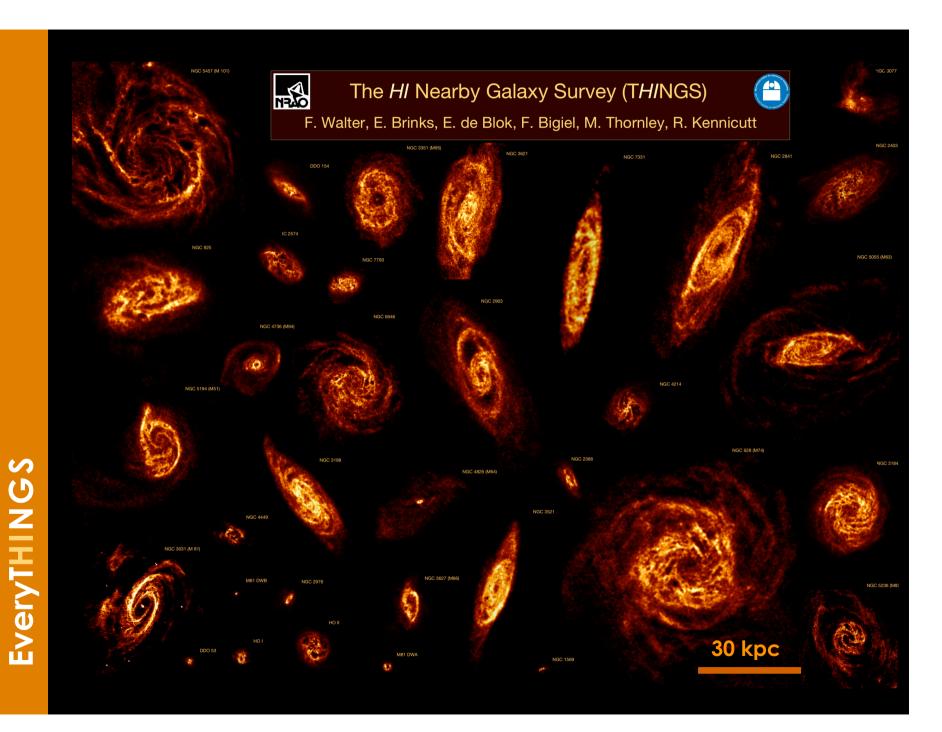
ionized atomic hydrogeN	HII (H+)	5 ionization
neutraler atomic hydrogen	HI (H)	*
molecular hydrogen	H_2	dissociation

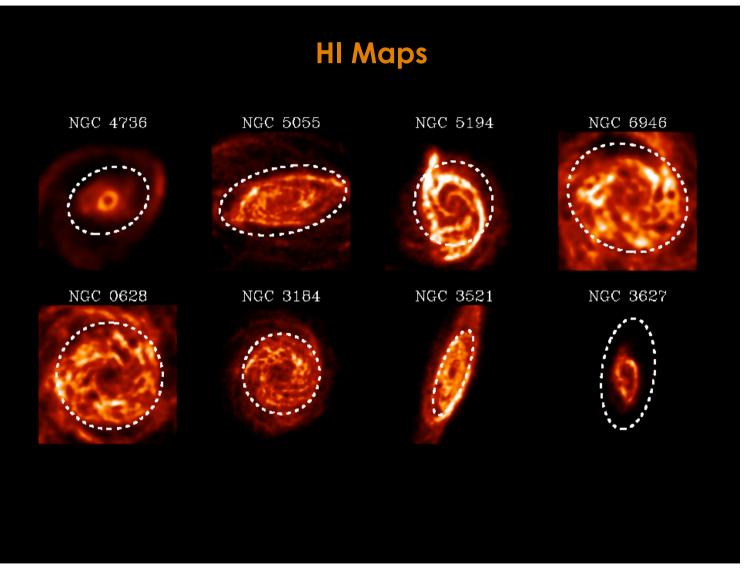

different regions consist of almost 100% of the appropriate phase, the transition regions between HII, H and H_2 are very thin.

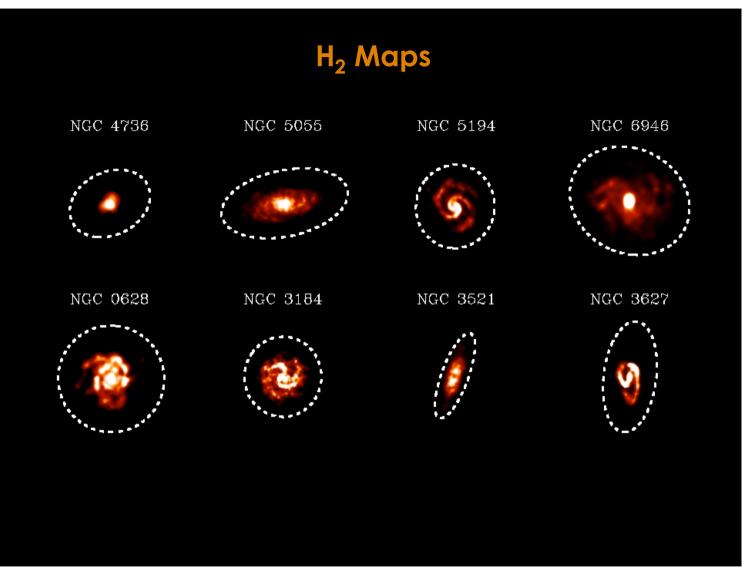
star formation always takes place in dense and cold molecular clouds.

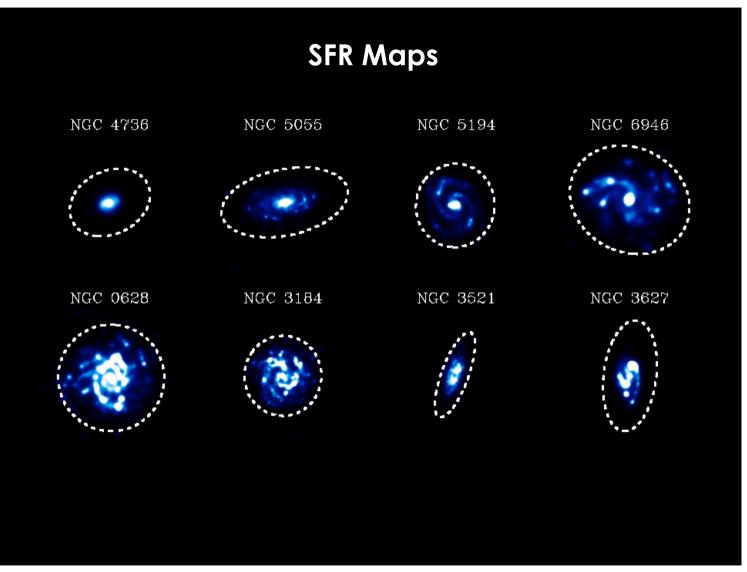



Phases of the ISM

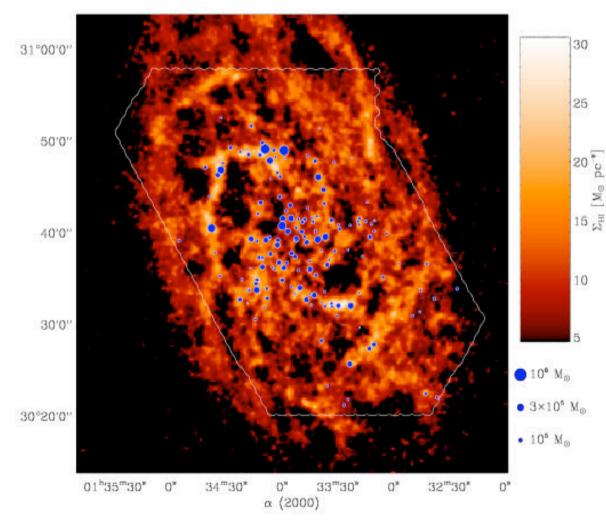



Life-cycle of ISM


Life-cycle of ISM



work by Frank Bigiel (now Berkeley)

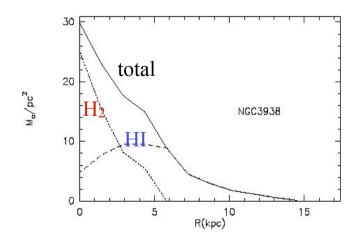


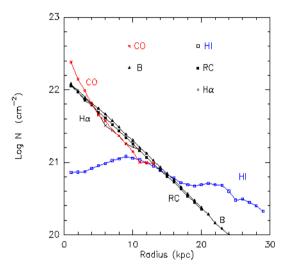
work by Frank Bigiel (now Berkeley)

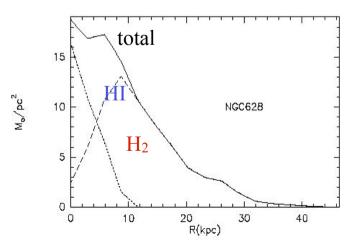
work by Frank Bigiel (now Berkeley)

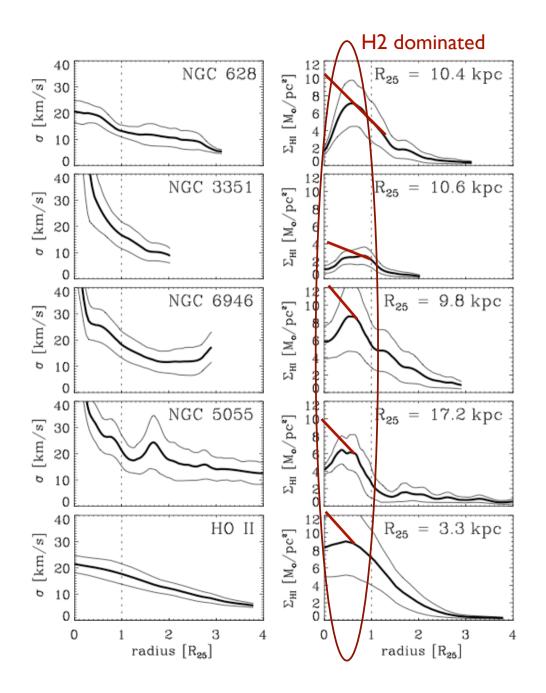
Correlation between H₂ and HI

Compare H₂ - HI in M33:

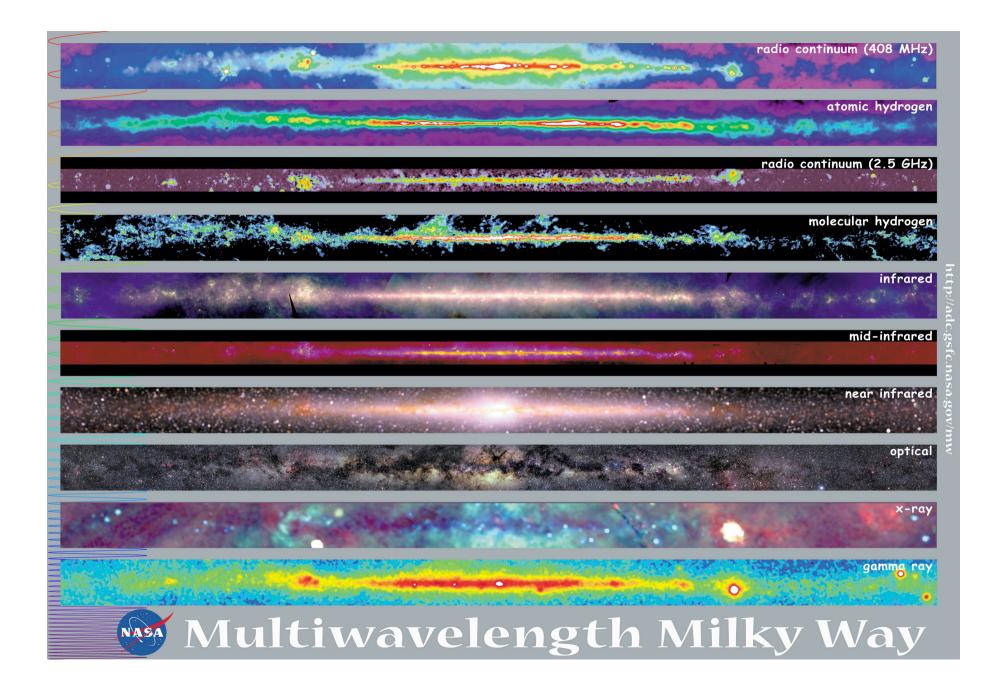

- H₂: BIMA-SONG Survey, see Blitz et al.
- HI: Observations with Westerbork Radio T.


H₂ clouds are seen in regions of high HI density (in spiral arms and filaments)


⁽Deul & van der Hulst 1987, Blitz et al. 2004)


Radial Distribution in Spirals

- HI versus H₂:
 - H₂ is restricted to the optical disk
 - while the HI extends 2 4 x optical radius
- HI hole or depression in the centers, sometimes compensated by H₂
- often H₂ is exponential like stars,
 HI does *not* follow in most cases



some important trends

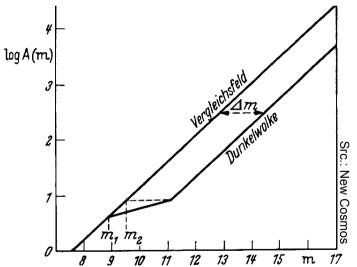
- typically comparable amounts of H₂ and HI gas in the Galaxy
- in Milky Way M(H₂) ~ 2 x 10⁹ M_{\odot} and M(H₂) ~ 6 x 10⁹ M_{\odot}
- But: Very different radial distribution
 - H₂ is centrally concentrated, and in a molecular ring at 4-8kpc (seen in our Galaxy, and in external ones)
 - HI depleted in the center and more radially extended
- H₂ is clumped in clouds and superclouds
- Velocity dispersion falls of slowly from σ_g = 20 km/s to 5 km/s (and this holds more or less for all spiral galaxies)

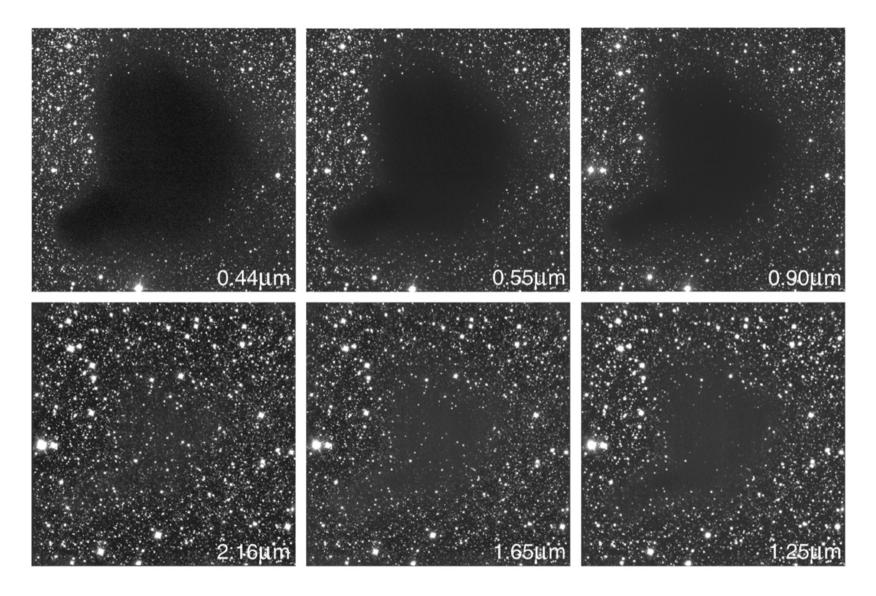
Multi-wavelength observations

different wavelengths provide different information.

 \rightarrow astronomer use the full electromagnetic spectrum

•	radio:	interstellar gas
		(line emission -> velocity information)
•	sub-mm range:	dust (thermal emission)
•	infrared & optical:	stars
•	x-rays:	stars (coronae), supernovae remnants (very hot gas)
•	γ- rays :	supernovae remnants (radioactive decay,
		e.g. ²⁶ Al), compact objects, merging of neutron
		stars (γ-ray burst)

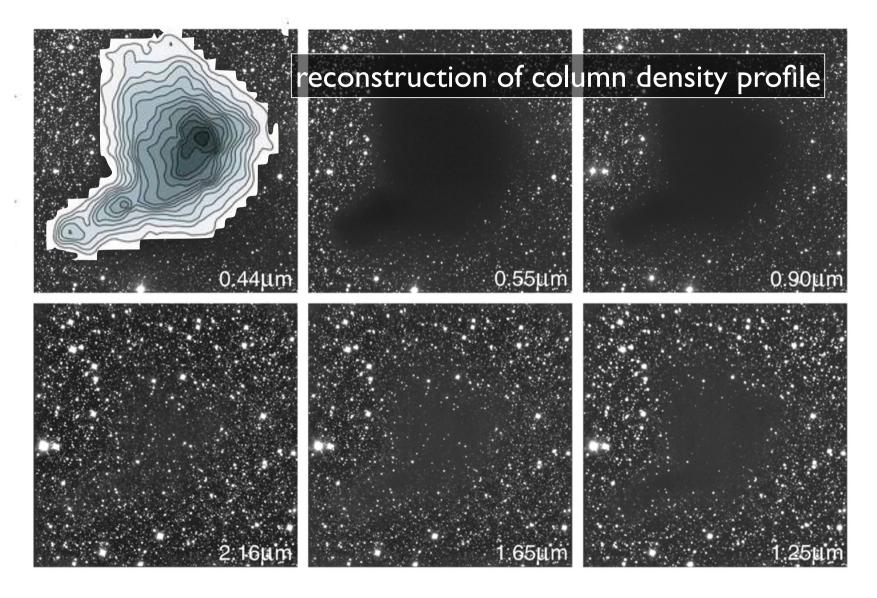



Ralf Klessen: ISM lecture 25.09.2000

ingredients of the ISM

interstellar dust

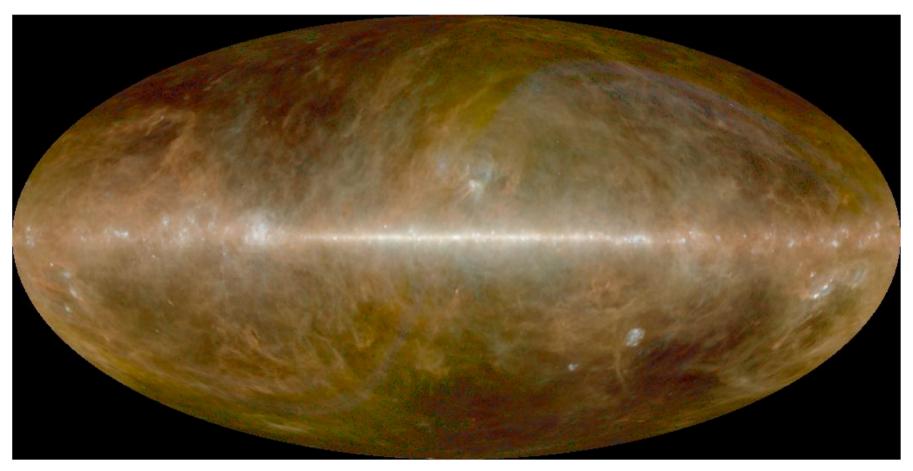
- smoothly distributed with HI
- and in dark (molecular) clouds
- rough distance of clouds by star counts: Wolf diagram
- \Rightarrow mean absolute brightness M₁ and m₁ -> distance
- from $m_1 m_2 \rightarrow depth$
- clouds are typically at a distance of a few 100pc with an extinction of Δm=1-3mag
- clouds sharply concentrated to the galactic plane



The Dark Cloud B68 at Different Wavelengths (NTT + SOFI)

ESO PR Photo 29b/99 (2 July 1999)

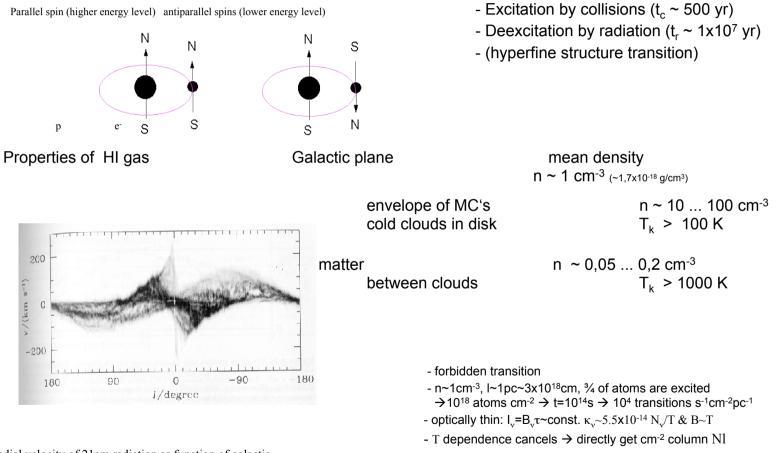
© European Southern Observatory



The Dark Cloud B68 at Different Wavelengths (NTT + SOFI)

ESO PR Photo 29b/99 (2 July 1999)

© European Southern Observatory


COBE Dirby results: Galactic foreground DIRBE: Diffuse Infrared Background Experiment

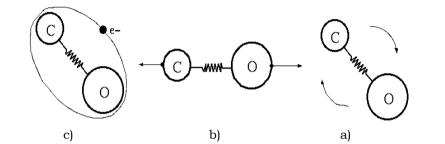
Ralf Klessen: ISM lecture 25.09.2000

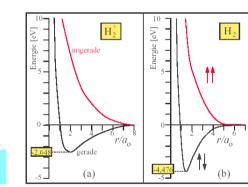
Phases of interstellar matter

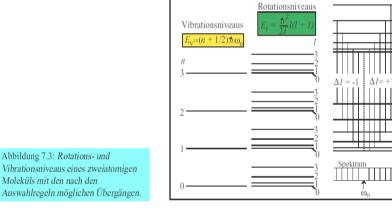
HI regions

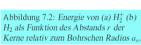
Detection with 21cm line (1420 MHz, 6x10⁻⁶ eV))

Radial velocity of 21cm radiation as function of galactic longitute (Leiden/Dwingeloo Survey)


molecular clouds


observing molecules


<u>molecular Gas</u> *H*₂, *CO*, ...

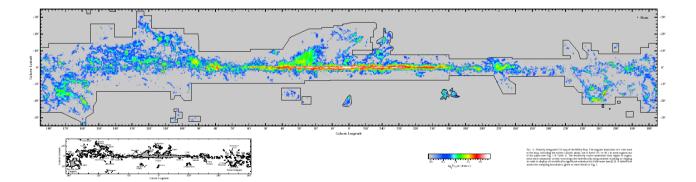

transitions of two-atomic molecules

- a) rotational transitions (needs dipole moment)
- b) ro-vibrational transitions
- c) electronic ro-vibrational transitions

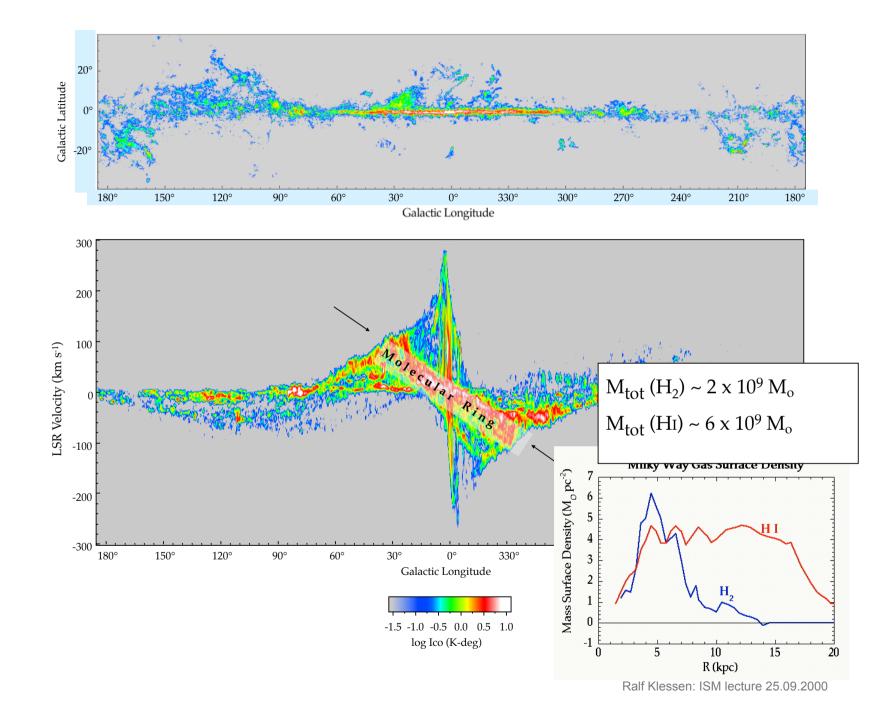
Niedrigste Rotations- und Schwingungsübergänge

Moleküls mit den nach den

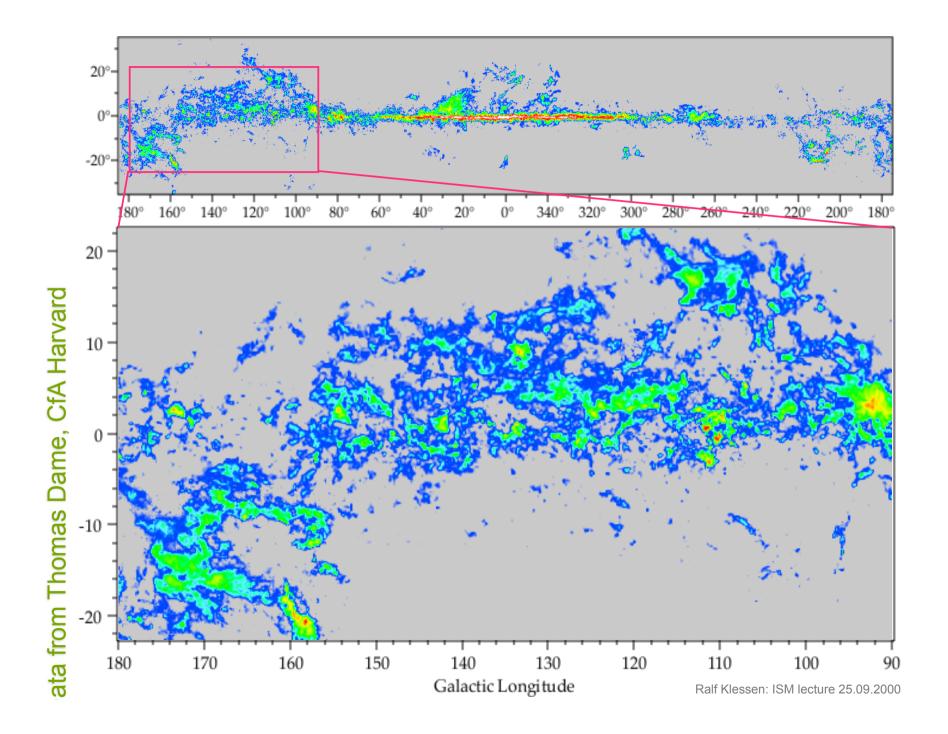
	J = 1 - 0		n = 1 - 0	n = 1 - 0			
	Frequenz	Wellenlänge	Т	Frequenz	Wellenlänge	Т	
H_2	3,87 THz	77 µm	185 K	131 THz	2,28 µm	6300 K	
¹² CO	115 GHz	2,6 mm	5,5 K	64 THz	4,63 µm	3100 K	

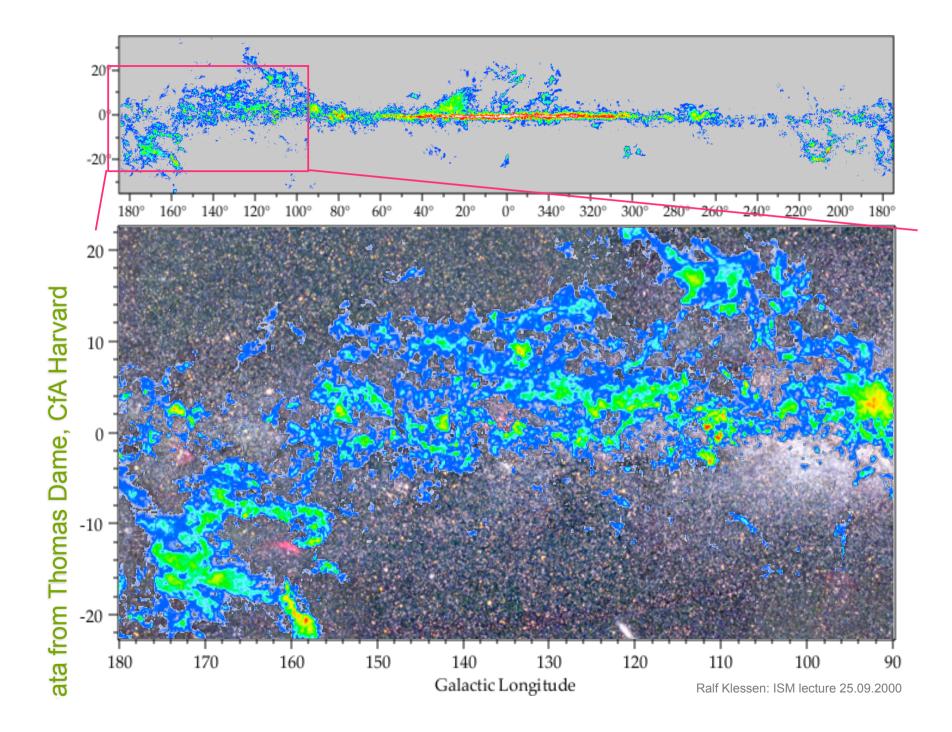

Phases of interstellar matter

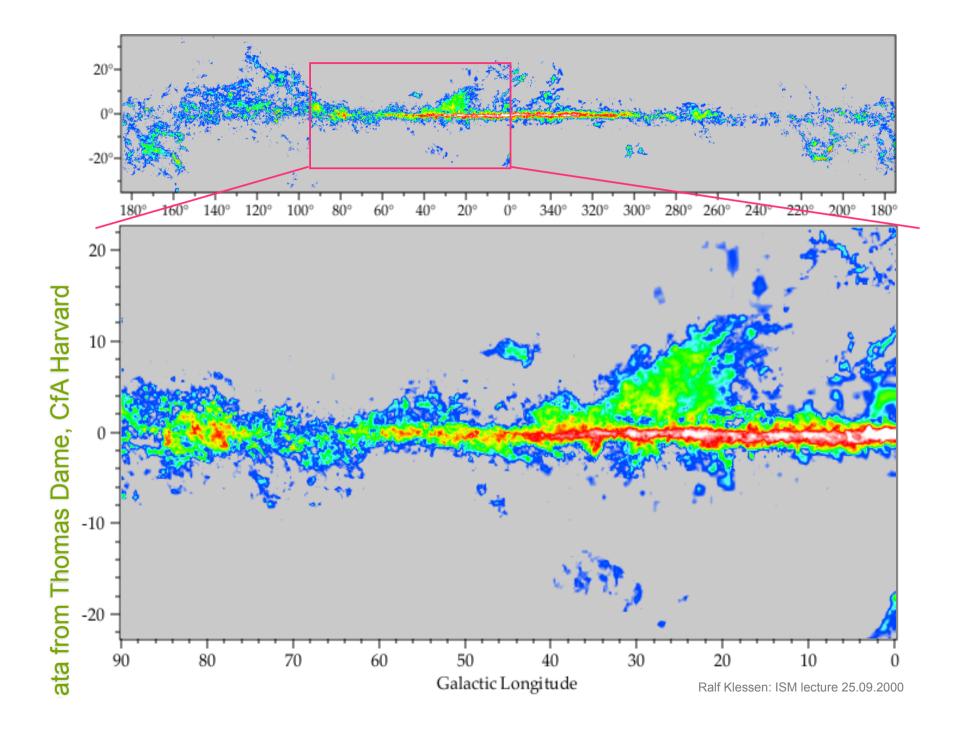
<u>Molecular Gas</u>

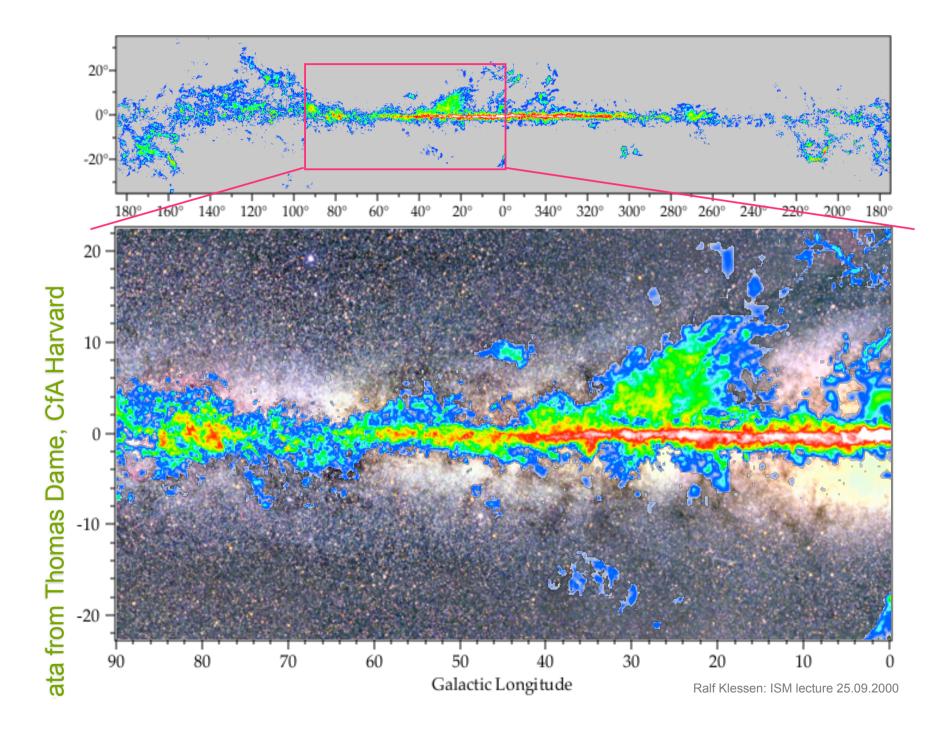

Global properties of molecular clouds

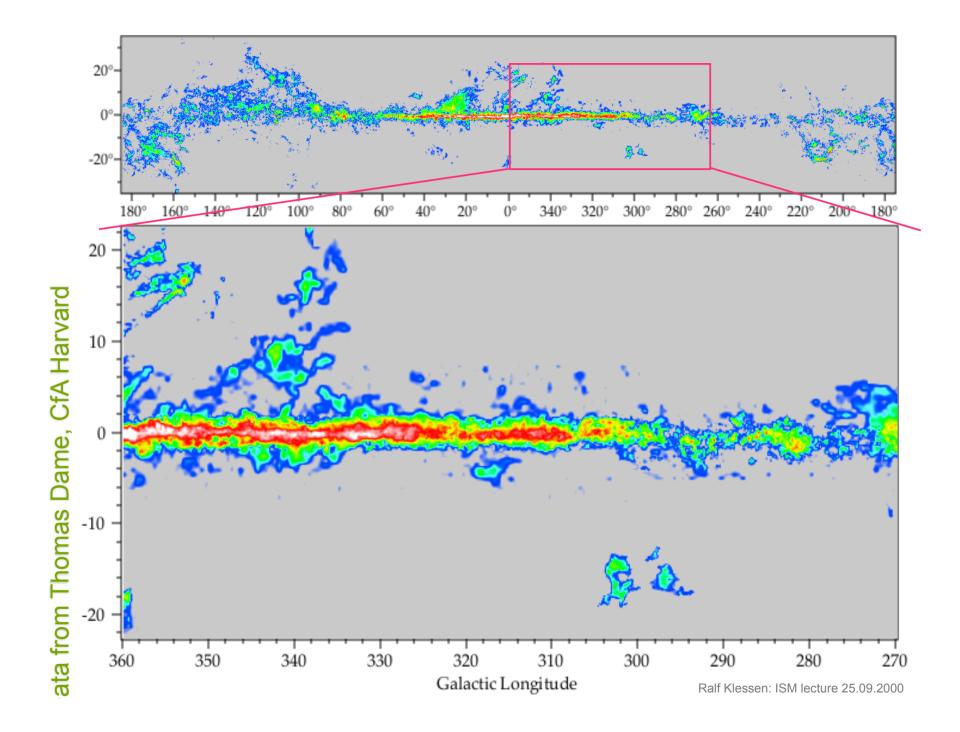
diffuse molecular clouds (10 50% of total H ₂ mass)	Temperature T = 40 80 K	Density n = 100 cm ⁻³	Radius	Mass	velocity gradient	E _{rot} /E _{pot}
Dark clouds/globules	T = 20 40 K	n = 10 ³ 10 ⁴ cm ⁻³	R = 0,1 5 pc	1 10 M _¤	0,5 4 km/s/pc	10 ⁻³ 0.3
Giant molecular clouds	T = 10 50 K	n = 10 ⁴ 10 ⁶ cm ⁻³	R = 10 100 pc	$10^3 \dots 10^6 M_{\pi}$	0,1 0,2 km/s/pc	10 ⁻⁴ 0.1
Hot cores in MCs	T = 100 300 K	n > 10 ⁷ cm ⁻³	R < 0,1 pc	$10 \dots 100 M_{\tt m}$		

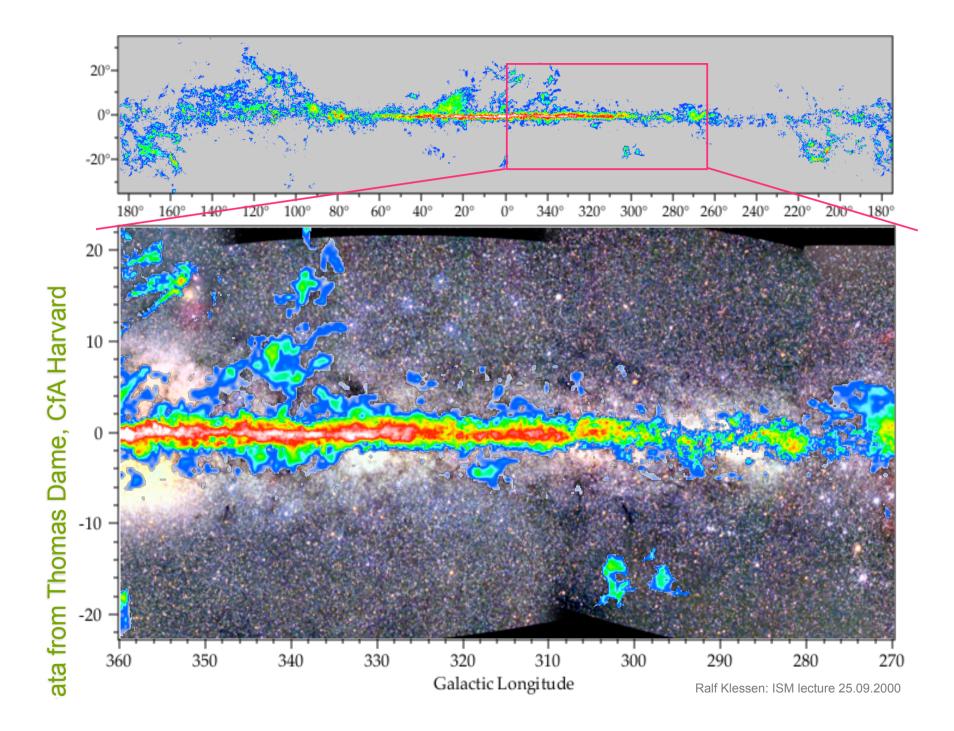

Giant molecular clouds are strongly concentrated in the galactic plane and towards the center of the Galaxy (similar holds for external galaxies)

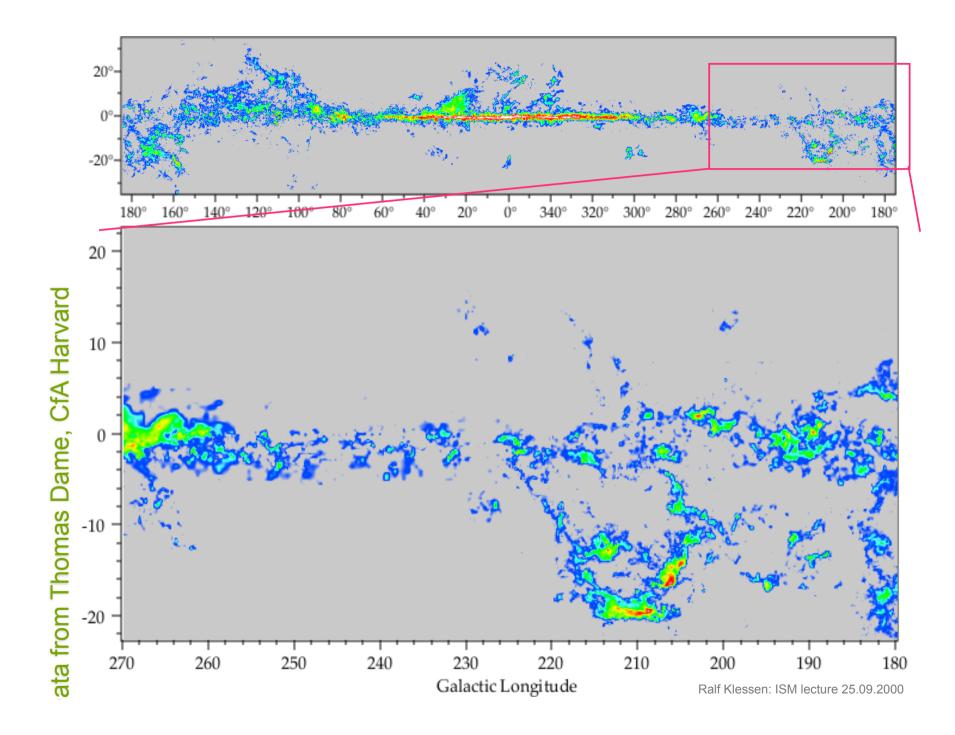


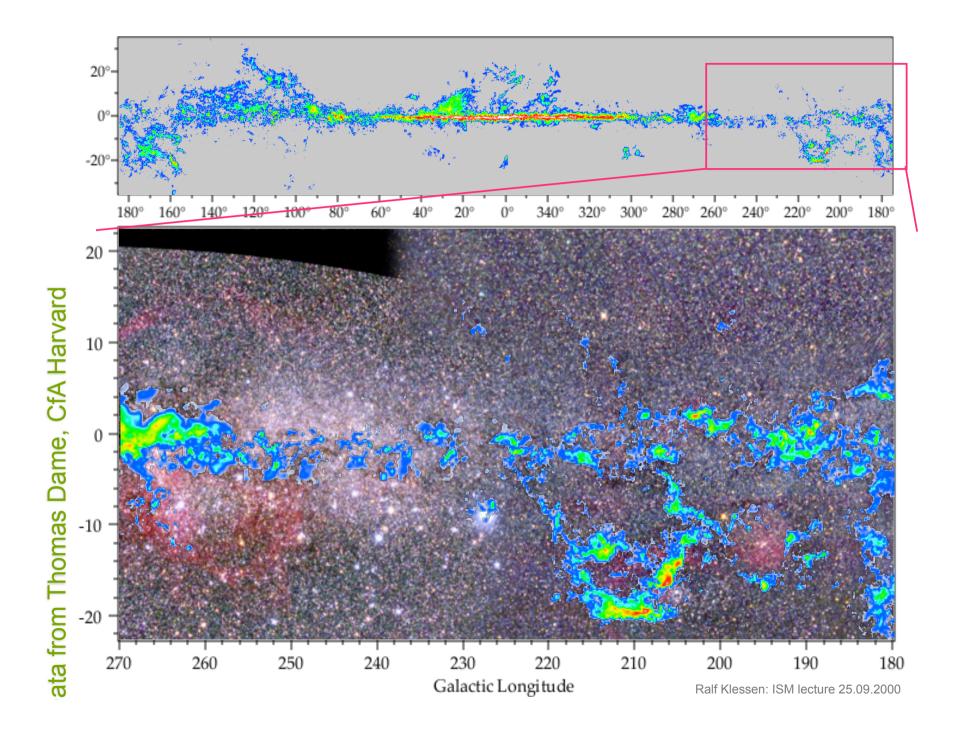

CO Survey of Milky Way (Dame et al. 2001)

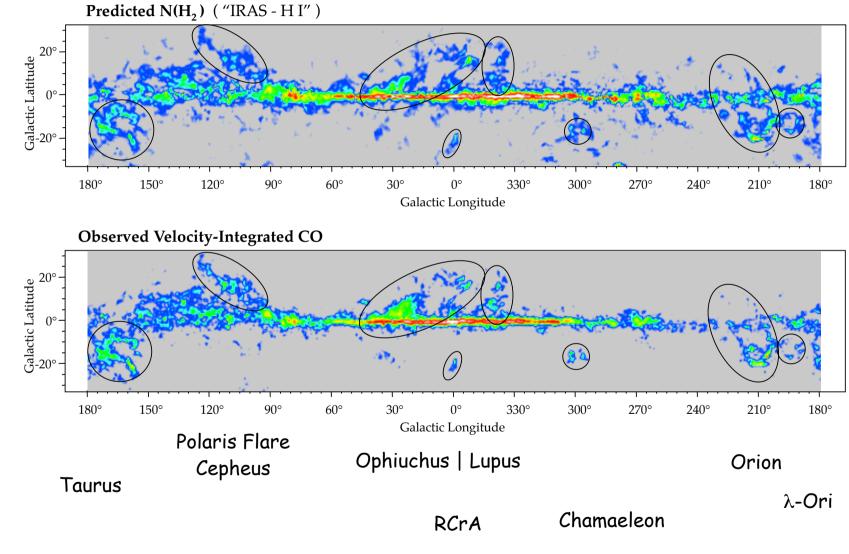






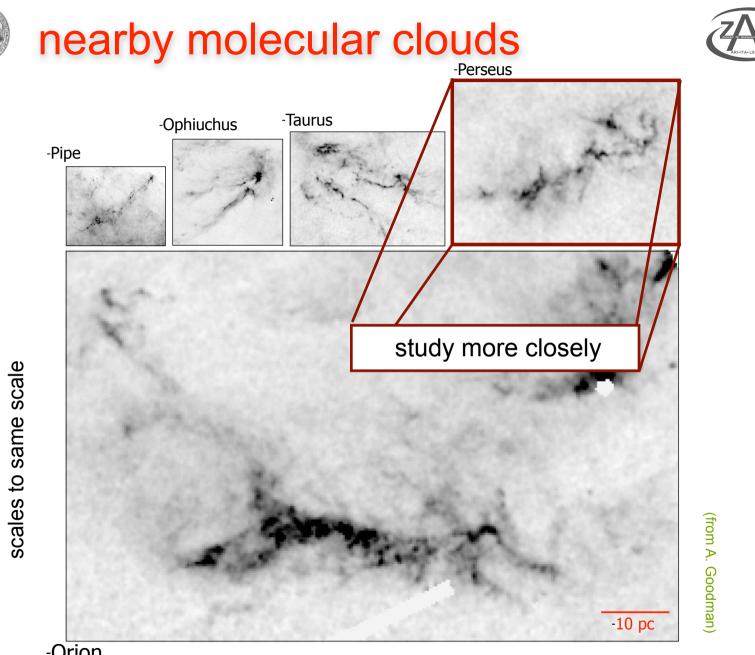






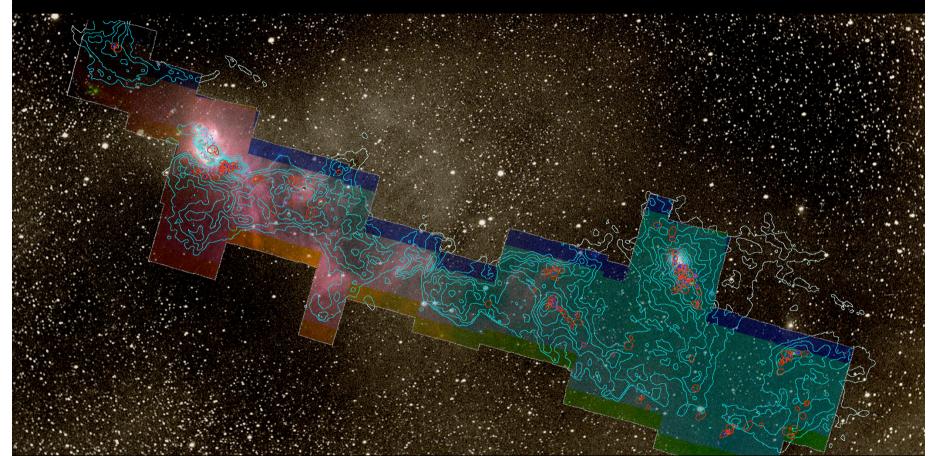
ata from Thomas Dame, CfA Harvard

Ralf Klessen: ISM lecture 25.09.2000



(from A. Goodman)

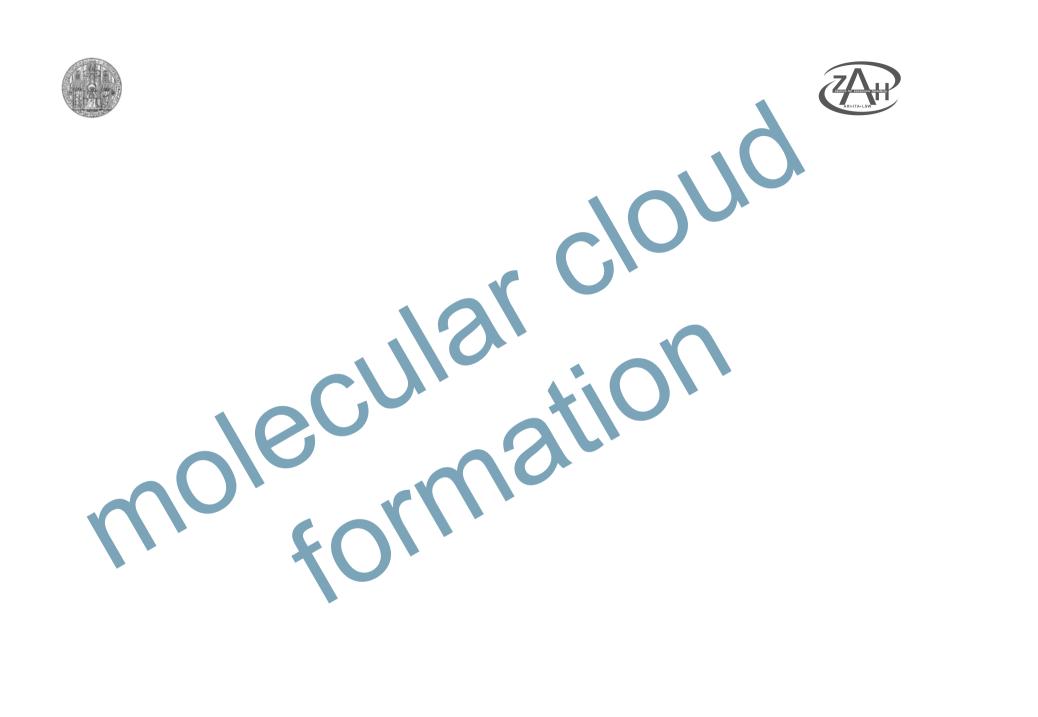
-Taurus -Ophiuchus -Pipe -10 pc


scales to same scale

-Orion

-Orion

COordinated Molecular Probe Line Extinction Thermal
Emission Survey of Star-Forming Regions

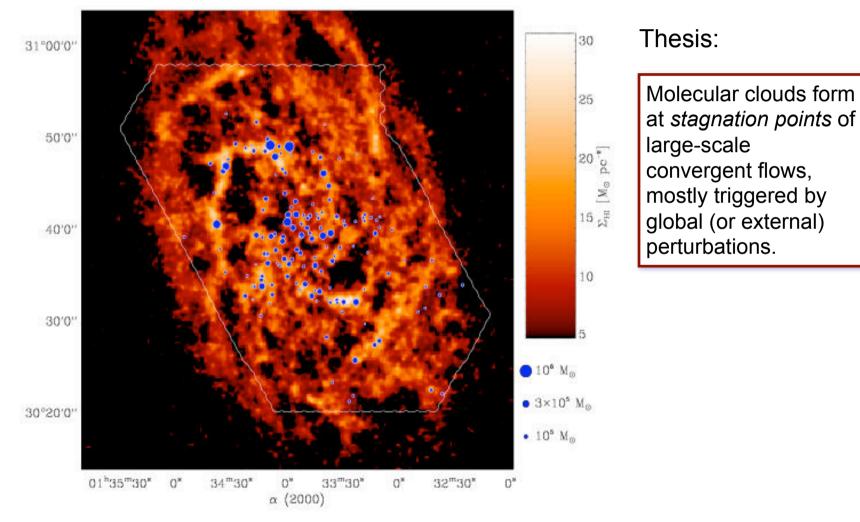

COMPLETE Collaborators, Summer 2008: Alyssa A. Goodman (CfA/IIC) João Alves (Calar Alto, Spain) Héctor Arce (Yale)

Michelle Borkin (IIC)

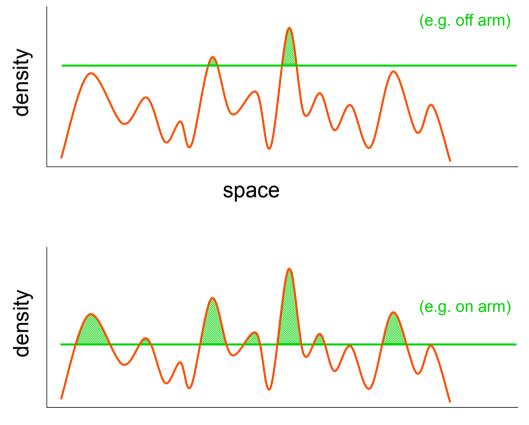
Paola Caselli (Leeds, UK) James DiFrancesco (HIA, Canada) Jonathan Foster (CfA, PhD Student) Katherine Guenthner (CfA/Leipzig) Mark Heyer (UMASS/FCRAO) Doug Johnstone (HIA, Canada) Jens Kauffmann (CfA/IIC) Helen Kirk (HIA, Canada) Di Li (JPL) Jaime Pineda (CfA, PhD Student) Erik Rosolowsky (UBC Okanagan) Rahul Shetty (CfA) Scott Schnee (Caltech) Mario Tafalla (OAN, Spain)

molecular clouds

- $\mathbf{\Theta}$ consist mostly of H_2
- ♀ cold
- extremely complex velocity and density structure
 (turbulence, fractal dimension?)
- ♀ all stars form in molecular clouds



- ●star formation on galactic scales
 → requires understanding of formation of molecular clouds
- questions
 - where and when do molecular clouds form?
 - what are their properties?
 - how do stars form in their interior?
 - ●global correlations? → Schmidt law



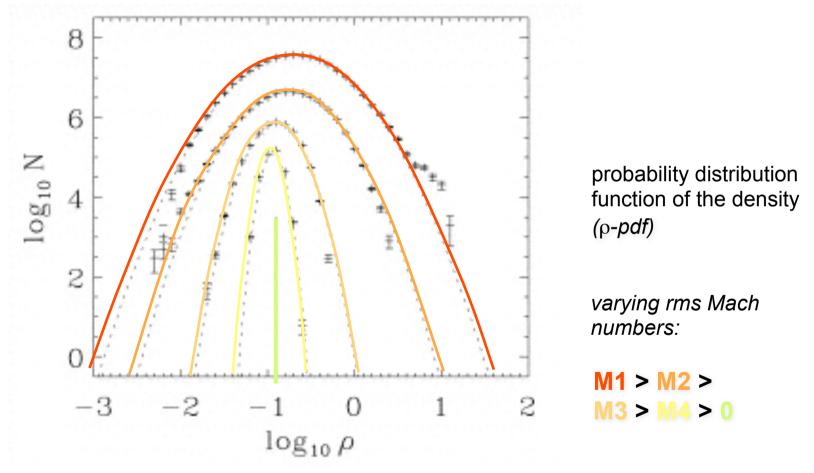
⁽Deul & van der Hulst 1987, Blitz et al. 2004)

Correlation with large-scale perturbations

density/temperature fluctuations in warm atomar ISM are caused by *thermal/ gravitational instability* and/ or *supersonic turbulence*

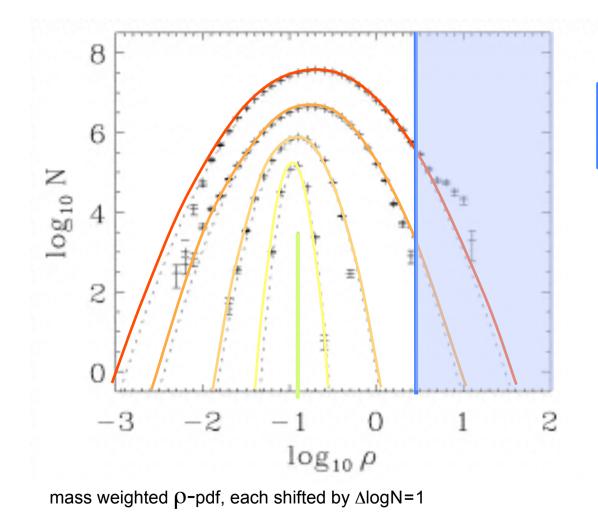
some fluctuations are *dense* enough to *form* H₂ within *"reasonable time*"

→ molecular cloud

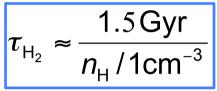

external perturbuations (i.e. potential changes) *increase* likelihood

space

star formation on global scales


mass weighted $\rho\text{-pdf},$ each shifted by $\Delta\text{logN=1}$

(from Klessen, 2001; also Gazol et al. 2005, Krumholz & McKee 2005, Glover & Mac Low 2007ab)

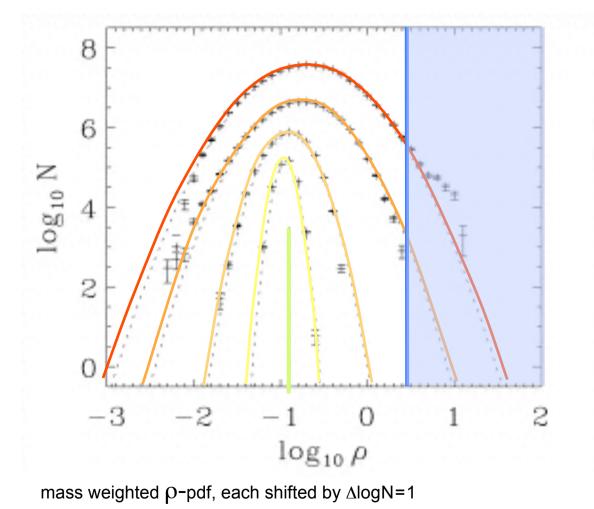


star formation on global scales

(rate from Hollenback, Werner, & Salpeter 1971)

H₂ formation rate:

for $n_{\rm H} \ge 100 \text{ cm}^{-3}$, H_2 forms within 10 Myr, this is about the lifetime of typical MC's.


in turbulent gas, the H₂ fraction can become very high on short timescale

(for models with coupling between cloud dynamics and time-dependent chemistry, see Glover & Mac Low 2007a,b)

star formation on *global* scales

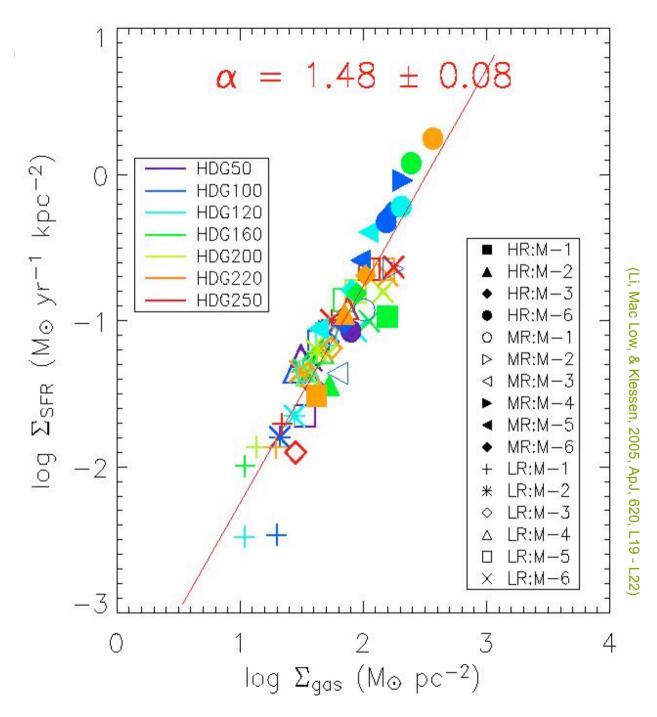
(rate from Hollenback, Werner, & Salpeter 1971)

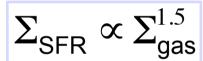
BUT: *it doesn't work* (at least not so easy):

Chemistry has a memory effect!

H2 forms more quickly in high-density regions as it gets destroyed in low-density parts.

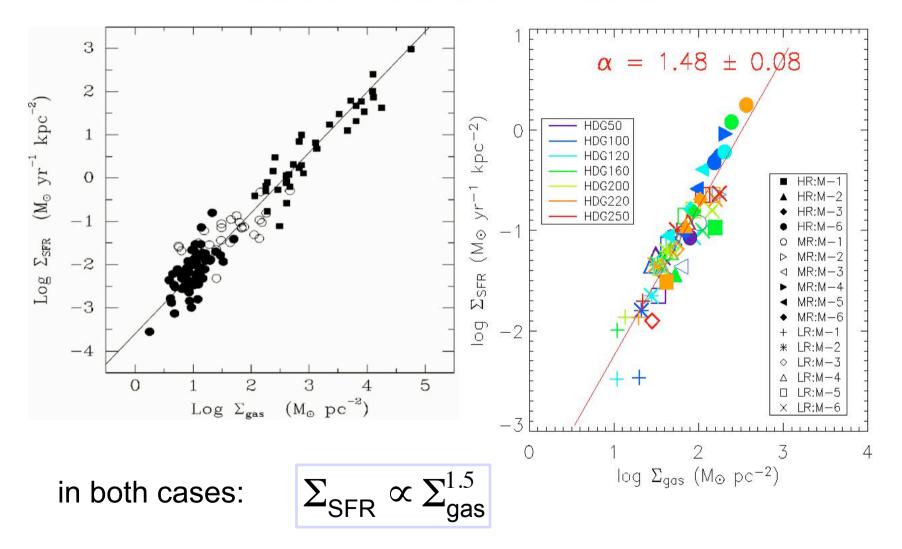

(for models with coupling between cloud dynamics and time-dependent chemistry, see Glover & Mac Low 2007a,b)




modeling galactic SF

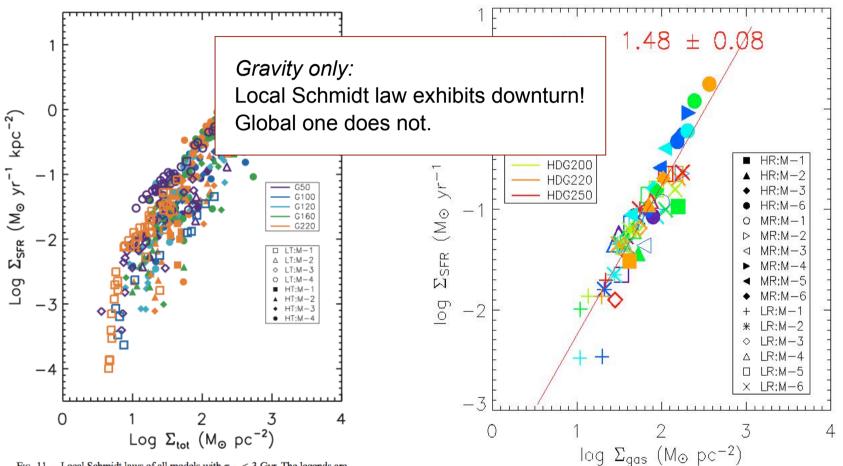
SPH calculations of self-gravitating disks of stars and (isothermal) gas in darkmatter potential, sink particles measure local collapse --> star formation

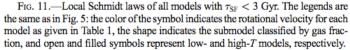
We find correlation between star formation rate and gas surface density:



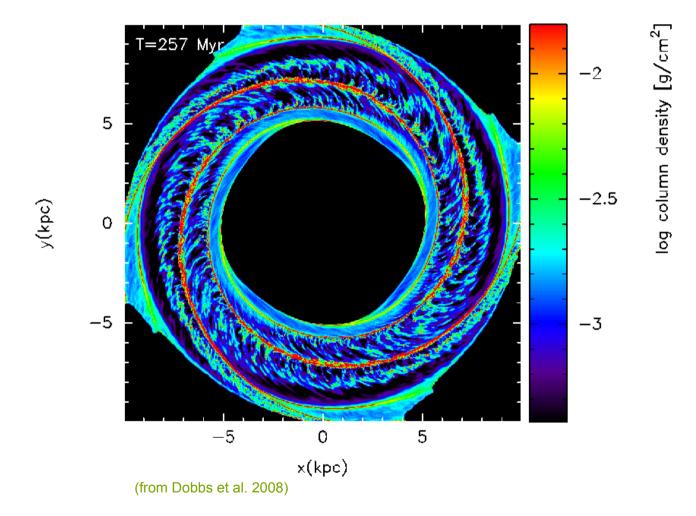
global Schmidt Iaw

observed Schmidt law

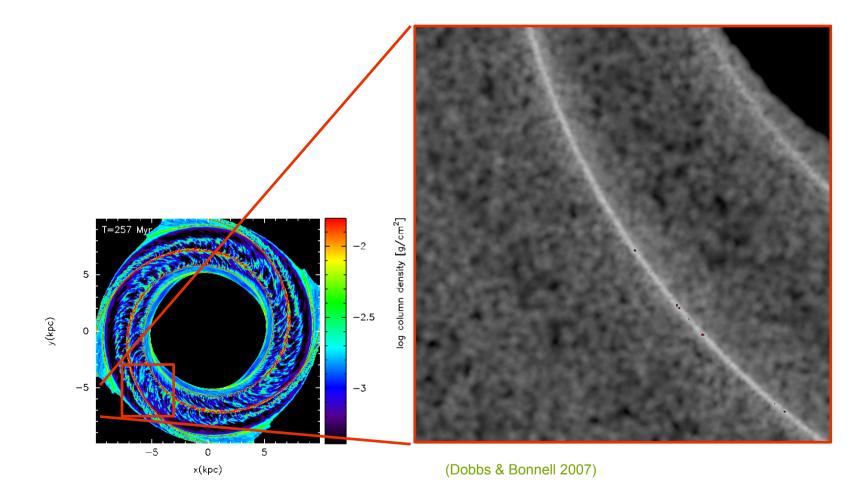


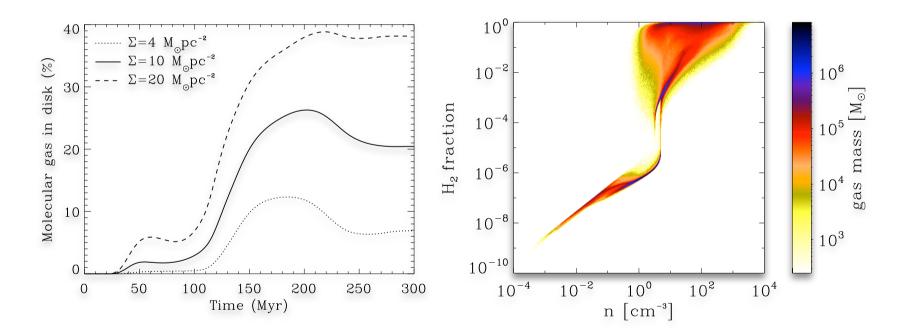

(from Kennicutt 1998)

local Schmidt law

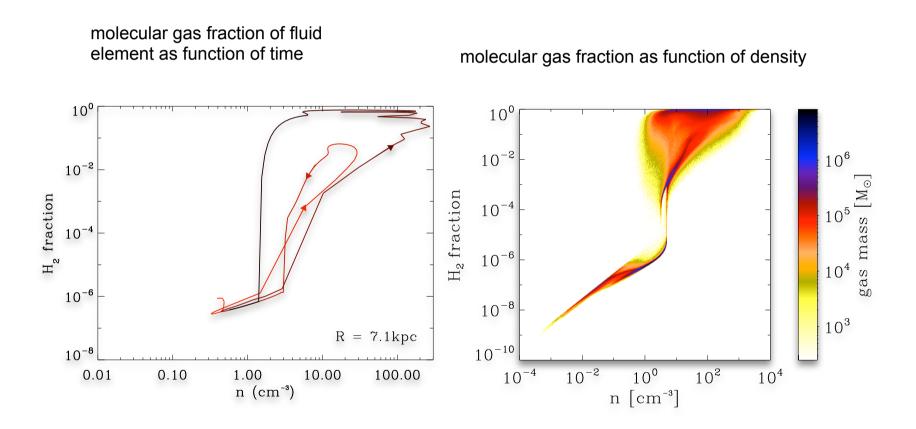


(Li et al. 2006)

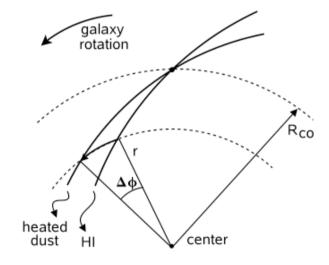




molecular gas fraction as function of time


molecular gas fraction as function of density

(Dobbs et al. 2008)



(Dobbs et al. 2008)

observed timescales

Tamburro et al. (2008)

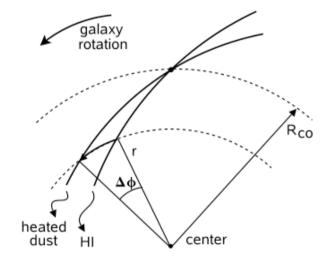
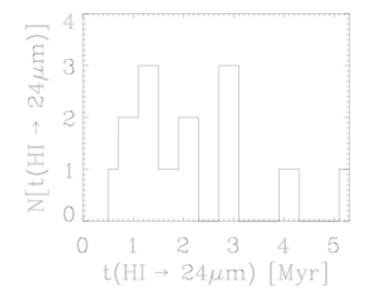
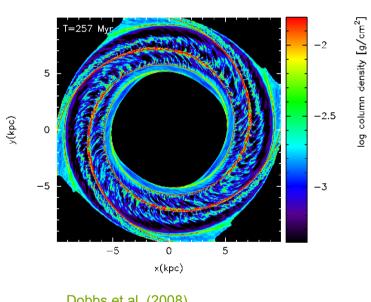


Fig. 1.— NGC 5194: the 24 $\mu \rm m$ band image is plotted in color scale; the H I emission map is overlayed with green contours.

observed timescales




Fig. 5.— Histogram of the time scales $t_{\rm HI\mapsto 24\,\mu m}$ derived from the fits in Figure 4 and listed in Table. 2 for the 14 sample galaxies listed in Table. 1. The timescales range between 1 and 4 Myr for almost all galaxies.

Tamburro et al. (2008)

calculated timescales

Dobbs et al. (2008)

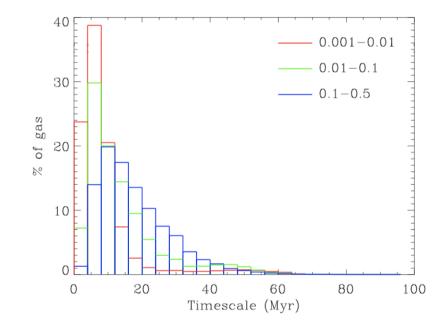


Figure 16. This histogram gives the distribution of timescales over which the gas reaches certain molecular gas fractions. The timescales denote the time for the H_2 fraction of a particle to increase from 0.001 to 0.01, 0.01 to 0.1 and 0.1 to 0.5, as indicated.

models with B-fields

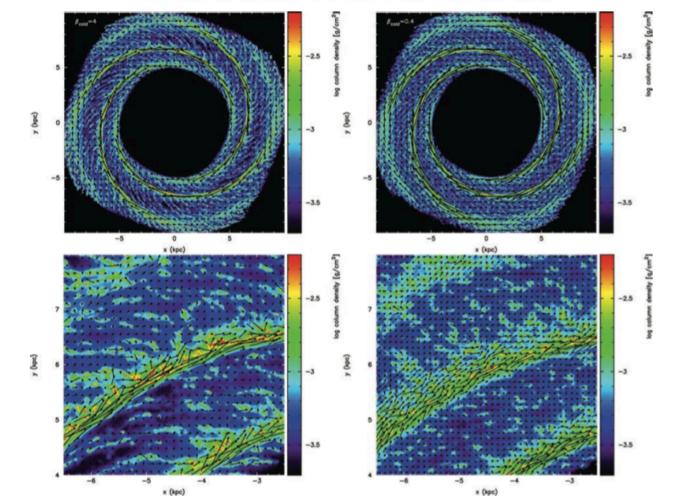
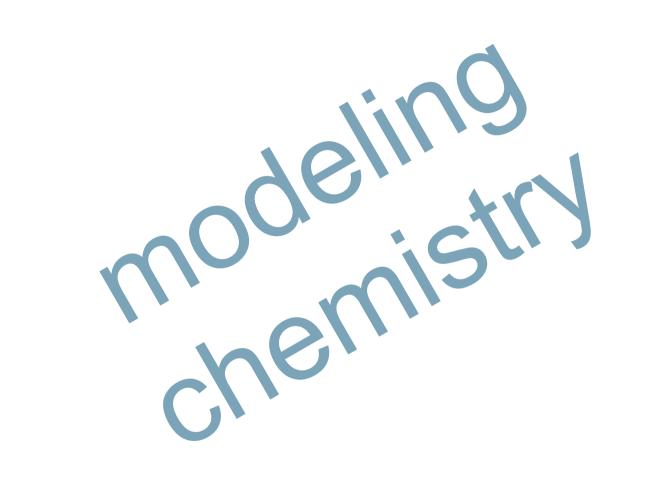
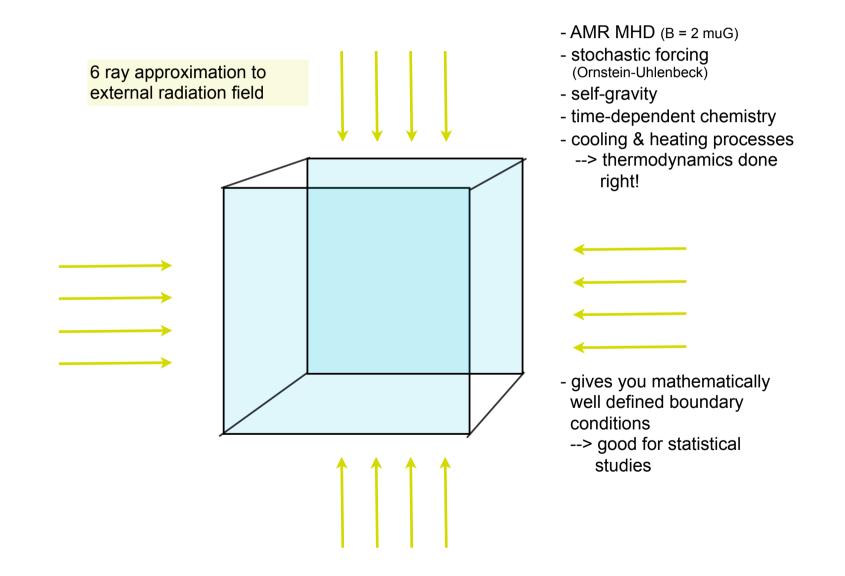



Figure 9. The column density is shown for the two-phase simulations after 250 Myr, for the whole disc (top panel) and a 4 × 4 kpc subsection (bottom panel). The left-hand panels show the case where $\beta_{cold} = 4$ and the right-hand panels where $\beta_{cold} = 0.4$. Both the cold and warm phases are shown in the plots, but we show them separately for the case where $\beta_{cold} = 4$ in Fig. 12. There is more structure in the cold gas when the magnetic field is weaker ($\beta_{cold} = 4$). The vectors show the magnetic field smoothed over a particular grid size. There is more detailed structure on smaller scales, particularly in the spiral arms which β_{cold} are better resolved.



experimental set-up

chemical model 0

- 32 chemical species
 - 17 in instantaneous equilibrium:

 $H^{-}, H_{2}^{+}, H_{3}^{+}, CH^{+}, CH_{2}^{+}, OH^{+}, H_{2}O^{+}, H_{3}O^{+}, CO^{+}, HOC^{+}, O^{-}, C^{-} and O_{2}^{+}$

19 full non-equilibrium evolution

 $e^{-}, H^{+}, H, H_{2}, He, He^{+}, C, C^{+}, O, O^{+}, OH, H_{2}O, CO,$

 C_2 , O_2 , HCO^+ , CH, CH_2 and CH_3^+

- 218 reactions
- various heating and cooling processes

Process

chemical model 1

Cooling:	
C fine structure lines	Atomic data – Silva & Viegas (2002)
	Collisional rates (H) – Abrahamsson, Krems & Dalgarno (2007)
	Collisional rates (H_2) – Schroder et al. (1991)
	Collisional rates (e^-) – Johnson et al. (1987)
	Collisional rates (H^+) – Roueff & Le Bourlot (1990)
C ⁺ fine structure lines	Atomic data – Silva & Viegas (2002)
	Collisional rates (H ₂) – Flower & Launay (1977)
	Collisional rates (H, $T < 2000 \text{ K}$) – Hollenbach & McKee (1989)
	Collisional rates (H, $T > 2000 \text{ K}$) – Keenan et al. (1986)
	Collisional rates (e ⁻) – Wilson & Bell (2002)
O fine structure lines	Atomic data – Silva & Viegas (2002)
	Collisional rates (H) – Abrahamsson, Krems & Dalgarno (2007)
	Collisional rates (H_2) – see Glover & Jappsen (2007)
	Collisional rates (e ⁻) – Bell, Berrington & Thomas (1998)
	Collisional rates (H ⁺) – Pequignot (1990, 1996)
H ₂ rovibrational lines	Le Bourlot, Pineau des Forêts & Flower (1999)
CO and H ₂ O rovibrational lines	Neufeld & Kaufman (1993); Neufeld, Lepp & Melnick (1995)
OH rotational lines	Pavlovski et al. (2002)
Gas-grain energy transfer	Hollenbach & McKee (1989)
Recombination on grains	Wolfire et al. (2003)
Atomic resonance lines	Sutherland & Dopita (1993)
H collisional ionization	Abel et al. (1997)
H ₂ collisional dissociation	See Table B1
Compton cooling	Cen (1992)
Heating:	
Photoelectric effect	Bakes & Tielens (1994); Wolfire et al. (2003)
H ₂ photodissociation	Black & Dalgarno (1977)
UV pumping of H ₂	Burton, Hollenbach & Tielens (1990)
H ₂ formation on dust grains	Hollenbach & McKee (1989)
Cosmic ray ionization	Goldsmith & Langer (1978)

No.	Reaction	chemical mo	DOE	ef.
1	$H + e^- \rightarrow H^- + \gamma$	$k_1 = dex_1 - 17.845 + 0.762 \log T + 0.1523 (\log T)^2$		
		$-0.03274(\log T)^3$	$T\leqslant 6000~{\rm K}$	
		$= dex[-16.420 + 0.1998(log T)^2]$		
		$-5.447 \times 10^{-3} (\log T)^4$		
		$+ 4.0415 \times 10^{-5} (\log T)^6$ $k_2 = 1.5 \times 10^{-9}$	T > 6000 K	
2	$H^- + H \rightarrow H_2 + e^-$	$\kappa_2 = 1.5 \times 10^{-9}$ = 4.0 × 10^{-9}T^{-0.17}	$T \le 300 \text{ K}$ T > 300 K	2
3	$H + H^+ \rightarrow H_2^+ + \gamma$	$= 4.0 \times 10^{-1} T$ $k_3 = dex[-19.38 - 1.523 \log T]$	T > 300 K	3
а	$h + h^{\vee} \rightarrow h_2^{-} + \gamma$	$\kappa_3 = \text{dex}[-19.38 - 1.323 \log T + 1.118(\log T)^2 - 0.1269(\log T)^3]$		3
4	$H + H_2^+ \rightarrow H_2 + H^+$	$k_4 = 6.4 \times 10^{-10}$		4
	$H^- + H^+ \rightarrow H + H$	$k_5 = 2.4 \times 10^{-6} T^{-1/2} (1.0 + T/20000)$		5
6	$H_2^+ + e^- \rightarrow H + H$	$k_6 = 1.0 \times 10^{-8}$ (1.0 + 1/2000)	$T \leqslant 617 \text{ K}$	6
	12 1 0 1 1 1	$= 1.32 \times 10^{-6} T^{-0.76}$	T > 617 K	0
7	$H_2 + H^+ \rightarrow H_2^+ + H$	$k_7 = [-3.3232183 \times 10^{-7}]$		7
	- 6	$+3.3735382 \times 10^{-7} \ln T$		
		$-1.4491368 \times 10^{-7} (\ln T)^2$		
		$+ 3.4172805 \times 10^{-8} (\ln T)^3$		
		$-4.7813720 \times 10^{-9} (\ln T)^4$		
		$+3.9731542 \times 10^{-10} (\ln T)^5$		
		$- 1.8171411 \times 10^{-11} (\ln T)^6$ + 3.5311932 × 10 ⁻¹³ (ln T) ⁷]		
		$(\frac{-21237.15}{T})$		
8	$H_2 + e^- \rightarrow H + H + e^-$	$k_8 = 3.73 \times 10^{-9} T^{0.1121} \exp\left(\frac{-99430}{T}\right)$		8
9	$\rm H_2 + \rm H \rightarrow \rm H + \rm H + \rm H$	$k_{9,1} = 6.67 \times 10^{-12} T^{1/2} \exp \left[-(1 + \frac{63590}{T})\right]$		9
		$k_{9,h} = 3.52 \times 10^{-9} \exp \left(-\frac{43900}{T}\right)$		10
		$n_{\rm ct,H} = dex \left[3.0 - 0.416 \log \left(\frac{T}{10000} \right) - 0.327 \left\{ \log \left(\frac{T}{10000} \right) \right\}^2 \right]$		10
10	$H_2 + H_2 \rightarrow H_2 + H + H$	$k_{10,l} = rac{5.996 imes 10^{-30} T^{4.1881}}{(1.0+6.761 imes 10^{-6} T)^{5.6881}} \exp\left(-rac{54657.4}{T} ight)$		11
		$k_{10,h} = 1.3 \times 10^{-9} \exp\left(-\frac{53300}{\pi}\right)$		12
		$n_{\rm cr,H_2} = \text{dex} \left[4.845 - 1.3 \log \left(\frac{T}{10000} \right) + 1.62 \left\{ \log \left(\frac{T}{10000} \right) \right\}^2 \right]$		12
11	$\mathrm{H} + \mathrm{e^-} \rightarrow \mathrm{H^+} + \mathrm{e^-} + \mathrm{e^-}$	$k_{11} = \exp[-3.271396786 \times 10^{1}]$		13
		$+ 1.35365560 \times 10^{1} \ln T_{e}$		
		$-5.73932875 \times 10^{0} (\ln T_{e})^{2}$		
		$+ 1.56315498 \times 10^{0} (\ln T_{e})^{3}$		
		$-2.87705600 \times 10^{-1} (\ln T_e)^4$		
		$+3.48255977 \times 10^{-2} (\ln T_e)^5$		
		$-2.63197617 \times 10^{-3} (\ln T_e)^6$		
		$+ 1.11954395 \times 10^{-4} (\ln T_e)^7$ $- 2.03914985 \times 10^{-6} (\ln T_e)^8$]		
12	$H^+ + e^- \rightarrow H + \gamma$	$k_{12,A} = 1.269 \times 10^{-13} \left(\frac{315614}{a_1.7c}\right)^{1.563}$	Case A	14
12	$h' + e \rightarrow h + \gamma$	$\times [1.0 + (\frac{604625}{77})^{0.470}]^{-1.923}$	Case A	14
		$k_{12,B} = 2.753 \times 10^{-14} \left(\frac{315614}{T}\right)^{1.500}$	Case B	14
		$\times \left[1.0 + \left(\frac{115188}{T}\right)^{0.407}\right]^{-2.242}$		
13	$\mathrm{H^-} + \mathrm{e^-} \rightarrow \mathrm{H} + \mathrm{e^-} + \mathrm{e^-}$	$k_{13} = \exp[-1.801849334 \times 10^{1}]$		13
		$+ 2.36085220 \times 10^{0} \ln T_{e}$ $- 2.82744300 \times 10^{-1} (\ln T_{e})^{2}$		
		$+ 1.62331664 \times 10^{-2} (\ln T_e)^3$		
		$-3.36501203 \times 10^{-2} (\ln T_e)^4$		
		$+ 1.17832978 \times 10^{-2} (\ln T_e)^5$		
		$-1.65619470 \times 10^{-3} (\ln T_e)^6$		

		14	$\mathrm{H}^- + \mathrm{H} \rightarrow \mathrm{H} + \mathrm{H} + \mathrm{e}^-$	$\begin{array}{l} k_{14} = 2.5634 \times 10^{-9} T_{\rm e}^{1.78186} \\ = \exp[-2.0372609 \times 10^1 \\ + 1.13944933 \times 10^0 \ln T_{\rm e} \end{array}$	$T_{\rm e} \leqslant 0.1{\rm eV}$	1
Fable	B1.]			$-1.4210135 \times 10^{-1} (\ln T_e)^2$		
No.	Rea		che		el 2	
	_					
1	н+			$+ 8.6639632 \times 10^{-5} (\ln T_e)^6$ $- 2.5850097 \times 10^{-5} (\ln T_e)^7$		
				$-2.5850097 \times 10^{-6} (\ln T_e)^{-8}$ + 2.4555012 × 10 ⁻⁶ (ln $T_e)^{-8}$		
				$-8.0683825 \times 10^{-8} (\ln T_e)^9$	$T_{\rm e} > 0.1 {\rm eV}$	
		15	$\mathrm{H^-} + \mathrm{H^+} \rightarrow \mathrm{H_2^+} + \mathrm{e^-}$	$k_{15} = 6.9 \times 10^{-9} T^{-0.35}$	$T \leqslant 8000 \text{ K}$	1
2	н-	16	$He + e^- \rightarrow He^+ + e^- + e^-$	$= 9.6 \times 10^{-7} T^{-0.90}$ $k_{16} = \exp[-4.409864886 \times 10^{1}]$	$T > 8000 { m K}$	1
3	H +	10	$ne+e \rightarrow ne+e + e$	$\kappa_{16} = \exp[-4.409804386 \times 10^{-4} + 2.391596563 \times 10^{1} \ln T_{e}$		
				$-1.07532302 \times 10^{1} (\ln T_{e})^{2}$		
4	H +			$+ 3.05803875 \times 10^{0} (\ln T_{e})^{3}$		
5 6	H-			$-5.6851189 \times 10^{-1} (\ln T_e)^4$ + 6.79539123 × 10 ⁻² (ln T_e) ⁵		
0	H_2^+			$-5.0090561 \times 10^{-3} (\ln T_c)^6$		
7	H_2 ·			$+ 2.06723616 \times 10^{-4} (\ln T_e)^7$		
		17		$-3.64916141 \times 10^{-6} (\ln T_e)^8$ $k_{17,rr,A} = 10^{-11} T^{-0.5} [12.72 - 1.615 \log T$	G	
		17	${\rm He^+ + e^- \rightarrow He + \gamma}$	$\kappa_{17,rr,A} = 10^{-11} T^{-0.5} [12.72 - 1.615 \log T - 0.3162(\log T)^2 + 0.0493(\log T)^3]$	Case A	1
				$k_{17,rr,B} = 10^{-11}T^{-0.5}[11.19 - 1.676\log T]$	Case B	
				$-0.2852(\log T)^2 + 0.04433(\log T)^3$	000015	
				$k_{17,di} = 1.9 \times 10^{-3} T^{-1.5} \exp \left(-\frac{473421}{T}\right)$		
				$\times \left[1.0 + 0.3 \exp \left(-\frac{94684}{T}\right)\right]^{1}$		1
8	H_2 -	18	$\rm He^+ + H \rightarrow He + H^+$	$k_{18} = 1.25 \times 10^{-15} \left(\frac{T}{300}\right)^{0.25}$		
9	H2 -	19	${\rm He} + {\rm H}^+ \rightarrow {\rm He}^+ + {\rm H}$	$k_{19} = 1.26 \times 10^{-9} T^{-0.75} \exp \left(-\frac{127500}{T}\right)$	$T \leqslant 10000 \text{ K}$	
				$=4.0 \times 10^{-37} T^{4.74}$	T > 10000 K	
		20	$\rm C^+ + e^- \rightarrow \rm C + \gamma$	$ \begin{aligned} & = 4.6 \times 10^{-12} \left(\frac{T}{300}\right)^{-0.6} \\ & = 1.23 \times 10^{-17} \left(\frac{T}{300}\right)^{2.49} \exp\left(\frac{21845.6}{T}\right) \\ & = 9.62 \times 10^{-8} \left(\frac{T}{300}\right)^{-1.37} \exp\left(\frac{-115786.2}{T}\right) \end{aligned} $	$T\leqslant 7950~{ m K}$	
				$= 1.23 \times 10^{-17} \left(\frac{T}{300} \right)^{2.49} \exp \left(\frac{21845.6}{T} \right)$	$7950 \: \mathrm{K} < T \leqslant 21140 \: \mathrm{K}$	
10	H_2 -			$= 9.62 \times 10^{-8} \left(\frac{T}{300}\right)^{-1.37} \exp\left(\frac{-115786.2}{T}\right)$	$T > 21140 { m K}$	
		21	$O^+ + e^- \rightarrow O + \gamma$	$k_{21} = 1.30 \times 10^{-10} T^{-0.64}$ = 1.41 × 10^{-10} T^{-0.66} + 7.4 × 10^{-4} T^{-1.5}	$T \leqslant 400 \text{ K}$	
				$= 1.41 \times 10^{-107} - 0.00 + 7.4 \times 10^{-0} T^{-1.0}$ $\times \exp\left(-\frac{175000}{T}\right) \left[1.0 + 0.062 \times \exp\left(-\frac{145000}{T}\right)\right]$	$T > 400 { m K}$	
11	H +	22	$C + e^- \rightarrow C^+ + e^- + e^-$	$k_{22} = 6.85 \times 10^{-8} (0.193 + u)^{-1} u^{0.25} e^{-u}$	$u = 11.26/T_e$	
		23	$O + e^- \rightarrow O^+ + e^- + e^-$	$k_{23} = 3.59 \times 10^{-8} (0.073 + u)^{-1} u^{0.34} e^{-u}$	$u = 13.6/T_{e}$	
			$O^+ + H \rightarrow O + H^+$	$k_{24} = 4.99 \times 10^{-11} T^{0.405} + 7.54 \times 10^{-10} T^{-0.458}$		1
		25	$O + H^+ \rightarrow O^+ + H$	$k_{25} = [1.08 \times 10^{-11} T^{0.517} + 4.00 \times 10^{-10} T^{0.00669}] \exp\left(-\frac{227}{T}\right)$		1
		26	$O + He^+ \rightarrow O^+ + He$	$+4.00 \times 10^{-15} (T_{T})^{0.3794} = (T_{T})^{0.3794}$		
		26	$O + He^+ \rightarrow O^+ + He$	$k_{26} = 4.991 \times 10^{-15} \left(\frac{T}{10000}\right)^{0.3794} \exp\left(-\frac{T}{1121000}\right) \left(-\frac{T}{1121000}\right)^{-0.2163} \exp\left(-\frac{T}{1121000}\right)$		1
		27	$C + H^+ \rightarrow C^+ + H$	$ \begin{array}{c} \exp\left(-\frac{1}{10000}\right) \\ + 2.780 \times 10^{-15} \left(\frac{T}{10000}\right)^{-0.2163} \exp\left(\frac{T}{815800}\right) \\ k_{27} = 3.9 \times 10^{-16} T^{0.213} \end{array} $		
12	H^+		$C + H^+ \rightarrow C + H^+$ $C^+ + H \rightarrow C + H^+$	$k_{27} = 3.9 \times 10^{-14} \left(\frac{T}{10000} \right)^{1.96} \exp\left(-\frac{170000}{T}\right)$		
		20	$C + He^+ \rightarrow C^+ + He$	$k_{28} = 6.08 \times 10^{-14} \left(\frac{T}{10000}\right)^{1.96} \exp\left(-\frac{170000}{T}\right) k_{29} = 8.58 \times 10^{-17} T^{0.757}$	$T \le 200 \text{ K}$	-
				$= 3.25 \times 10^{-17} T^{0.968}$	$200 < T \leqslant 2000 \text{ K}$	
				$= 2.77 \times 10^{-19} T^{1.597}$	$T > 2000 { m K}$	
13	H^{-}	30	$\rm H_2 + He \rightarrow H + H + He$	$k_{30,1} = \text{dex} \left[-27.029 + 3.801 \log (T) - 29487/T\right]$ $k_{30,h} = \text{dex} \left[-2.729 - 1.75 \log (T) - 23474/T\right]$		2
				$n_{cr,He} = dex \left[5.0792(1.0 - 1.23 \times 10^{-5}(T - 2000) \right]$		-
		31	$OH + H \rightarrow O + H + H$	$k_{31} = 6.0 \times 10^{-9} \exp\left(-\frac{50900}{\pi}\right)$		- 2
		32	$\rm HOC^+ + H_2 \rightarrow \rm HCO^+ + H_2$	$k_{32} = 3.8 \times 10^{-10}$		- 2
		33	$\rm HOC^+ + \rm CO \rightarrow \rm HCO^+ + \rm CO$	$k_{33} = 4.0 \times 10^{-10}$		1
		34	$C + H_2 \rightarrow CH + H$	$k_{34} = 6.64 \times 10^{-10} \exp\left(-\frac{11700}{\pi}\right)$		1
		35	$CH + H \rightarrow C + H_2$	$k_{35} = 1.31 \times 10^{-10} \exp\left(-\frac{80}{T}\right)$		1

		14	H^{-}	+ H -	\rightarrow H + H + e ⁻	$k_{14} = 2.563$	$4 \times 10^{-9} T_e^{1.78186}$	$T_{\rm e}\leqslant 0.1{\rm eV}$		13
				36	$CH + H_2 \rightarrow CH$	$_{2} + H$	$k_{36} = 5.46 \times 10^{-10} \exp\left(-\frac{19}{7}\right)$	<u>43</u>)	33	
Table	B1. 1			37	$CH + C \rightarrow C_2 +$	- H	$k_{37} = 6.59 \times 10^{-11}$		34	
	-			38	CH + C → CO		$k_{22} = 6.6 \times 1^{-11}$		35 36	
No.	Rea			39			-1		37	
1	H +			40	$CH_2 + O \rightarrow CO$		$k_{40} = 1.33 \times 10^{-10}$		38	
				41	$CH_2 + O \rightarrow CO$	-	$k_{41} = 8.0 \times 10^{-11}$		39	
				42	$C_2 + O \rightarrow CO +$	+ C	$k_{42} = 5.0 \times 10^{-11} \left(\frac{1}{300} \right)$	$T \leqslant 300 \text{ K}$	40	
		15	H^{-}					T > 300 K	41	
2	н-	10	11-	43	$O + H_2 \rightarrow OH$		$k_{43} = 3.14 \times 10^{-13} \left(\frac{T}{300}\right)^{2.8}$	$\exp\left(-\frac{3150}{T}\right)$	42	
3	н+	16	He	44	$OH + H \rightarrow O +$	-	$ \begin{array}{c} (300) \\ k_{43} = 3.14 \times 10^{-13} \left(\frac{T}{300}\right)^{2.7} \\ k_{44} = 6.99 \times 10^{-14} \left(\frac{T}{300}\right)^{2.8} \\ k_{44} = 6.99 \times 10^{-12} \left(\frac{T}{300}\right)^{1.52} \end{array} $	$\exp\left(-\frac{1950}{T}\right)$	43	
				45	$OH + H_2 \rightarrow H_2$		$k_{45} = 2.05 \times 10^{-12} \left(\frac{1}{300} \right)$	$\exp\left(-\frac{1736}{T}\right)$	44	
4 5	H + H-			46 47	$OH + C \rightarrow CO$ $OH + O \rightarrow O_2$		$k_{46} = 1.0 \times 10^{-10}$ $k_{47} = 3.50 \times 10^{-11}$	$T \leqslant 261 \text{ K}$	34 45	
5 6	H_2^+				$OII + O \rightarrow O_2$		$= 1.77 \times 10^{-11} \exp\left(\frac{178}{r}\right)$	$T \ge 261 \text{ K}$ T > 261 K	33	
0				48	$OH + OH \rightarrow H_2$	O + H	$k_{48} = 1.65 \times 10^{-12} \left(\frac{T}{300} \right)_{1.14}^{1.14}$	$\exp\left(-\frac{50}{T}\right)$	34	
7	H_2 ·			49	$H_2O + H \rightarrow H_2$		$k_{49} = 1.59 \times 10^{-11} \left(\frac{T}{300} \right)^{1.2}$	$\exp\left(-\frac{9610}{T}\right)$	46	
		17	He	50	$O_2 + H \rightarrow OH$		$k_{50} = 2.61 \times 10^{-10} \exp \left(-\frac{810}{7}\right)$		33	
				51	$O_2 + H_2 \rightarrow OH$	+ OH	$k_{51} = 3.16 \times 10^{-10} \exp \left(-\frac{210}{3}\right)$	<u>seó</u>)	47	
				52	$O_2 + C \rightarrow CO +$	+ O	$k_{52} = 4.7 \times 10^{-11} \left(\frac{T}{200}\right)^{-0.34}$	$T \le 295 \text{ K}$	34	
							$= 2.48 \times 10^{-12} \left(\frac{T}{200}\right)^{1.54}$	$\exp\left(\frac{613}{T}\right)$ T > 295 K	33	
				53	$\rm CO + H \rightarrow C +$	OH	$k_{53} = 1.1 \times 10^{-10} \left(\frac{T}{200}\right)^{0.5}$ ex	$qp\left(-\frac{77700}{T}\right)$	28	
				54	$H_2^+ + H_2 \rightarrow H_2^+$	+H	$k_{54} = 2.24 \times 10^{-9} \left(\frac{T}{300}\right)^{0.042}$	$\exp\left(-\frac{T}{46600}\right)$	48	
8	H_2 ·	18 19	He ⁻ He-	55	$H_3^+ + H \rightarrow H_2^+$	$+ H_2$	$k_{55} = 7.7 \times 10^{-9} \exp \left(-\frac{17560}{T}\right)$	2)	49	
9	H_2 ·	10	110	56	$C + H_2^+ \rightarrow CH^+$		$k_{56} = 2.4 \times 10^{-9}$,	28	
		20	\mathbf{C}^+	57	$C + H_3^+ \rightarrow CH^+$		$k_{57} = 2.0 \times 10^{-9}$	0	28	
				58 59	$C^+ + H_2 \rightarrow CH$ $CH^+ + H \rightarrow C^+$		$k_{58} = 1.0 \times 10^{-10} \exp \left(-\frac{4640}{T} k_{59} = 7.5 \times 10^{-10}\right)$	•)	50 51	
10	H_2 ·			60	$CH^+ + H_2 \rightarrow C$	· · ·	$k_{60} = 1.2 \times 10^{-9}$		51	
		21	O^+	61	$\rm CH^+ + O \rightarrow CO$		$k_{61} = 3.5 \times 10^{-10}$		52	
				62	$CH_2 + H^+ \rightarrow C$		$k_{62} = 1.4 \times 10^{-9}$	`	28	
11	H +	22	С+	63 64	$CH_2^+ + H \rightarrow CH$ $CH_2^+ + H_2 \rightarrow C$		$k_{63} = 1.0 \times 10^{-9} \exp\left(-\frac{7080}{T}\right)$ $k_{64} = 1.6 \times 10^{-9}$)	28 53	
		23	04	65	$CH_2^+ + H_2^- \rightarrow H_2^-$ $CH_2^+ + O \rightarrow H_2^-$		$k_{65} = 7.5 \times 10^{-10}$		28	
		24	O^+	66	$CH_3^+ + H \rightarrow CH$		$k_{66} = 7.0 \times 10^{-10} \exp \left(-\frac{1056}{T}\right)$	10)	28	
		25	0+	67	$CH_3^+ + O \rightarrow HO$		$k_{67} = 4.0 \times 10^{-10}$,	54	
		00		68 69	$C_2 + O^+ \rightarrow CO$ $O^+ + H_2 \rightarrow OH$		$k_{68} = 4.8 \times 10^{-10}$ $k_{69} = 1.7 \times 10^{-9}$		28 55	
		26	0+	70	$O^+ + H_2 \rightarrow OH^+$ $O + H_2^+ \rightarrow OH^+$		$k_{69} = 1.7 \times 10^{-9}$ $k_{70} = 1.5 \times 10^{-9}$		55 28	
		27	с+	71	$O + H_3^+ \rightarrow OH^-$	+ H ₂	$k_{71} = 8.4 \times 10^{-10}$		56	
12	H^+	28	C+	72	$OH + H_3^+ \rightarrow H_2$		$k_{72} = 1.3 \times 10^{-9}$		28	
		29	Č+	73 74	$OH + C^{+} \rightarrow CO$ $OH^{+} + H_{2} \rightarrow H$		$k_{73} = 7.7 \times 10^{-10}$ $k_{74} = 1.01 \times 10^{-9}$		28 57	
				75	$H_2O^+ + H_2 \rightarrow$	$H_{3}O^{+} + H$	$k_{75} = 6.4 \times 10^{-10}$		58	
		30	H_2	76	$H_2O + H_3^+ \rightarrow H_3$		$k_{76} = 5.9 \times 10^{-9}$		59	
13	$H^{}$	00		77 78	$H_2O + C^+ \rightarrow H$ $H_2O + C^+ \rightarrow H$		$k_{77} = 9.0 \times 10^{-10}$ $k_{78} = 1.8 \times 10^{-9}$		60 60	
				79	$H_3O^+ + C \rightarrow H$		$k_{79} = 1.0 \times 10^{-11}$ $k_{79} = 1.0 \times 10^{-11}$		28	
		31	OH	80	$O_2 + C^+ \rightarrow CO$	0 ⁺ + 0	$k_{80} = 3.8 \times 10^{-10}$		53	
		32 33	HO HO	81 82	$O_2 + C^+ \rightarrow CO$ $O_2 + CH_2^+ \rightarrow H$		$k_{81} = 6.2 \times 10^{-10}$ $k_{82} = 9.1 \times 10^{-10}$		53 53	
		33 34	но С+	83	$O_2^+ + CH_2^- \rightarrow H$ $O_2^+ + C \rightarrow CO^+$		$k_{82} = 9.1 \times 10^{-11}$ $k_{83} = 5.2 \times 10^{-11}$		28	
		35	CH	84	$\tilde{CO} + H_3^+ \rightarrow HC$	$DC^+ + H_2$	$k_{84} = 2.7 \times 10^{-11}$		61	
	_	_	-	85	$CO + H_3^+ \rightarrow HO$		$k_{85} = 1.7 \times 10^{-9}$		61	
_	-			86 87	$HCO^+ + C \rightarrow O$ $HCO^+ + H_2O^-$		$k_{86} = 1.1 \times 10^{-9}$ $k_{87} = 2.5 \times 10^{-9}$		28 62	
					100 1020					

									_
		14	$\rm H^-$	+ H -	H + H + e	88	$H_2 + He^+ \rightarrow He + H_2^+$	$k_{88} = 7.2 \times 10^{-15}$	63
	_			36	$CH + H_2$ -	89	$H_2 + He^+ \rightarrow He + H^+ H^+$	$k_{89} = 3.7 \times 10^{-14} \exp\left(\frac{35}{T}\right)$	63
Table 1	B1.			37	$CH + C \rightarrow$	90	$\rm CH + H^+ \rightarrow \rm CH^+ + H$	$k_{90} = 1.9 \times 10^{-9}$	28
				38	$CP + C \rightarrow$	91	$CH_2 + H^+ \rightarrow CH_2^+ + H$	$k_{91} = 1.4 \times 10^{-9}$	28
No.	Rea					492 93	Cl 2 - Hat + + + + + + + + + + + + + + + + + + +		28 28
1	H +			39 40	$C_{H_2} + O_{-}$	94	$OH + H^+ \rightarrow OH^+ + H$	$k_{94} = 2.1 \times 10^{-3}$	28
-				40	$CH_2 + O - CH_2 + O - O$	95	$\rm OH + He^+ \rightarrow O^+ + He + H$	$k_{95} = 1.1 \times 10^{-9}$	28
				42	$C_2 + O \rightarrow$	96	$H_2O + H^+ \rightarrow H_2O^+ + H$	$k_{96} = 6.9 \times 10^{-9}$	64
						97 98	$H_2O + He^+ \rightarrow OH + He + H^+$ $H_2O + He^+ \rightarrow OH^+ + He + H$	$k_{97} = 2.04 \times 10^{-10}$ $k_{98} = 2.86 \times 10^{-10}$	65 65
2	н-	15	H^{-}	43	$O + H_2 \rightarrow$	99	$H_2O + He^+ \rightarrow H_2O^+ + He$	$k_{99} = 6.05 \times 10^{-11}$	65
-		16	He	44	$O + H_2 \rightarrow$ $OH + H \rightarrow$	100	$O_2 + H^+ \rightarrow O_2^+ + H$	$k_{100} = 2.0 \times 10^{-9}$	64
3	H +					101	$O_2 + He^+ \rightarrow O_2^+ + He$	$k_{101} = 3.3 \times 10^{-11}$	66
				45 46	$OH + H_2 - OH + C \rightarrow$	102	$O_2 + He^+ \rightarrow O^+ + O + He$ $O^+ + C \rightarrow O_2 + C^+$	$k_{102} = 1.1 \times 10^{-9}$ $k_{103} = 5.2 \times 10^{-11}$	66
4 5	Н+ Н ⁻			40	OH + O = OH + O =	103	$O_2^+ + C \rightarrow O_2 + C^+$ $CO + He^+ \rightarrow C^+ + O + He$	$k_{103} = 5.2 \times 10^{-9} (T)^{-0.5}$	28
6	H_2^+					104		$k_{104} = 1.4 \times 10^{-9} \left(\frac{T}{300}\right)^{-0.5}$	67
-	2			48	OH + OH	105 106	$CO + He^+ \rightarrow C + O^+ + He$ $CO^+ + H \rightarrow CO + H^+$	$k_{105} = 1.4 \times 10^{-16} \left(\frac{T}{300}\right)^{-0.5}$ $k_{106} = 7.5 \times 10^{-10}$	67 68
7	H_2 ·			49	$H_2O + H$ -	105	$CO^+ + H \rightarrow CO^+ H^-$ $C^- + H^+ \rightarrow C + H$	N100 - 110 × 10	28
		17	He	50	$O_2 + H \rightarrow$	107	$O^- + H^+ \rightarrow O + H$	$k_{107} = 2.3 \times 10^{-7} \left(\frac{T}{300}\right)^{-0.5}$	28
		- 1		51	$O_2 + H_2 -$		$O^+ H^+ \rightarrow O^+ H^-$ $He^+ + H^- \rightarrow He + H$	$k_{108} = 2.3 \times 10^{-7} \left(\frac{T}{300}\right)^{-0.5}$	
				52	$O_2 + C \rightarrow$	109		$k_{109} = 2.32 \times 10^{-7} \left(\frac{T}{300}\right)^{-0.52} \exp\left(\frac{T}{22400}\right)$	69
						110	$H_3^+ + e^- \rightarrow H_2 + H$	$k_{110} = 2.34 \times 10^{-8} \left(\frac{T}{300}\right)^{-0.52}$	70
				53	$\rm CO + H \rightarrow$	111	$H_3^+ + e^- \rightarrow H + H + H$	$k_{111} = 4.36 \times 10^{-6} \left(\frac{1}{300}\right)_{0.5}$	70
				54	$H_{2}^{+} + H_{2} -$	112	$CH^+ + e^- \rightarrow C + H$	$k_{112} = 7.0 \times 10^{-8} \left(\frac{1}{300} \right)$	71
8	H_2 -	18	He	55	$H_2^+ + H_2^-$ $H_3^+ + H \rightarrow$	113	$CH_2^+ + e^- \rightarrow CH + H$	$k_{113} = 1.6 \times 10^{-7} \left(\frac{1}{300} \right)$	72
9	H_2 ·	19	He	56	$C + H_2^+ \rightarrow$	114	$CH_2^+ + e^- \rightarrow C + H + H$	$k_{114} = 4.03 \times 10^{-7} \left(\frac{1}{300} \right)$	72
			a +	57	$C + H_3^+ \rightarrow$	115	$CH_2^+ + e^- \rightarrow C + H_2$	$k_{115} = 7.68 \times 10^{-8} \left(\frac{T}{300}\right)^{-0.6}_{-0.5}$	72
		20	C^+	58	$C^{+} + H_{2} -$	116	$CH_3^+ + e^- \rightarrow CH_2 + H$	$k_{116} = 7.75 \times 10^{-8} \left(\frac{1}{300} \right)$	73
10	H2 -			59	$CH^+ + H$	117	$CH_3^+ + e^- \rightarrow CH + H_2$	$k_{117} = 1.95 \times 10^{-7} \left(\frac{1}{300} \right)^{-10}$	73
10	112	21	O+	60 61	$CH^+ + H_2$ $CH^+ + O$	118	$CH_3^+ + e^- \rightarrow CH + H + H$	$k_{118} = 2.0 \times 10^{-7} \left(\frac{T}{300} \right)^{-0.4}$	28
		21	0.	62	$CH_2 + H^+$	119	$OH^+ + e^- \rightarrow O + H$	$k_{119} = 6.3 \times 10^{-9} \left(\frac{T}{200}\right)^{-0.48}$	74
				63	$CH_2^+ + H$	120	$H_2O^+ + e^- \rightarrow O + H + H$	$k_{120} = 3.05 \times 10^{-7} \left(\frac{T}{300}\right)^{-0.5}$	75
11	н+	22	\mathbf{C} +	64	$CH_2^+ + H_2$	121	$H_2O^+ + e^- \rightarrow O + H_2$	$k_{121} = 3.9 \times 10^{-8} \left(\frac{T}{300} \right)^{-0.5}$	75
		23	0+	65	$CH_2^+ + O$	122	$H_2O^+ + e^- \rightarrow OH + H$	$k_{122} = 8.6 \times 10^{-8} \left(\frac{T}{300} \right)^{-0.5}$	75
		24 25	0+	66 67	$CH_3^+ + H$	123	$H_3O^+ + e^- \rightarrow H + H_2O$	$k_{123} = 1.08 \times 10^{-7} \left(\frac{T}{300} \right)^{-0.5}_{-0.5}$	76
				68	$CH_3^+ + O + C_2^+ + O^+ - C_2^+ + O^+ - O^+ -$	124	$H_3O^+ + e^- \rightarrow OH + H_2$	$k_{124} = 6.02 \times 10^{-8} \left(\frac{T}{300}\right)^{-0.5}$	76
		26	0+	69	$O^{+} + H_{2} -$	125	$H_3O^+ + e^- \rightarrow OH + H_*$	$k_{125} = 2.58 \times 10^{-7} \left(\frac{T}{300}\right)^{-0.5}$	76
				70	$O + H_2^+ \rightarrow$	126	$H_3O^+ + e^- \rightarrow O + H + H_2$	$k_{126} = 2.65 \times 10^{-9} \left(\frac{300}{300}\right)^{-0.5}$ $k_{126} = 5.6 \times 10^{-9} \left(\frac{T}{300}\right)^{-0.5}$	76
		27	C+	71	$O + H_3^+ \rightarrow$	120	$O_2^+ + e^- \rightarrow O + O$	$k_{127} = 0.0 \times 10^{-7} \left(\frac{300}{300}\right)^{-0.7}$ $k_{127} = 1.95 \times 10^{-7} \left(\frac{T}{300}\right)^{-0.7}$	77
12	H^+	28	\mathbf{C}^+	72 73	$OH + H_3^+$ $OH + C^+$		$O_2 + e^- \rightarrow O + O$ $OO^+ + e^- \rightarrow C + O$		
		29	C +	74	$OH^+ + H_2$	128		$k_{128} = 2.75 \times 10^{-7} \left(\frac{T}{300}\right)^{-0.55}$	78
				75	$H_2O^+ + H$	129	$HCO^+ + e^- \rightarrow CO + H$	$k_{129} = 2.76 \times 10^{-7} \left(\frac{T}{300}\right)^{-0.64}$	79
		30	H_2	76 77	$H_2O + H_3^+$	130	$\rm HCO^+ + e^- \rightarrow OH + C$	$k_{130} = 2.4 \times 10^{-8} \left(\frac{T}{300}\right)^{-0.64}$	79
13	H^{-}			77	$H_2O + C^+$ $H_2O + C^+$	131	$HOC^+ + e^- \rightarrow CO + H$	$k_{131} = 1.1 \times 10^{-7} \left(\frac{4}{300} \right)$	28
				79	$H_{2}O + C$ $H_{3}O^{+} + C$	132 133	$H^- + C \rightarrow CH + e^-$ $H^- + O \rightarrow OH + e^-$	$k_{132} = 1.0 \times 10^{-9}$ $k_{133} = 1.0 \times 10^{-9}$	28 28
		31	ОН	80	$O_2 + C^+$ -	134	$H^- + OH \rightarrow H_2O + e^-$	$k_{133} = 1.0 \times 10^{-10}$ $k_{134} = 1.0 \times 10^{-10}$	28
		32	HO HO	81	$O_2 + C^+ - O_2 + C^+$	135	$\rm C^- + \rm H \rightarrow \rm C\rm H + e^-$	$k_{135} = 5.0 \times 10^{-10}$	28
		33 34	но С+	82 83	$O_2 + CH_2^+$ $O_2^+ + C \rightarrow$	136	$C^- + H_2 \rightarrow CH_2 + e^-$ $C^- + O + CO_+ e^-$	$k_{136} = 1.0 \times 10^{-13}$	28
		35	CH	84	$CO_2 + C - CO_2 + H_3^+$	137 138	$C^- + O \rightarrow CO + e^-$ $O^- + H \rightarrow OH + e^-$	$k_{137} = 5.0 \times 10^{-10}$ $k_{138} = 5.0 \times 10^{-10}$	28 28
				85	$CO + H_3^+$	139	$\rm O^- + H_2 \rightarrow H_2O + e^-$	$k_{139} = 7.0 \times 10^{-10}$	28
				86	$HCO^+ + C$	140	$O^- + C \rightarrow CO + e^-$	$k_{140} = 5.0 \times 10^{-10}$	28
	_	_		87	HCO+ I IT	0.00	$h_{\rm H_3O^+} = 2.5 \times 10^{-9}$	62	

		14	н-	+ H -	H + H + e				7.0			
					-	88		$+ \text{He}^+ \rightarrow \text{He} + \text{H}_2^+$	$k_{88} = 7.2 \times 10^{-15}$	6		
	-			36	$CH + H_2 -$	89 90		$+ He^+ \rightarrow He + H + H^+$ $+ H^+ \rightarrow CH^+ + H$	$k_{89} = 3.7 \times 10^{-14} \exp\left(\frac{35}{T}\right)$ $k_{90} = 1.9 \times 10^{-9}$	6		
ble	B1. 1			37	$CH + C \rightarrow$ $CH + C \rightarrow$	90		$+ H^{+} \rightarrow CH^{+} + H$ $2 + H^{+} \rightarrow CH_{2}^{+} + H$	$k_{90} = 1.9 \times 10^{-9}$ $k_{91} = 1.4 \times 10^{-9}$	2		
	-			38		92		H + A + H2		2		LSW
No.	Rea			39		93	\mathbf{C}_{i}	+ 1 e - C - C - 1e	63 = 6 × 1 -9	2		
	H +			40	$CH_2 + O$	94		$+ H^+ \rightarrow OH^+ + H$	$k_{94} = 2.1 \times 10^{-5}$	2		
				41	$CH_2 + O$	95		$+ He^+ \rightarrow O^+ + He + H$	$k_{95} = 1.1 \times 10^{-9}$	2		
				42	$C_2 + O \rightarrow$	96 97		$O + H^+ \rightarrow H_2O^+ + H$ $O + He^+ \rightarrow OH + He + H^+$	$k_{96} = 6.9 \times 10^{-9}$ $k_{97} = 2.04 \times 10^{-10}$	6		
						98		$h_{\rm He^+} \rightarrow On + he + h$	$k_{97} = 2.04 \times 10^{-10}$	6		
	н-	15	H^{-}	43	$O + H_2 \rightarrow$	99	142	$\rm C + e^- \rightarrow \rm C^- + \gamma$	$k_{142} = 2.25 \times 10^{-15}$			81
		16	He		$O + H_2 \rightarrow$ $OH + H \rightarrow$	10	143	$C + H \rightarrow CH + \gamma$	$k_{142} = 2.25 \times 10^{-17}$ $k_{143} = 1.0 \times 10^{-17}$			82
	H +			44		10	144	$C + H_2 \rightarrow CH_2 + \gamma$	$k_{144} = 1.0 \times 10^{-17}$			82
				45	$OH + H_2 -$	10	145	$C + C \rightarrow C_2 + \gamma$	$k_{145} = 4.36 \times 10^{-18} \left(\frac{T}{300}\right)^{0.35} \exp \left(\frac{T}{300}\right)^{0.$	$\left(-\frac{161.3}{3}\right)$		83
	H +			46 47	$OH + C \rightarrow OH + O \rightarrow$	10	146	$C + O \rightarrow CO + \gamma$	$k_{146} = 2.1 \times 10^{-19}$		$T \leq 300 \text{ K}$	84
	H-			111	01+0-	10			$= 3.09 \times 10^{-17} \left(\frac{T}{300}\right)^{0.33} \exp \left(\frac{T}{100}\right)^{0.33} \exp \left($	$\left(-\frac{1629}{1629}\right)$	$T > 300 { m K}$	85
	H_2^+			40	011 - 011	10	147	$C^+ + H \rightarrow CH^+ + \gamma$	$k_{147} = 4.46 \times 10^{-16} T^{-0.5} \exp\left(-\frac{1}{2}\right)$	4.93	2 2 0001	86
	H_2			48	OH + OH	10			$h_{147} = 4.0 \times 10^{-16} (T)^{-0.2}$	T ^{2/3}		
				49	$H_2O + H -$	10'	148 149	$C^+ + H_2 \rightarrow CH_2^+ + \gamma$ $C^+ + O \rightarrow CO^+ + \gamma$	$k_{148} = 4.0 \times 10^{-16} \left(\frac{T}{300}\right)^{-0.2}$ $k_{149} = 2.5 \times 10^{-18}$		T < 200 K	87
		17	He	50	$O_2 + H \rightarrow$	10	149	$0^{\circ} + 0 \rightarrow 00^{\circ} + \gamma$		(68)	$T \leq 300 \text{ K}$	84
				51	$O_2 + H_2 -$	10	150	A	$= 3.14 \times 10^{-18} \left(\frac{T}{300}\right)^{-0.15} \text{ ex}$		$T > 300 { m K}$	
				52	$O_2 + C \rightarrow$	110	150	$O + e^- \rightarrow O^- + \gamma$	$\kappa_{150} = 1.5 \times 10^{-50}$			28
							151	$O + H \rightarrow OH + \gamma$	$k_{151} = 9.9 \times 10^{-19} \left(\frac{T}{300} \right)_{1.58}^{-0.38}$			28
				53	$CO + H \rightarrow$	11	152	$O + O \rightarrow O_2 + \gamma$	$k_{152} = 4.9 \times 10^{-20} \left(\frac{T}{200} \right)^{1.00}$			82
					$H_2^+ + H_2 -$	11:	153	$OH + H \rightarrow H_2O + \gamma$	$k_{153} = 5.26 \times 10^{-18} \left(\frac{T}{300} \right)^{-5.22} \exp \left(\frac{T}{200} \right)^{-0.38}$	кр (-90/7)		88
	H2 ·	18	He	54	$H_2^+ + H_2^-$ $H_3^+ + H \rightarrow$	11:	154	$H + H + H \rightarrow H_2 + H$	$k_{154} = 1.32 \times 10^{-32} \left(\frac{T}{300} \right)^{-0.38}$	(- /	$T \leq 300 \text{ K}$	89
	H_2	19	He	55 56	$H_3 + H \rightarrow$ $C + H_2^+ \rightarrow$	11-			$= 1.32 \times 10^{-32} \left(\frac{T}{300}\right)^{-1.0}$		T > 300 K	90
				57	$C + H_2 \rightarrow C + H_3^+ \rightarrow$	11	155	$H + H + H_2 \rightarrow H_2 + H_2$	$k_{155} = 2.8 \times 10^{-31} T^{-0.6}$		1 > 500 K	91
		20	C^+	58	$C^{+} H_{3}^{-}$ $C^{+} H_{2}^{-}$	110	156	$H + H + H_2 \rightarrow H_2 + H_2$ $H + H + H_0 \rightarrow H_2 + H_0$	$k_{156} = 6.9 \times 10^{-32} T^{-0.4}$			92
				59	$CH^+ + H$	11	157	$C + C + M \rightarrow C_2 + M$	$k_{157} = 5.99 \times 10^{-33} \left(\frac{T}{5000}\right)^{-1.6}_{-0.64}$		$T \leq 5000 \text{ K}$	93
0	H_2 -			60	$CH^+ + H_2$		101	0 0 0 1 11 0 02 1 11	$-5.00 \times 10^{-33} (-T_{-})^{-0.64}$	$\exp\left(\frac{5255}{T}\right)$	T > 5000 K	94
		21	O^+	61	$CH^+ + O$	11			00007	$\exp\left(-T\right)$		
				62	$CH_2 + H^+$	119	158	$\rm C + O + M \rightarrow \rm CO + M$	$k_{158} = 6.16 \times 10^{-29} \left(\frac{T}{300}\right)^{-3.08}$	(0) (0)	$T \leq 2000 \text{ K}$	35
				63	$CH_2^+ + H$	120			(300)	$qp\left(\frac{2114}{T}\right)$	T > 2000 K	67
1	н+	22	C+	64	$CH_2^+ + H_2$	12	159	$C^+ + O + M \rightarrow CO^+ + M$	$k_{159} = 100 \times k_{210}$			67
		23	0+	65	$CH_2^+ + O$	12	160	$C + O^+ + M \rightarrow CO^+ + M$	$k_{160} = 100 \times k_{210}$			67
		24 25	0+ 0+	66	$CH_3^+ + H$	12	161	$O + H + M \rightarrow OH + M$	$k_{161} = 4.33 \times 10^{-32} \left(\frac{T}{300}\right)^{-1.0}$			43
		20	01	67 68	$CH_3^+ + O$		162	$\rm OH + \rm H + \rm M \rightarrow \rm H_2O + \rm M$	$k_{162} = 2.56 \times 10^{-31} \left(\frac{1}{300} \right)$			35
		26	0+	69	$C_2 + O^+ - O^+ + H_2 - O^+ + H_2 - O^+ + H_2 - O^+ + H_2 - O^+ + O^+ $	12	163	$O + O + M \rightarrow O_2 + M$	$k_{163} = 9.2 \times 10^{-34} \left(\frac{T}{300}\right)^{-1.0}$			37
		20	01	70	$O + H_2^+ \rightarrow$	12	164	$O + CH \rightarrow HCO^+ + e^-$	$k_{164} = 2.0 \times 10^{-11} \left(\frac{T}{300}\right)^{0.44}$			95
		07	C+	71	$O + H_2^+ \rightarrow$	12	165	$H + H(s) \rightarrow H_2$	$k_{165} = 3.0 \times 10^{-18} T^{0.5} f_{\rm A}[1.0 + 0.5]$	$04(T \pm T.)0.5$	$f_{1} = [1.0 \pm 10^{4} \exp(-\frac{600}{2})]^{-1}$	96
2	H^+	27		72	$OH + H_3^+$	12	100	$11 + 11(8) \rightarrow 112$	$k_{165} = 3.0 \times 10^{-6} T^{-1} M_{fA} [1.0 \pm 0.002 T + 8 \times 10^{-6} T^2]^{-1}$		$T_{\rm A} = \left[1.0 \pm 10 \ \exp\left(-\frac{T_{\rm d}}{T_{\rm d}}\right)\right]$	20
2		28 29	C+	73	$OH + C^{+}$	12			+0.0021+0×10 -1-]			
		29	C +	74	$OH^+ + H_2$	129	HC	$O^+ + e^- \rightarrow CO + H$	$k_{129} = 2.76 \times 10^{-7} \left(\frac{T}{300} \right)^{-0.64}$	7	9	
				75	$H_2O^+ + H_1$	130		$O^+ + e^- \rightarrow OH + C$	$k_{130} = 2.4 \times 10^{-8} \left(\frac{T}{300}\right)^{-0.64}$	7	- -	
		30	H_2	76 77	$H_2O + H_3^+$ $H_2O + C^+$	-00						
3	H^{-}			78	$H_2O + C^+$ $H_2O + C^+$	131		$C^+ + e^- \rightarrow CO + H$	$k_{131} = 1.1 \times 10^{-7} \left(\frac{T}{300}\right)^{-1.0}$	2		
				79	$H_3O^+ + C$	132 133		$+ C \rightarrow CH + e^-$ + $O \rightarrow OH + e^-$	$ \begin{aligned} k_{132} &= 1.0 \times 10^{-9} \\ k_{133} &= 1.0 \times 10^{-9} \end{aligned} $	2		
		31	OH	80	$O_2 + C^+$ -	134		$+ OH \rightarrow H_2O + e^-$	$k_{133} = 1.0 \times 10^{-10}$ $k_{134} = 1.0 \times 10^{-10}$	2		
		32	HO	81	$O_2 + C^+$ -	135		$+ H \rightarrow CH + e^-$	$k_{135} = 5.0 \times 10^{-10}$	2		
		33	но	82	$O_2 + CH_2^+$	136		$+ H_2 \rightarrow CH_2 + e^-$	$k_{136} = 1.0 \times 10^{-13}$	2		
		34	C +	83	$O_2^+ + C \rightarrow$	137		$+ O \rightarrow CO + e^-$	$k_{137} = 5.0 \times 10^{-10}$	2		
		35	CH	84 85	$CO + H_3^+$ $CO + H_3^+$	138 139		$+ H \rightarrow OH + e^-$	$k_{138} = 5.0 \times 10^{-10}$	2		
	-			80 86	$HCO^+ + C$	139		$+ H_2 \rightarrow H_2O + e^-$ + $C \rightarrow CO + e^-$	$k_{139} = 7.0 \times 10^{-10}$ $k_{140} = 5.0 \times 10^{-10}$	2	-	
					$HCO^+ + H_2$			$\pm \circ \rightarrow \circ \circ \pm \circ$	w140 - 0.0 A 10	2	<i>a</i>	

(Glover, Federrath, Mac Low, Klessen, 2010, MNRS, 404, 2)

			01 70102			-	
	$14 H^- + H \rightarrow H$	$_{00}$ $_{12} + ne^- \rightarrow r$		$k_{88} = 7.2$	× 10 ⁻¹⁵	63	
		$H + H_2 - 89 H_2 + He^+ \rightarrow H_2$		$k_{89} = 3.7$		63	
		$H + C \rightarrow 90$ $CH + H^+ \rightarrow C$ $H + C \rightarrow 91$ $CH_2 + H^+ \rightarrow 0$		$k_{90} = 1.9$ $k_{91} = 1.4$	$\times 10^{-9}$	28 28	
			+ 1e $+$ H ₂	12 5		28	LSW
	No. Rea 39 C			93 = 6		28	
		$H_2 + O = 94$ $OH + H^+ \rightarrow O$ $H_2 + O = 95$ $OH + He^+ \rightarrow 0$		$k_{94} = 2.1$ $k_{95} = 1.1$		28 28	
		$H_2 + O$ 96 $H_2O + H^+ \rightarrow$		$k_{96} = 1.1$ $k_{96} = 6.9$	× 10 × 10 ⁻⁹	64	
	42 C		$OH + He + H^+$	$k_{97} = 2.06$	1×10^{-10}	65	
Table	DO List of shotoshowing)	30				er -	
Table	B2. List of photochemical	reactions included in our c	nemical mode	11	25×10^{-15} 0×10^{-17}		81 82
	Des etter	0-11-11-11-1-1-1-1-1		Def	0×10^{-17}		82
No.	Reaction	Optically thin rate (s^{-1})) γ	Ref.	$36 \times 10^{-18} \left(\frac{T}{300}\right)^{0.35} \exp\left(-\frac{161.3}{T}\right)$		83
166	$H^- + \gamma \rightarrow H + e^-$	$R_{166} = 7.1 \times 10^{-7}$	0.5	1	1×10^{-10}	$T \leqslant 300 \text{ K}$	84
167	$H_2^+ + \gamma \rightarrow H + H^+$	$R_{167} = 1.1 \times 10^{-9}$	1.9	2	$09 \times 10^{-17} \left(\frac{T}{300}\right)^{0.33} \exp\left(-\frac{1629}{T}\right)$	$T > 300 { m K}$	85
168	$H_2 + \gamma \rightarrow H + H$	$R_{168} = 5.6 \times 10^{-11}$	See §2.2	3	$46 \times 10^{-16} T^{-0.5} \exp\left(-\frac{4.93}{T^{2/3}}\right)^{1}$		86
169	$H_3^+ + \gamma \rightarrow H_2 + H^+$	$R_{169} = 4.9 \times 10^{-13}$	1.8	4	$ \begin{array}{c} 0 \times 10^{-16} \left(\frac{T}{300} \right)^{-0.2} \left(-T^{4/3} \right) \\ 5 \times 10^{-18} \end{array} $	$T \leqslant 300 \text{ K}$	87 84
170	$H_3^+ + \gamma \rightarrow H_2^+ + H$	$R_{170} = 4.9 \times 10^{-13}$	2.3	4	$14 \times 10^{-18} \left(\frac{T}{300}\right)^{-0.15} \exp\left(\frac{68}{T}\right)$	$T \le 300 \text{ K}$ T > 300 K	04
171	$C + \gamma \rightarrow C^+ + e^-$	$R_{171} = 3.1 \times 10^{-10}$	3.0	5	5×10^{-10}	1 > 000 K	28
172	$C^- + \gamma \rightarrow C + e^-$	$R_{172} = 2.4 \times 10^{-7}$	0.9	6	$9 \times 10^{-19} \left(\frac{T}{300}\right)^{-0.38}_{-1.58}$		28
173	$CH + \gamma \rightarrow C + H$	$R_{173} = 8.7 \times 10^{-10}$	1.2	7	$9 \times 10^{-20} \left(\frac{T}{100}\right)^{1.00}$		82
174	$CH + \gamma \rightarrow CH^+ + e^-$	$R_{174} = 7.7 \times 10^{-10}$	2.8	8	$26 \times 10^{-18} \left(\frac{T}{300}\right)^{-5.22} \exp\left(-\frac{90}{T}\right)$		88
175	$CH^+ + \gamma \rightarrow C + H^+$	$R_{175} = 2.6 \times 10^{-10}$	2.5	7	$32 \times 10^{-32} \left(\frac{T}{300} \right)^{-0.38}$	$T \leqslant 300 \text{ K}$	89
176	$CH_2 + \gamma \rightarrow CH + H$	$R_{176} = 7.1 \times 10^{-10}$	1.7	7	$32 \times 10^{-32} \left(\frac{T}{200}\right)^{-1.0}$	$T > 300 { m K}$	90
177	$CH_2 + \gamma \rightarrow CH_2^+ + e^-$	$R_{177} = 5.9 \times 10^{-10}$	2.3	6	$8 \times 10^{-31} T^{-0.6}$		91
178	$CH_2^+ + \gamma \rightarrow CH^+ + H$	$R_{178} = 4.6 \times 10^{-10}$	1.7	9	$9 \times 10^{-32} T^{-0.4}$		92
179	$CH_3^+ + \gamma \rightarrow CH_2^+ + H$	$R_{179} = 1.0 \times 10^{-9}$	1.7	6	$99 \times 10^{-33} \left(\frac{T}{5000}\right)^{-1.6}_{-0.64}$ (5355)	$T \leqslant 5000 \text{ K}$	93
180	$CH_3^+ + \gamma \rightarrow CH^+ + H_2$	$R_{180} = 1.0 \times 10^{-9}$	1.7	6	$99 \times 10^{-33} \left(\frac{5000}{5000}\right)^{-0.64} \exp\left(\frac{5255}{T}\right)$	$T > 5000 { m K}$	94
181	$C_2 + \gamma \rightarrow C + C$	$R_{181} = 1.5 \times 10^{-10}$	2.1	7	10 X 10 - (300)	$T \leqslant 2000 \text{ K}$	35
182	$O^- + \gamma \rightarrow O + e^-$	$R_{182} = 2.4 \times 10^{-7}$	0.5	6	$14 \times 10^{-29} \left(\frac{T}{300}\right)^{-3.08} \exp\left(\frac{2114}{T}\right)$ $10 \times k_{210}$	$T > 2000 { m K}$	67
183	$OH + \gamma \rightarrow O + H$	$R_{183} = 3.7 \times 10^{-10}$	1.7	10	$10 \times k_{210}$ $10 \times k_{210}$		67 67
184	$OH + \gamma \rightarrow OH^+ + e^-$	$R_{184} = 1.6 \times 10^{-12}$	3.1	6	$33 \times 10^{-32} \left(\frac{T}{T}\right)^{-1.0}$		43
185	$OH^+ + \gamma \rightarrow O + H^+$	$R_{185} = 1.0 \times 10^{-12}$	1.8	4	$56 \times 10^{-31} \left(\frac{T}{300}\right)^{-2.0}$ $56 \times 10^{-34} \left(\frac{T}{300}\right)^{-1.0}$		35
186	$H_2O + \gamma \rightarrow OH + H$	$R_{186} = 6.0 \times 10^{-10}$	1.7	11	$2 \times 10^{-34} \left(\frac{T}{300} \right)^{-1.0}$		37
187	$H_2O + \gamma \rightarrow H_2O^+ + e^-$	$R_{187} = 3.2 \times 10^{-11}$	3.9	8	$0 \times 10^{-11} \left(\frac{T}{300}\right)^{0.44}$		95
188	$H_2O^+ + \gamma \rightarrow H_2^+ + O$	$R_{188} = 5.0 \times 10^{-11}$	See §2.2	12	$0 \times 10^{-18} T^{0.5} f_{\rm A} [1.0 + 0.04(T + T_{\rm d})^{0.5}]$	$f_{\Lambda} = \left[1.0 + 10^4 \exp\left(-\frac{600}{m}\right)\right]^{-1}$	96
189	$H_2O^+ + \gamma \rightarrow H^+ + OH$	$R_{189} = 5.0 \times 10^{-11}$	See §2.2	12	$0.002 T + 8 \times 10^{-6} T^2]^{-1}$		
190	$H_2O^+ + \gamma \rightarrow O^+ + H_2$	$R_{190} = 5.0 \times 10^{-11}$	See §2.2	12	-10-7 $T = 0.64$		_
191	$H_2O^+ + \gamma \rightarrow OH^+ + H$	$R_{191} = 1.5 \times 10^{-10}$	See §2.2	12	(3007	79	
192	$H_3O^+ + \gamma \rightarrow H^+ + H_2O$	$R_{192} = 2.5 \times 10^{-11}$	See §2.2	12	$\times 10^{-6} \left(\frac{1}{300} \right)$	79	
193	$H_3O^+ + \gamma \rightarrow H_2^+ + OH$	$R_{193} = 2.5 \times 10^{-11}$	See §2.2	12	$\times 10^{-1} \left(\frac{1}{300} \right)$	28 28	
194	$H_3O^+ + \gamma \rightarrow H_2O^+ + H$	$R_{194} = 7.5 \times 10^{-12}$	See §2.2	12	$\times 10^{-9}$	28 28	
195	$H_3O^+ + \gamma \rightarrow OH^+ + H_2$	$R_{195} = 2.5 \times 10^{-11}$	See §2.2	12	$\times 10^{-10}$	28	
196	$O_2 + \gamma \rightarrow O_2^+ + e^-$	$R_{196} = 5.6 \times 10^{-11}$	3.7	7		28 28	
197	$O_2 + \gamma \rightarrow O + O$	$R_{197} = 7.0 \times 10^{-10}$ $R_{197} = 2.0 \times 10^{-10}$	1.8	7	$\times 10^{-10}$	28	
198	$\mathrm{CO} + \gamma \rightarrow \mathrm{C} + \mathrm{O}$	$R_{198} = 2.0 \times 10^{-10}$	See §2.2	13	$\times 10^{-10}$	28	
_	86 H	$CO^+ + C \rightarrow CO^-$	$() + e^{-}$	$k_{140} = 5.0$		28 28	
		$\mathrm{CO^+} + \mathrm{H_2O} \rightarrow \mathrm{CO} + \mathrm{H_3O^+} k_{87}$		13140 - 010	62		

(Glover, Federrath, Mac Low, Klessen, 2010, MNRS, 404, 2)

	Table B1. : 14 No. Rea 1 1 H +	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{split} He^+ &\to He + H_2^+ \\ He^+ &\to He + H + H^+ \\ H^+ &\to CH_2^+ + H \\ H^+ &\to CH_2^+ + H \\ H^+ &\to CH_2^+ + H \\ H^+ &\to OH^+ + H \\ He^+ &\to OH^+ + H \\ He^+ &\to OH^+ + H \\ He^+ &\to H_2O^+ + H \\ He^+ &\to OH + He + H^+ \\ He^+ &\to OH^+ + H \\ He^+ &\to H_2O^+ + H \\ H^+ &\to H_2O$	$k_{88} = 7.2$ $k_{89} = 3.7$ $k_{90} = 1.9$ $k_{91} = 1.4$ $k_{94} = 2.1$ $k_{96} = 6.9$ $k_{97} = 2.04$ $k_{97} = 2.04$	$ \begin{array}{c} \times 10^{-14} \exp\left(\frac{35}{7}\right) \\ \times 10^{-9} \\ 10^{-9} \\ \times 10^{-9} \\ \times 10^{-9} \\ \times 10^{-9} \\ \times 10^{-9} \end{array} $	63 63 28 28 28 28 28 28 28 28 64 65 65	ARHTALBW
		tochemical reactions included in	-		25×10^{-15} 0×10^{-17} 0×10^{-17}		81 82 82
No.	Reaction	Optically thin rate	γ (s ⁻¹) γ	Ref.	$36 \times 10^{-18} \left(\frac{T}{200}\right)^{0.35} \exp \left(\frac{T}$	$\left(-\frac{161.3}{T}\right)$	83
166	$H^- + \gamma \rightarrow H +$	$e^ R_{166} = 7.1 \times 10^{-7}$	0.5	1	1×10^{-19}	$T \le 300 \text{ K}$	84
167	$H_2^+ + \gamma \rightarrow H +$			2		$\left(-\frac{1629}{T}\right)$ T > 300 K 4.93	85 86
168	$H_2 + \gamma \rightarrow H +$			3	$40 \times 10^{-16} (T_{-})^{-0.2}$	2/3	87
169	$H_3^+ + \gamma \rightarrow H_2$			4	$0 \times 10^{-16} \left(\frac{T}{300}\right)^{-0.2}$ 5 × 10 ⁻¹⁸	$T \leqslant 300 \text{ K}$	84
170	$H_3^+ + \gamma \rightarrow H_2^+$		3 2.3	4	$14 \times 10^{-18} \left(\frac{T}{300}\right)^{-0.15} \text{ex}$	$p\left(\frac{68}{T}\right)$ T > 300 K	
171	$C + \gamma \rightarrow C^{+-}$			5			28
172	$C^- + \gamma \rightarrow Ta$	ble B3. List of reactions include	led in our chemical	model th	at involve cosmic ra	ys or cosmic-ray induced U	
173	$CH + \gamma -$						32
174 175	$CH + \gamma - N$	io. Reaction	Rate $(s^{-1}\zeta_{H}^{-1})$		Ref.		38
175	$CH^+ + \gamma$ $CH_2 + \gamma - 1$	aa	P 10				i9
170		99 $H + c.r. \rightarrow H^+ + e^-$ 00 $He + c.r. \rightarrow He^+ + e^-$	$R_{199} = 1.0$ $R_{199} = 1.1$		1		0
178	constant.	00 He + c.r. \rightarrow He ⁺ + e ⁻ 01 H ₂ + c.r. \rightarrow H ⁺ + H + e ⁻	$R_{200} = 1.1$ $R_{200} = 0.027$		1		92
178	9	$H_2 + c.r. \rightarrow H^+ + H^+ e$ $H_2 + c.r. \rightarrow H + H$	$R_{201} = 0.037$ $R_{202} = 0.22$		1		13
180		$02 H_2 + c.r. \rightarrow H + H$ $03 H_2 + c.r. \rightarrow H^+ + H^-$	$R_{202} = 0.22$ $R_{203} = 6.5 \times 10^{\circ}$	-4	1		14
180	0113 1 /	04 $H_2 + c.r. \rightarrow H_2^+ + e^-$	$R_{204} = 2.0$		1		\$5
182		$112 + Cr \rightarrow 112 + e^{-1}$ $05 C + c.r. \rightarrow C^{+} + e^{-1}$	$R_{205} = 3.8$		1		57
183		$06 O + c.r. \rightarrow O^+ + e^-$	$R_{206} = 5.7$		1		37
184		07 $CO + c.r. \rightarrow CO^+ + e^-$	$R_{207} = 6.5$		1		57
185		08 $C + \gamma_{c.r.} \rightarrow C^+ + e^-$	$R_{208} = 2800$		2		13
186		09 $CH + \gamma_{c.r.} \rightarrow C + H$	$R_{209} = 4000$		3		35
187	$H_2O + \gamma - 2$	10 $CH^+ + \gamma_{c.r.} \rightarrow C^+ + H$	$R_{210} = 960$		3		57)E
188	$H_2O^+ + \gamma = 2$	11 $CH_2 + \gamma_{c.r.} \rightarrow CH_2^+ + e^-$	$R_{211} = 2700$		1		GN AL
189	$H_2O^+ + \gamma = 2$	12 $CH_2 + \gamma_{c.r.} \rightarrow CH + H$	$R_{212} = 2700$		1		
190		13 $C_2 + \gamma_{c.r.} \rightarrow C + C$	$R_{213} = 1300$		3		
191		14 $OH + \gamma_{c.r.} \rightarrow O + H$	$R_{214} = 2800$		3		
192		15 $H_2O + \gamma_{c.r.} \rightarrow OH + H$	$R_{215} = 5300$		3		
193		16 $O_2 + \gamma_{c.r.} \rightarrow O + O$	$R_{216} = 4100$		3		
194	The sector of	17 $O_2 + \gamma_{c.r.} \rightarrow O_2^+ + e^-$	$R_{217} = 640$	-1/	3		
195		18 $CO + \gamma_{c.r.} \rightarrow C + O$	$R_{218} = 0.21T^{1/2}$	$x_{\rm H_2} x_{\rm CO}^{-1/2}$	^e 4		
196	$O_2 + \gamma \rightarrow$	O $P_{con} = 7.0 \times 10^{-1}$	0 10	7	× 10 ⁻¹³	28	
197 198	$O_2 + \gamma \rightarrow O + C + C + C = C + \gamma \rightarrow C + C + \gamma \rightarrow C + \gamma $			13	$\times 10^{-10}$	28	
199	$CO + \gamma \rightarrow C +$	$R_{198} = 2.0 \times 10^{-2}$	⁰ See §2.2	10	$\times 10^{-10}$ $\times 10^{-10}$	28 28	

HI to H2 conversion rate

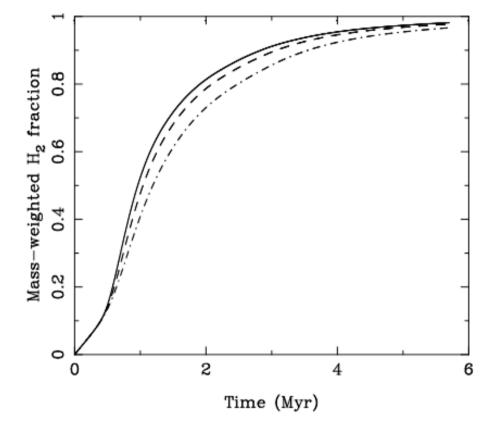


Figure 4. Time evolution of the mass-weighted H_2 abundance in simulations R1, R2 and R3, which have numerical resolutions of 64^3 zones (dot-dashed), 128^3 zones (dashed) and 256^3 zones (solid), respectively.

HI to H2 conversion rate

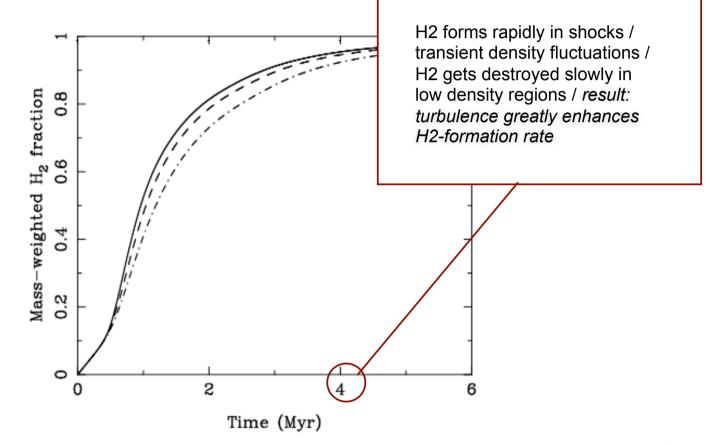


Figure 4. Time evolution of the mass-weighted H_2 abundance in simulations R1, R2 and R3, which have numerical resolutions of 64^3 zones (dot-dashed), 128^3 zones (dashed) and 256^3 zones (solid), respectively.

HI to H2 conversion rate

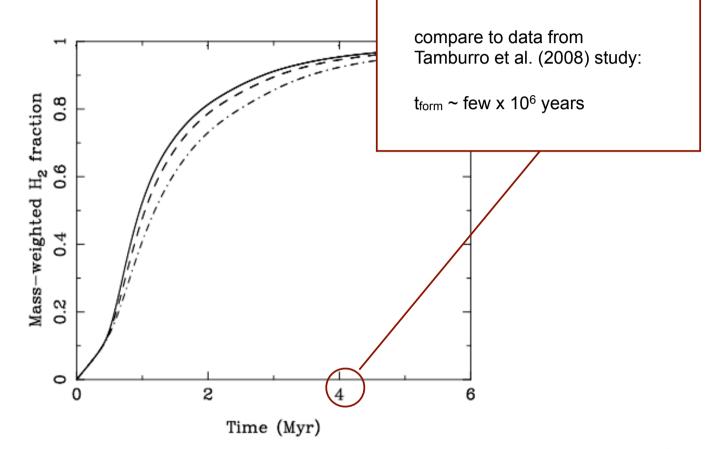


Figure 4. Time evolution of the mass-weighted H_2 abundance in simulations R1, R2 and R3, which have numerical resolutions of 64^3 zones (dot-dashed), 128^3 zones (dashed) and 256^3 zones (solid), respectively.

CO, C⁺ formation rates

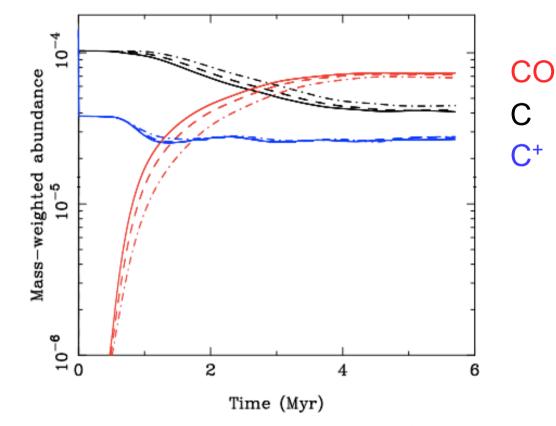
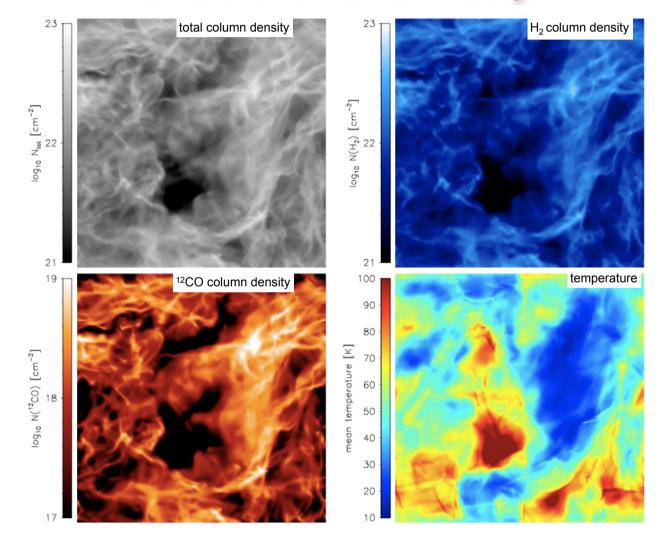
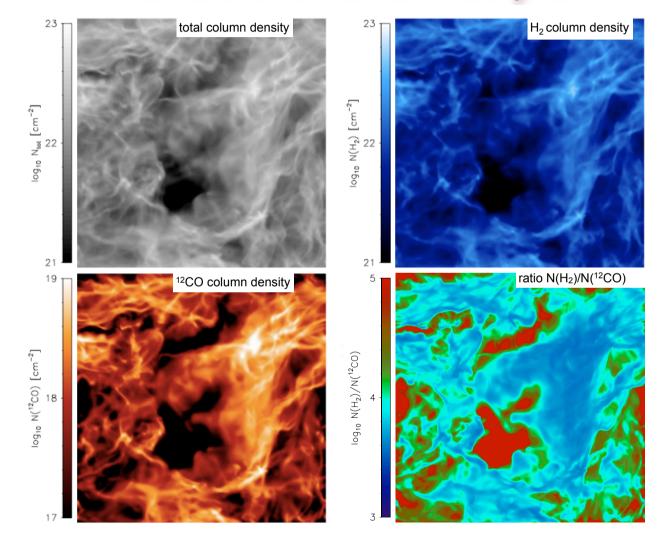
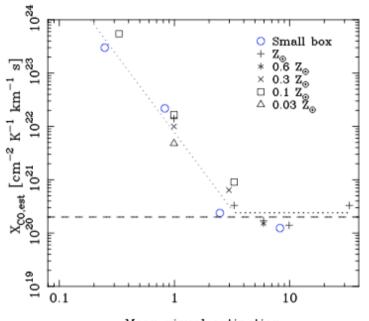



Figure 5. Time evolution of the mass-weighted abundances of atomic carbon (black lines), CO (red lines), and C^+ (blue lines) in simulations with numerical resolutions of 64^3 zones (dot-dashed), 128^3 zones (dashed) and 256^3 zones (solid).


effects of chemistry 1

effects of chemistry 2

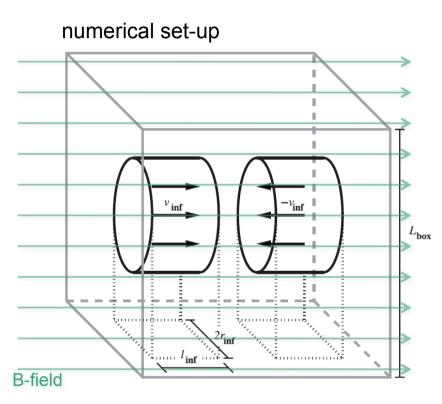

effects of chemistry 4

- deliverables / predictions:
 - x-factor estimates (as function of environmental conditions)
 - synthetic line emission maps (in combination with line transfer)
 - pdf's of density, velocity, emissivity / structure functions (to directly connect to observational regime)
 - COMMENT: density pdf is NOT lognormal!
 --> implications for analytical IMF theories

Mean visual extinction

from Glover & Mac Low (2010, ApJ, submitted)

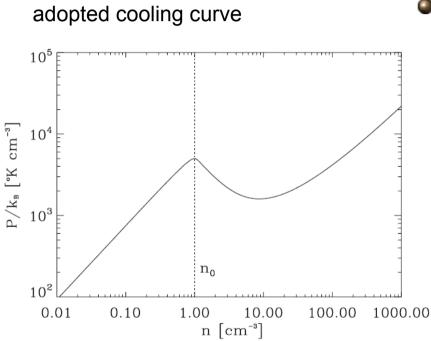
Figure 8. Estimate of the CO-to-H₂ conversion factor $X_{\rm CO,est}$, plotted as a function of the mean visual extinction of the gas, $\langle A_{\rm V} \rangle$. The simplifications made in our modelling mean that each value of $X_{\rm CO,est}$ is uncertain by at least a factor of two. At $\langle A_{\rm V} \rangle > 3$, the values we find are consistent with the value of $X_{\rm CO} = 2 \times 10^{20} {\rm cm}^{-2} {\rm K}^{-1} {\rm km}^{-1} {\rm s}$ determined observationally for the Milky Way by Dame et al. (2001), indicated in the plot by the horizontal dashed line. At $\langle A_{\rm V} \rangle < 3$, we find evidence for a strong dependence of $X_{\rm CO,est}$ on $\langle A_{\rm V} \rangle$. The empirical fit given by Equation 11 is indicated as the dotted line in the Figure, and demonstrates that at low $\langle A_{\rm V} \rangle$, the CO-to-H₂ conversion factor increases roughly as $X_{\rm CO,est} \propto A_{\rm V}^{-2.8}$. It should also be noted that at any particular $\langle A_V \rangle$, the dependence of $X_{CO,est}$ on metallicity is relatively small. Previous claims of a strong metallicity dependence likely reflect the fact that there is a strong dependence on the mean extinction, which varies as $\langle A_V \rangle \propto Z$ given fixed mean cloud density and cloud size.


from atomic gas to molecular clouds

- importance of dynamics:
 - •how does molecular cloud material form in convergent flows, e.g., as triggered by spiral density waves...?
 - do sequence of idealized numerical experiments
- questions
 - are molecular clouds truly "multi-phase" media?
 - turbulence? dynamical & morphological properties?
 - what is relation to initial & environmental conditions?
 - magnetic field structure?

convergent flows: set-up

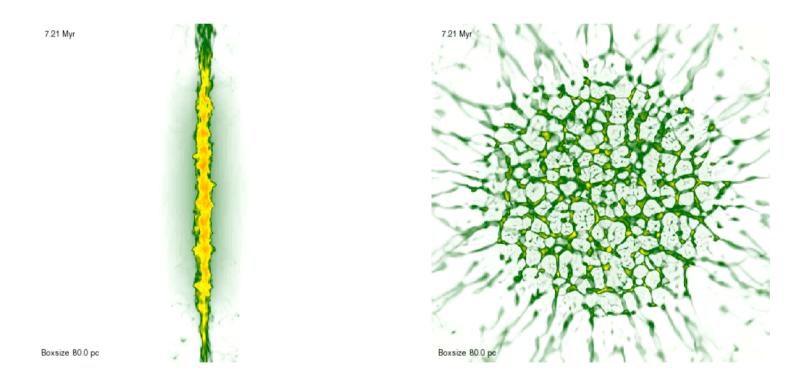
from Vazquez-Semadeni et al. (2007)


- convergent flow studies
 - atomic flows collide
 - cooling curve (soon chemistry)
 - gravity
 - magnetic fields
 - numerics: AMR, BGK, SPH

see studies by Banerjee et al., Heitsch et al., Hennebelle et al., Vazquez-Semadeni et al.

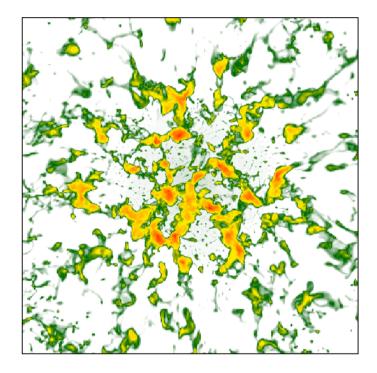
convergent flows: set-up

- convergent flow studies
 - atomic flows collide
 - cooling curve (soon chemistry)
 - gravity
 - magnetic fields
 - numerics: AMR, BGK, SPH

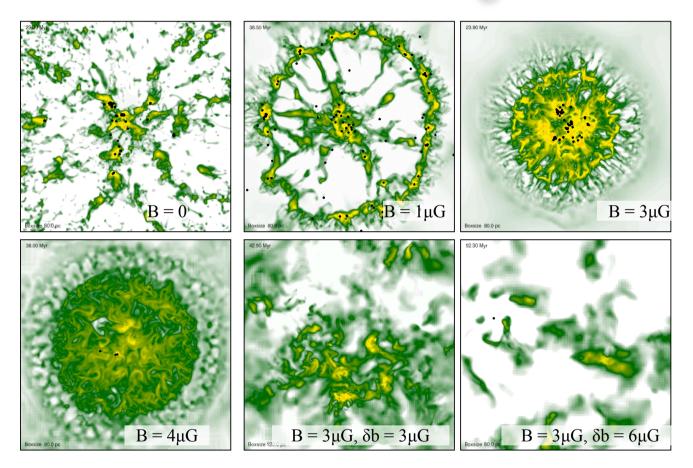

from Vazquez-Semadeni et al. (2007)

see studies by Banerjee et al., Heitsch et al., Hennebelle et al., Vazquez-Semadeni et al.

thermal instability + gravity creates complex molecular cloud structure:



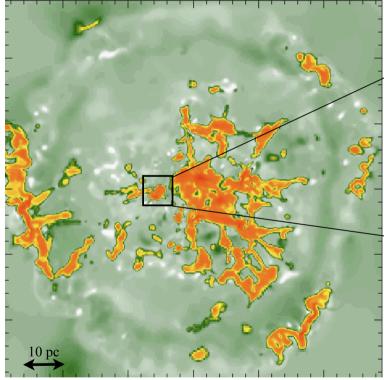
from Banerjee et al. (2008) (see also studies by Hennebelle et al. and Vazquez-Semadeni et al. and Heitsch et al.)


MC formation in convergent flows

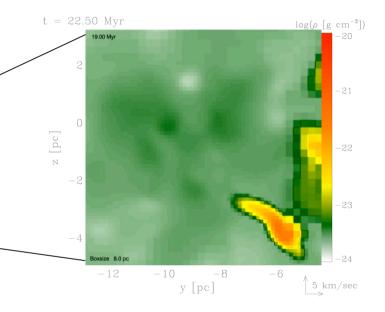
this simple set-up reproduces (and explains!) some of the main properties of MCs:

- highly patchy and clumpy
- high fraction of substructure
- cold dense molecular clumps coexist with warm atomic gas
- not a well bounded entity
- dynamical evolution (different star formation modes: from low mass to high mass SF?)

MC formation in convergent flows



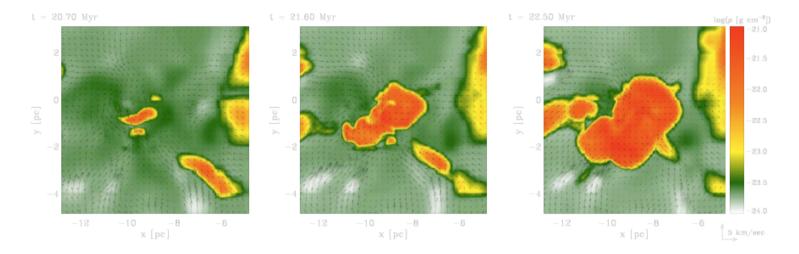
Morphology of the molecular cloud and star formation efficiency depends on the strength of the magnetic field


Banerjee et al. in prep.

MC formation in convergent flows

morphology and clump evolution

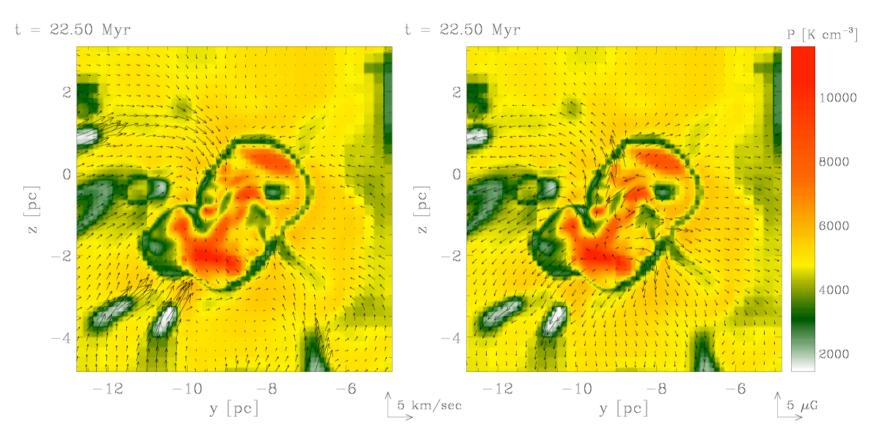
- MCs are inhomogeneous
- cold clumps embedded in warm atomic gas


- clumps growth by outward propagation of boundary layers and
- coalescence at later times

see studies by Banerjee et al., Heitsch et al., Hennebelle et al., Vazquez-Semadeni et al.

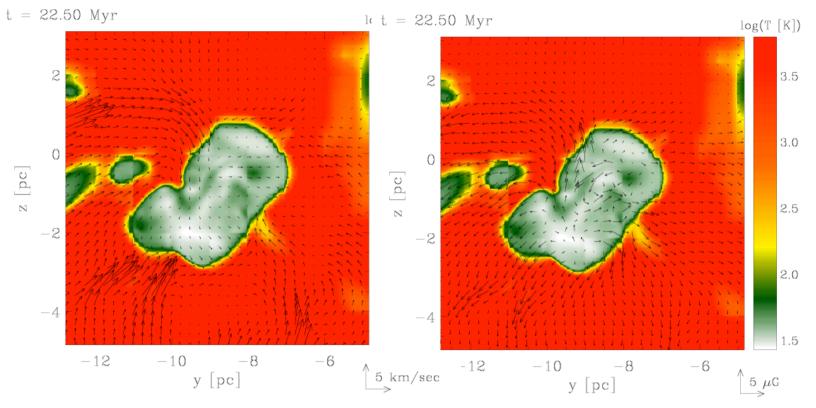
some results: growth of cores

Figure 2. Shows the time evolution of a typical clump which initially develops out of the thermally unstable WNM in shock layers of turbulent flows. A small cold condensate grows by outward propagation of its boundary layer. Coalescence and merging with nearby clumps further increases the size and mass of these clumps. The global gravitational potential of the proto-cloud enhances the merging probability with time. The images show 2D slices of the density (logarithmic colour scale) and the gas velocity (indicated as arrows) in the plane perpendicular to the large scale flows.

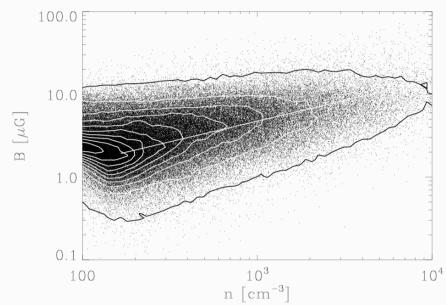

two phases of core growth:

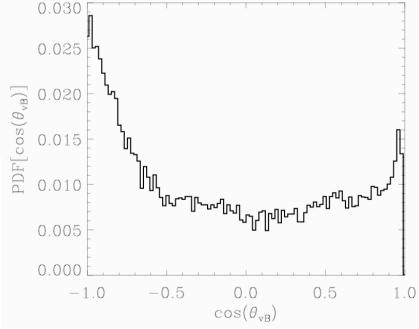
(1) by *outward propagation* of *boundary layer* → Jeans sub-critical phase
(2) *core mergers* → super-Jeans → gravitational collapse & star formation example: *Pipe nebula* ???

from Banerjee et al. (2008)



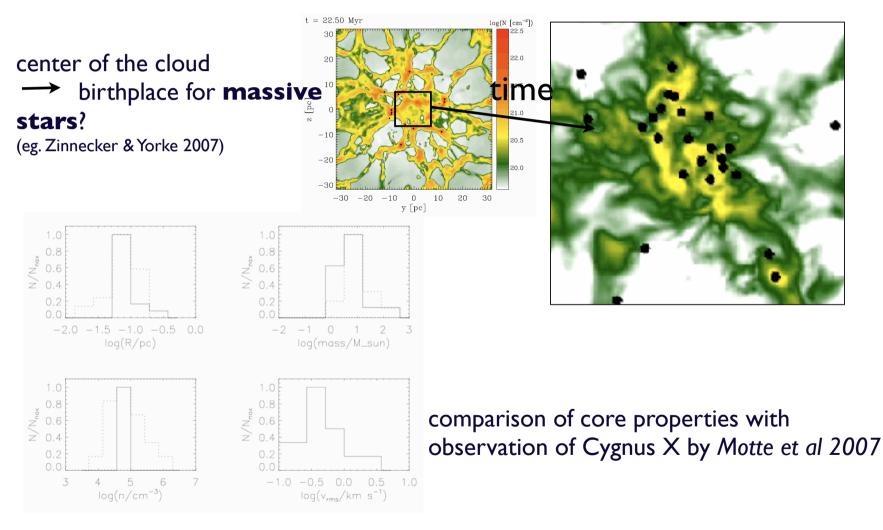
- cores roughly in pressure balance with surroudings
- relation between flow and magnetic field: mass flow mostly along field lines





- typical core densities $n \sim 2 5 \times 10^3 \text{ cm}^{-3}$
- typical core temperatures T ~ 30 50 K

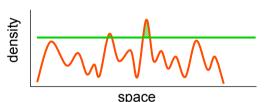
some results: statistical correlations


• strong correlation of gas streams and magnetic field lines

- large scatter of magnetic field strengths: sub- and super-critical cores exist
- median slope: $B \propto n^{0.5}$ (e.g. Crutcher 1999)

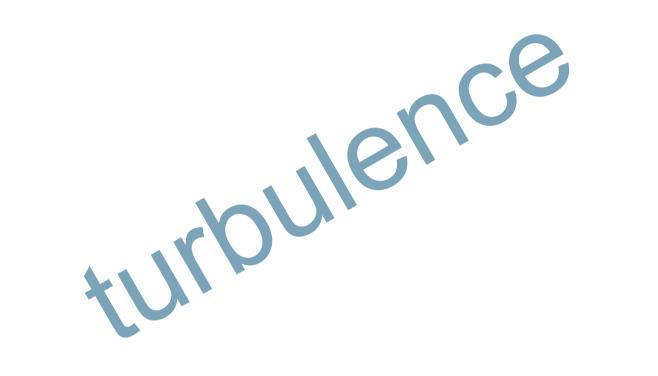
some results: loci of high-mass stars

global contraction phase

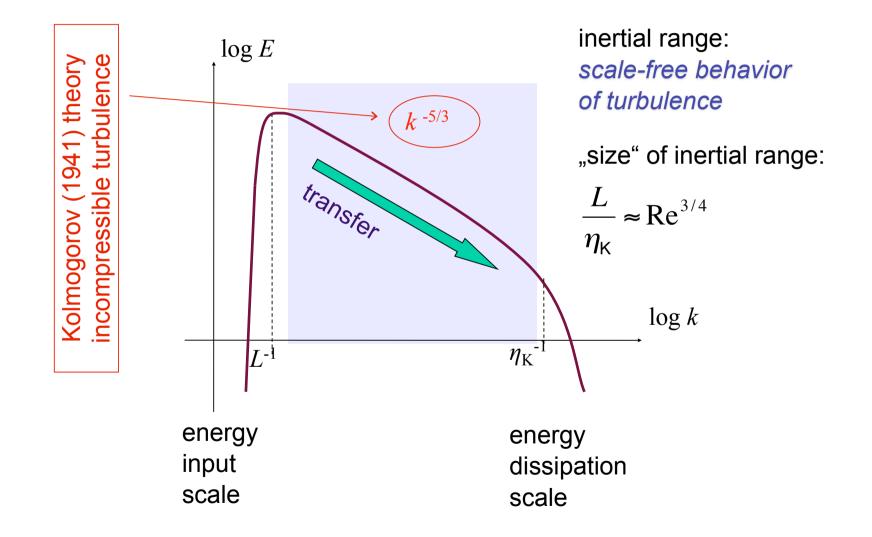


dynamical SF in a nutshell

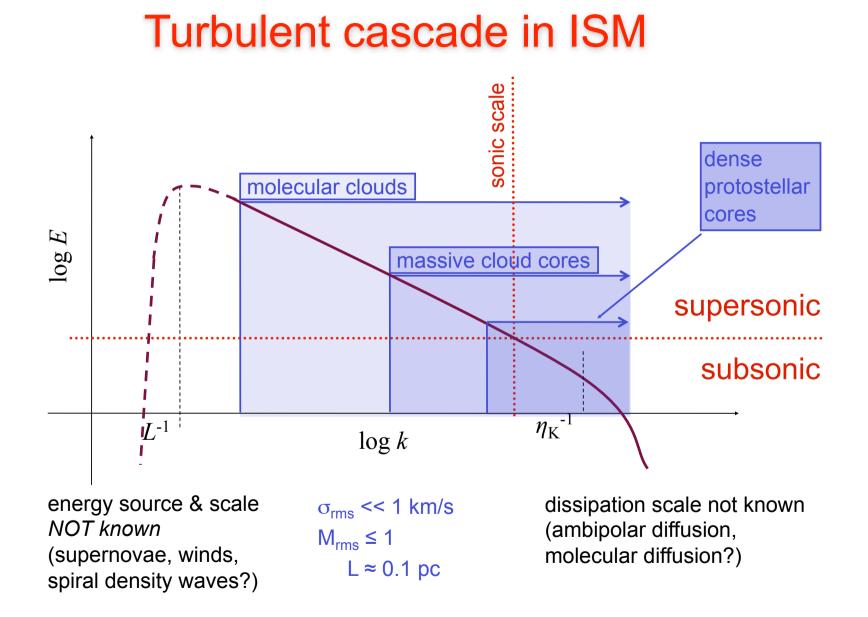
- interstellar gas is highly *inhomogeneous*
 - gravitational instability
 - thermal instability
 - *turbulent compression* (in shocks $\delta \rho / \rho \propto M^2$; in atomic gas: $M \approx 1...3$)
- cold molecular clouds can form rapidly in high-density regions at stagnation points of convergent large-scale flows
 - chemical phase transition: atomic → molecular
 - process is modulated by large-scale dynamics in the galaxy
- inside *cold clouds:* turbulence is highly supersonic ($M \approx 1...20$)
 - → *turbulence* creates large density contrast,
 - gravity selects for collapse


```
GRAVOTUBULENT FRAGMENTATION
```

 turbulent cascade: local compression within a cloud provokes collapse → formation of individual stars and star clusters

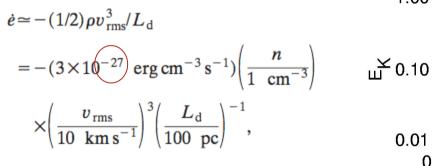


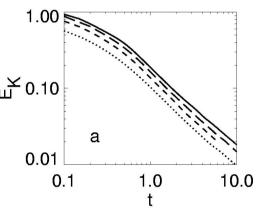




Turbulent cascade

Turbulent cascade



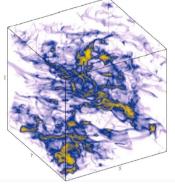


- seems to be driven on large scales, little difference between star-forming and non-SF clouds
 - ---> rules out internal sources
- opposals in the literature
 - supernovae
 - expanding HII regions / stellar winds / outflows
 - spiral density waves
 - magneto-rotational instability
 - new idea: accretion onto disk

some energetic arguments...

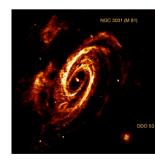
energy decay by turbulent dissipation:

(Mac Low et al. 1999)


decay timescale:

 $\tau_{\rm d} = e/\dot{e} \simeq L_{\rm d}/v_{\rm rms}$ = (9.8 Myr) $\left(\frac{L_{\rm d}}{100 \text{ pc}}\right) \left(\frac{v_{\rm rms}}{10 \text{ km s}^{-1}}\right)^{-1}$,

(from Mac Low & Klessen, 2004)


magneto-rotational instability:

$$\dot{e} = (3 \times 10^{-29}) \text{erg cm}^{-3} \text{s}^{-1}) \left(\frac{B}{3\mu \text{G}}\right)^2 \left(\frac{\Omega}{(220 \text{ Myr})^{-1}}\right).$$

(from Piotek & Ostriker 2005)

gravitational instability (spiral waves)

(from Walter et al. 2008)

$$\dot{e} \approx G(\Sigma_g/H)^2 \lambda^2 \Omega$$

$$\approx (4 \times 10^{-29} \text{ erg cm}^{-3} \text{ s}^{-1})$$

$$\times \left(\frac{\Sigma_g}{10M_{\odot} \text{ pc}^{-2}}\right)^2 \left(\frac{H}{100 \text{ pc}}\right)^{-2}$$

$$\times \left(\frac{\lambda}{100 \text{ pc}}\right)^2 \left(\frac{\Omega}{(220 \text{ Myr})^{-1}}\right),$$

(from Mac Low & Klessen, 2004)

protostellar outflows

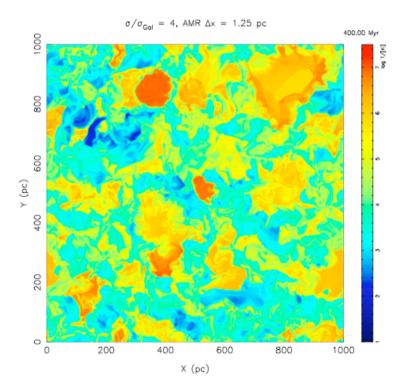
$$\dot{e} = \frac{1}{2} f_{\rm w} \eta_{\rm w} \frac{\dot{\Sigma}_{\ast}}{H} v_{\rm w}^2$$

$$\simeq (2 \times 10^{-28} \text{ erg cm}^{-3} \text{ s}^{-1}) \left(\frac{H}{200 \text{ pc}}\right)^{-1} \left(\frac{f_{\rm w}}{0.4}\right)$$

$$\times \left(\frac{v_{\rm w}}{200 \text{ km s}^{-1}}\right) \left(\frac{v_{\rm rms}}{10 \text{ km s}^{-1}}\right) \times \left(\frac{\dot{\Sigma}_{*}}{4.5 \times 10^{-9} M_{\odot} \text{ pc}^{-2} \text{ yr}^{-1}}\right),$$

(Li & Nakamura 2006 vs. Banerjee et al. 2008)

expanding HII regions


$$\begin{split} \dot{e} &= \frac{\langle \delta p \rangle \mathcal{N}(>1) v_i}{V t_i} \\ &= (3 \times 10^{-30}) \text{ erg s} ^{-3}) \\ &\times \left(\frac{N_{\text{H}}}{1.5 \times 10^{22} \text{ cm}^{-2}} \right)^{-3/14} \left(\frac{M_{cl}}{10^6 M_{\odot}} \right)^{1/14} \\ &\times \left(\frac{\langle M_* \rangle}{440 M_{\odot}} \right) \left(\frac{\mathcal{N}(>1)}{650} \right) \left(\frac{v_i}{10 \text{ km s}^{-1}} \right) \\ &\times \left(\frac{H_c}{100 \text{ pc}} \right)^{-1} \left(\frac{R_{sf}}{15 \text{ kpc}} \right)^{-2} \left(\frac{t_i}{18.5 \text{ Myr}} \right)^{-1} \end{split}$$

(note: different numbers by Matzner 2002

in star-forming parts of the disk, clearly SN provide enough energy to compensate for the decay of ISM turbulence.

BUT: what is outside the disk?

(distribution of temperature in SN driven disk turbulence, by de Avillez & Breitschwerdt 2004)

accretion driven turbulence

- thesis:
 - astrophysical objects *form* by *accretion* of ambient material
 - the kinetic energy associated with this process is a key agent driving internal turbulence.
 - this works on ALL scales:
 - galaxies
 - molecular clouds
 - protostellar accretion disks

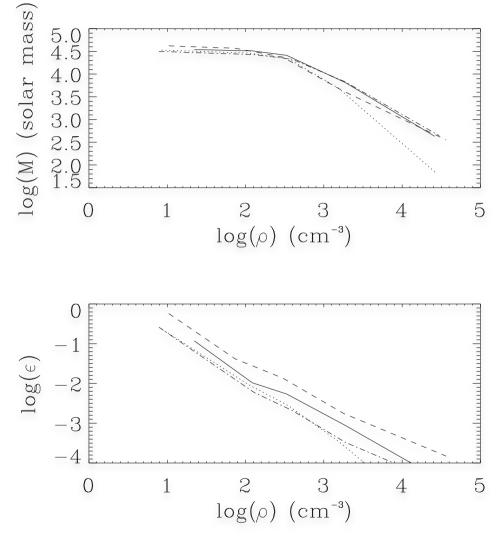
concept

• turbulence decays on a crossing time

$$\tau_{\rm d} \approx \frac{L_{\rm d}}{\sigma}$$
• energy decay rate $\dot{E}_{\rm decay} \approx \frac{E}{\tau_{\rm d}} = -\frac{1}{2} \frac{M\sigma^3}{L_{\rm d}}$

kinetic energy of infalling material

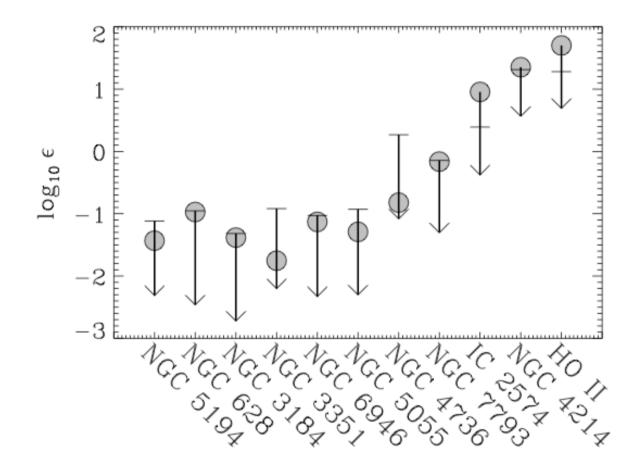
$$\dot{E}_{\rm in} = \frac{1}{2} \dot{M}_{\rm in} v_{\rm in}^2$$


• can both values match, modulo some efficiency?

$$\epsilon = \left| \frac{\dot{E}_{\text{decay}}}{\dot{E}_{\text{in}}} \right|$$

(Field et al.. 2008, MNRAS, 385, 181, Mac Low & Klessen 2004, RMP, 76, 125)

some estimates from convergent flow studies



application to galaxies

- underlying assumption
 - galaxy is in steady state
 - ---> accretion rate equals star formation rate
 - •what is the required efficiency for the method to work?
- study Milky Way and 11 THINGS
 - excellent observational data in HI: velocity dispersion, column density, rotation curve

11 THINGS galaxies

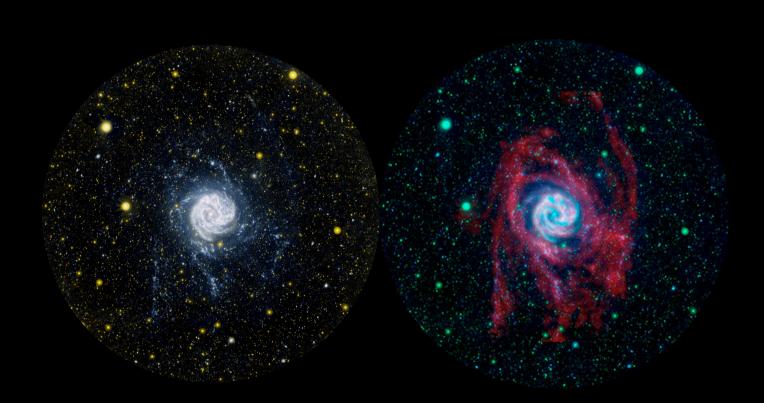
some further thoughts

method works for Milky Way type galaxies:

required efficiencies are ~1% only!

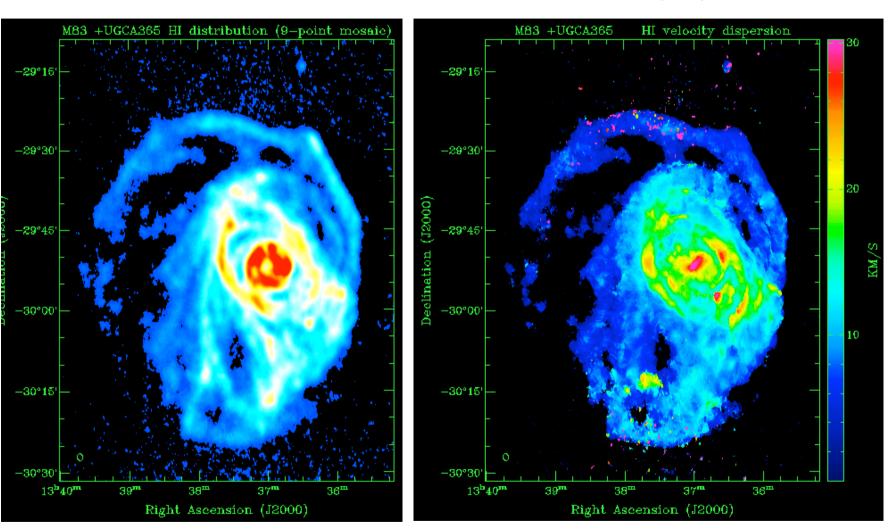
relevant for outer disks (extended HI disks)

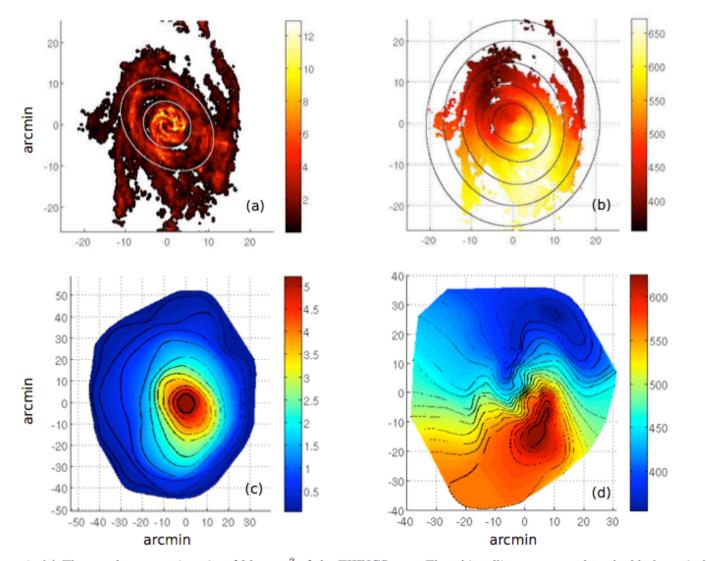
 there are not other sources of turbulence (certainly not stellar sources, maybe MRI)


works well for molecular clouds

• example clouds in the LMC (Fukui et al.)

optentially interesting for TTS


 model reproduces dM/dt - M relation (e.g Natta et al. 2006, Muzerolle et al. 2005, Muhanty et al. 2005, Calvet et al. 2004, etc.)



Do we actually see the flow through the disk? ANSWER: Yes in M83! M83 HI column

M83 HI velocity dispersion M83

M83

Figure 1. (a) The zeroth moment in units of $M_{\odot} \text{ pc}^{-2}$ of the THINGS map. The white ellipses correspond to the black vertical lines (R = 6', 12.75') shown in Fig. 3b, which define the region of the bright HI ring. (b) The first moment in units of km s⁻¹ of the THINGS map. Each black ellipse is a result of a tilted circular ring at radii 5', 10', 15', 20', 25', with a PA and an inclination extracted from the tilted-ring analysis. To associate structures with the corresponding radii, these ellipses serve as a coordinate system for the fiducial model with $V_{\text{max}} = 180 \text{ km s}^{-1}$. (c) Reconstructed HI intentisty map in units of column density $M_{\odot} \text{ pc}^{-2}$ of the Effelsberg map. (d) Reconstructed line-of-sight velocity, V_{los} [km s⁻¹], of the Effelsberg map. The contours shown in (c) and (d) are extracted from HB81 and are used to reconstruct the Effelsberg map.

M83

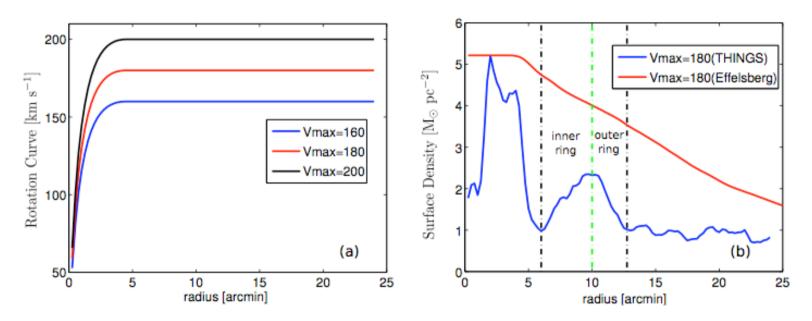


Figure 3. (a) The Brandt-type flat rotation curves as described in Eq. (13). Due to the low inclination of M83, we bracket the real situation with a range of different rotation curves and corresponding fit parameters from the tilted ring model. We assume n = 0.8, $R_{\text{max}} = 4.5'$, $V_{\text{max}} = 160, 180, 200 \text{ km s}^{-1}$. As suggested in HB81, we take the model with $V_{\text{max}} = 180$ as our fiducial case, which will then be justified in § 5. (b) The averaged surface density of the THINGS map (blue curve) and of the Effelsberg map (red curve). They are extracted from the fiducial model. The black vertical lines situated at 6' and 12.75' define the region of ring structure, which is also shown as the area enclosed by the white ellipses in Fig. 1a and the black ellipses in Fig. 7. The green vertical line marks the location of the density peak and further divides the ring into an inner ring and an outer ring.

M83

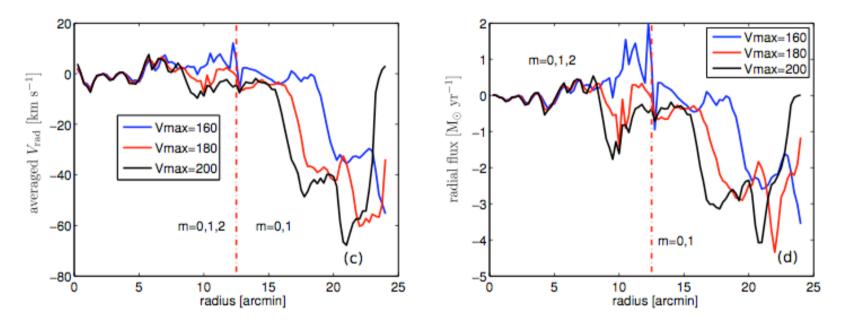


Figure 5. (a) PA and (b) inclination models used to infer radial motion of the gas in the THINGS map. (c) The inferred radial velocity. (d) The inferred radial mass flow. PA and inclination inside the vertical line (R = 12.5') are extracted from the THINGS map, while in the other part we extrapolate these quantities from the Effelsberg map. The Fourier coefficients are fitted for the harmonics m = 0, 1, 2 for the radial regime to the left of the vertical line, while only m = 0, 1 for the outer parts of the map. In the outer disk, the radial shift is due the different inclinations corresponding to the different models. In all models, the common features are the prominent radial inflow in the outer disk, epicyclic motion in the transition zone (where the HI is organized into a ring like structure, see also Fig. 7 and an indication of moderate radial inflow in the inner disk.

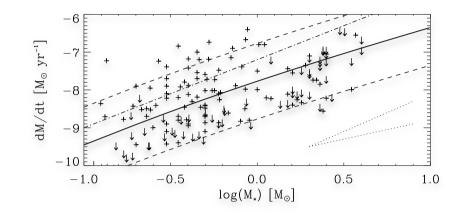


Fig. 7. Prediction of the accretion rate onto the disk as a function of the mass of the star. The solid line corresponds to a mean density of $\bar{n} = 100 \text{ cm}^{-3}$ while the two dashed lines are for $\bar{n} = 1000 \text{ cm}^{-3}$ (upper curve) and $\bar{n} = 10 \text{ cm}^{-3}$ (lower curve). To guide your eye the dotted lines indicate the slope of the relations $\dot{M} \propto M_*^2$ and $\dot{M} \propto M_*$. We compare with data from Calvet et al. (2004), Mohanty et al. (2005), Muzerolle et al. (2005), and Natta et al. (2006) as displayed in Figure 3 of Garcia Lopez et al. (2006), where crosses indicate detections and arrows upper limits. The dot-dashed line is the fit proposed by Natta et al. (2006).

Lecture 1+2: ISM dynamics

- ♀ formation of molecular clouds in convergent flows
 - ♀ chemistry
- ♀ origin of ISM turbulence