Star Formation: Stellar Birth Today and in the Early Universe

Ralf Klessen

Zentrum für Astronomie der Universität Heidelberg Institut für Theoretische Astrophysik

thanks to ...

... people in the group in Heidelberg:

Robi Banerjee, Simon Glover, Rahul Shetty, Sharanya Sur, Daniel Seifried, Milica Milosavljevic, Florian Mandl, Christian Baczynski, Rowan Smith, Gustavo Dopcke, Jonathan Downing, Jayanta Dutta, Faviola Molina, Christoph Federrath, Erik Bertram, Lukas Konstandin, Paul Clark, Stefan Schmeja, Ingo Berentzen, Thomas Peters, Hsiang-Hsu Wang

... many collaborators abroad!

- a simple cartoon picture of dynamic star formation theory
- some applications, open issues, and questions

decreasing spatial scales

stellar mass fuction

stars seem to follow a universal mass function at birth --> IMF

Orion, NGC 3603, 30 Doradus (Zinnecker & Yorke 2007)

(from A. Goodman)

scales to same scale

(from A. Goodman)

scales to same scale

velocity distribution in Perseus

image from Alyssa Goodman: COMPLETE survey

(movie from Christoph Federrath)

dynamical SF in a nutshell

- interstellar gas is highly inhomogeneous
 - gravitational instability
 - thermal instability
 - *turbulent compression* (in shocks $\delta \rho / \rho \propto M^2$; in atomic gas: $M \approx 1...3$)
- cold molecular clouds can form rapidly in high-density regions at stagnation points of convergent large-scale flows
 - chemical phase transition: atomic → molecular
 - process is *modulated* by large-scale *dynamics* in the galaxy
- inside *cold clouds:* turbulence is highly supersonic ($M \approx 1...20$)
 - → turbulence creates large density contrast, gravity selects for collapse

GRAVOTUBULENT FRAGMENTATION

turbulent cascade: local compression *within* a cloud provokes collapse → formation of individual *stars* and *star clusters*

(e.g. Mac Low & Klessen, 2004, Rev. Mod. Phys., 76, 125-194)

Density structure of MC's

molecular clouds are highly inhomogeneous

stars form in the densest and coldest parts of the cloud

 $\rho\text{-Ophiuchus cloud}$ seen in dust emission

let's focus on a cloud core like this one

Evolution of cloud cores

- How does this core evolve? Does it form one single massive star or cluster with mass distribution?
- Turbulent cascade "goes through" cloud core
 - --> NO scale separation possible
 - --> NO effective sound speed
- Turbulence is supersonic!
 - --> produces strong density contrasts: $\delta \rho / \rho \approx M^2$
 - --> with typical M \approx 10 --> $\delta \rho / \rho \approx$ 100!
- many of the shock-generated fluctuations are Jeans unstable and go into collapse
- --> expectation: core breaks up and forms a cluster of stars

Evolution of cloud cores

Formation and evolution of cores

What happens to distribution of cloud cores?

Two exteme cases:

(1) turbulence dominates energy budget:

 $\alpha = E_{kin} / |E_{pot}| > 1$

- --> individual cores do not interact
- --> collapse of individual cores dominates stellar mass growth
- --> loose cluster of low-mass stars
- (2) turbulence decays, i.e. gravity dominates: $\alpha = E_{kin} / |E_{pot}| < 1$
 - --> global contraction
 - --> core do interact while collapsing
 - --> competition influences mass growth
 - --> dense cluster with high-mass stars

turbulence creates a hierarchy of clumps

as turbulence decays locally, contraction sets in

as turbulence decays locally, contraction sets in

while region contracts, individual clumps collapse to form stars

while region contracts, individual clumps collapse to form stars

individual clumps collapse to form stars

individual clumps collapse to form stars

in *dense clusters*, clumps may merge while collapsing --> then contain multiple protostars

in *dense clusters*, clumps may merge while collapsing --> then contain multiple protostars

in *dense clusters*, clumps may merge while collapsing --> then contain multiple protostars

in *dense clusters*, competitive mass growth becomes important

in *dense clusters*, competitive mass growth becomes important

in dense clusters, N-body effects influence mass growth

become ejected --> accretion stops

feedback terminates star formation

result: star cluster, possibly with HII region

NGC 602 in the LMC: Hubble Heritage Image

result: star cluster with HII region

decreasing spatial scales

stellar masses

- distribution of stellar masses depends on
 - turbulent initial conditions
 --> mass spectrum of prestellar cloud cores
 - collapse and interaction of prestellar cores
 --> accretion and N-body effects
 - thermodynamic properties of gas
 --> balance between heating and cooling
 --> EOS (determines which cores go into collapse)
 - (proto) stellar feedback terminates star formation ionizing radiation, bipolar outflows, winds, SN

stellar masses

- distribution of stellar masses depends on
 - turbulent initial conditions
 --> mass spectrum of prestellar cloud cores
 - collapse and interaction of prestellar cores
 --> accretion and N-body effects
 - thermodynamic properties of gas
 --> balance between heating and cooling
 --> EOS (determines which cores go into collapse)
 - (proto) stellar feedback terminates star formation ionizing radiation, bipolar outflows, winds, SN

example: model of Orion cloud

"model" of Orion cloud: 15.000.000 SPH particles, $10^4 M_{sun}$ in 10 pc, mass resolution 0,02 M_{sun} , forms ~2.500 "stars" (sink particles)

isothermal EOS, top bound, bottom unbound

has clustered as well as distributed "star" formation

efficiency varies from 1% to 20%

develops full IMF (distribution of sink particle masses)

(Bonnell & Clark 2008)

example: model of Orion cloud

"model" of Orion cloud: 15.000.000 SPH particles, $10^4 M_{sun}$ in 10 pc, mass resolution 0,02 M_{sun} , forms ~2.500 "stars" (sink particles)

MASSIVE STARS

- form early in high-density gas clumps (cluster center)
- high accretion rates, maintained for a long time

LOW-MASS STARS

- form later as gas falls into potential well
- high relative velocities
- little subsequent accretion

example: model of Orion cloud

Dynamics of nascent star cluster

in dense clusters protostellar interaction may be come important!

Trajectories of protostars in a nascent dense cluster created by gravoturbulent fragmentation (from Klessen & Burkert 2000, ApJS, 128, 287)

stellar masses

- distribution of stellar masses depends on
 - turbulent initial conditions
 --> mass spectrum of prestellar cloud cores
 - collapse and interaction of prestellar cores
 --> accretion and N-body effects
 - thermodynamic properties of gas
 --> balance between heating and cooling
 --> EOS (determines which cores go into collapse)
 - (proto) stellar feedback terminates star formation ionizing radiation, bipolar outflows, winds, SN

stellar masses

(Kroupa 2002)

ONC (HCOO

standard

-1

0 log₁₀m [M₀]

- distribution of stellar masses depends on
 - turbulent initial conditions
 --> mass spectrum of prestellar cloud cores
 - collapse and interaction of prestellar cores
 --> accretion and N-body effects
 - thermodynamic properties of gas
 --> balance between heating and cooling
 --> EOS (determines which cores go into collapse)
 - (proto) stellar feedback terminates star formation ionizing radiation, bipolar outflows, winds, SN

application to first star formation

thermodynamics & fragmentation

degree of fragmentation depends on EOS!

polytropic EOS: $\mathbf{p} \propto \rho^{\gamma}$ $\gamma < \mathbf{I}$: dense cluster of low-mass stars $\gamma > \mathbf{I}$: isolated high-mass stars

(see Li et al. 2003; also Kawachi & Hanawa 1998, Larson 2003)

dependency on EOS

for $\gamma > 1$ it is suppressed \rightarrow formation of *isolated massive stars*

how does that work? (I) $\mathbf{p} \propto \rho^{\gamma} \rightarrow \rho \propto \mathbf{p}^{1/\gamma}$ (2) $M_{jeans} \propto \gamma^{3/2} \rho^{(3\gamma-4)/2}$ • $\gamma < I: \rightarrow$ large density excursion for given pressure $\rightarrow \langle M_{jeans} \rangle$ becomes small \rightarrow number of fluctuations with M > M_{jeans} is large • $\gamma > 1: \rightarrow$ small density excursion for given pressure $\rightarrow \langle M_{ieans} \rangle$ is large \rightarrow only few and massive clumps exceed M_{ieans}

EOS as function of metallicity

EOS as function of metallicity

EOS as function of metallicity

present-day star formation

⁽Omukai et al. 2005, Jappsen et al. 2005, Larson 2005)

present-day star formation

present-day star formation

logarithmic number density [cm⁻³]

(Jappsen et al. 2005)

(Jappsen et al. 2005)

IMF in nearby molecular clouds

transition: Pop III to Pop II.5

transition: Pop III to Pop II.5

FIG. 2.— Number density maps for a slice through the high density region. The image shows a sequence of zooms in the density structure in the gas immediately before the formation of the first protostar.

Dopcke et al. (2011, ApJ 729, L3)

FIG. 3.— Number density map showing a slice in the densest clump, and the sink formation time evolution, for the 40 million particles simulation, and $Z = 10^{-4} Z_{\odot}$. The box is 100AU x 100AU and the time is measured from the formation of the first sink particle.

Fig. 4.— Sink particle mass function at the end of the simulations. High and low resolution results and corresponding resolution limits are shown. To resolve the fragmentation, the mass resolution should be smaller than the Jeans mass at the point in the temperature-density diagram where dust and gas couple and the compressional heating starts to dominate over the dust cooling. At the time shown, around 5 M_{\odot} of gas had been accreted by the sink particles in each simulation.

red / blue: turbulence and rotation dark red / green: simple collapse

Dopcke et al. (2011, ApJ 729, L3)

dust induced fragmentation at $Z=10^{-5}$

dense cluster of low-mass protostars builds up:

- mass spectrum peaks below 1 M_{sun}
- cluster VERY dense $n_{stars} = 2.5 \times 10^9 \,\text{pc}^{-3}$
- fragmentation at density $n_{gas} = 10^{12} - 10^{13} \text{ cm}^{-3}$

(Clark et al. 2008, ApJ 672, 757)

dust induced fragmentation at $Z=10^{-5}$

dust induced fragmentation at $Z=10^{-5}$

dense cluster of low-mass protostars builds up:

- mass spectrum peaks below I M_{sun}
- cluster VERY dense $n_{stars} = 2.5 \times 10^9 \, pc^{-3}$

(plot from Salvadori et al. 2006, data from Frebel et al. 2005)

(Clark et al. 2008)

metal-free star formation

metal-free star formation

 most current numerical simulations of Pop III star formation predict very massive objects

(e.g. Abel et al. 2002, Yoshida et al. 2008, Bromm et al. 2009)

- similar for theoretical models (e.g. Tan & McKee 2004)
- there are some first hints of fragmentation, however (Turk et al. 2009, Stacy et al. 2010)

Figure 1 | **Projected gas distribution around a primordial protostar.** Shown is the gas density (colour-coded so that red denotes highest density) of a single object on different spatial scales. **a**, The large-scale gas distribution around the cosmological minihalo; **b**, a self-gravitating, star-forming cloud; **c**, the central part of the fully molecular core; and **d**, the final protostar. Reproduced by permission of the AAAS (from ref. 20).

(Yoshida et al. 2008, Science, 321, 669)

turbulence in Pop III halos

- star formation will depend on degree of turbulence in protogalactic halo
- speculation: differences in stellar mass function, just like in present-day star formation

(Greif et al. 2008)

multiple Pop III stars in halo

- parameter study with different strength of turbulence using SPH: study Pop III.1 and Pop III.2 case (Clark et al., 2011a, ApJ, 727, 110)
- 2 very high resolution studies of Pop III star formation in cosmological context
 - SPH: Clark et al. 2011b, Science, 311, 1040
 - Arepo: Greif et al. 2011a, ApJ, submitted (arXiv:1101.5491)
 - complementary approaches with interesting similarities and differences....

time after star formation $\left[yr \right]$

time after star formation [yr]

once again: thermodynamics

also Pop III.2 gas heats up above the CMB

--> weaker fragmentation!

FIG. 6.— Temperature as a function of number density for the Pop. III.1 (dark blue) and Pop. III.2 (light blue) $\Delta v_{\rm turb} = 0.1 c_{\rm s}$ simulations. In both cases, the curves denote the state of the cloud at the point just before the formation of the sink particle.

once again: thermodynamics

FIG. 8.— Accretion rates as a function of enclosed gas mass in the Pop. III.1 (upper lines; blue) and Pop. III.2 (lower lines; magenta) simulations, estimated as described in Section 4.1. Note that the sharp decline in the accretion rates for enclosed masses close to the initial cloud mass is an artifact of our problem setup; we would not expect to see this in a realistic Pop. III halo.

comparison of accretion rates...

Figure 1: Density evolution in a 120 AU region around the first protostar, showing the build-up of the protostellar disk and its eventual fragmentation. We also see 'wakes' in the low-density regions, produced by the previous passage of the spiral arms.

Figure 2: Radial profiles of the disk's physical properties, centered on the first protostellar core to form. The quantities are mass-weighted and taken from a slice through the midplane of the disk. In the lower right-hand plot we show the radial distribution of the disk's Toomre parameter, $Q = c_s \kappa / \pi G \Sigma$, where c_s is the sound speed and κ is the epicyclic frequency. Beause our disk is Keplerian, we adopted the standard simplification, and replaced κ with the orbital frequency. The molecular fraction is defined as the number density of hydrogen molecules $(n_{\rm H_2})$, divided by the number density of hydrogen nuclei (n), such that fully molecular gas has a value of 0.5

Figure 3: The mass transfer rate through the disk is denoted by the solid black line, while the mass infall rate through spherical shells with the specified radius is shown by the dark blue dashed line. The latter represents the total amount of material flowing through a given radius, and is thus a measure of the material flowing through *and onto* the disk at each radius. Both are shown at the onset of disk fragmentation. In the case of the disk accretion we have denoted annuli that are moving towards the protostar with blue dots, and those moving away in pink (further details can be found in Section 6 of the online material). The light blue dashed lines show the accretion rates expected from an 'alpha' (thin) disk model, where $\dot{M}(r) = 3\pi \alpha c_s(r) \Sigma(r) H(r)$, with two global values of alpha and where $c_s(r)$, $\Sigma(r)$, and H(r) are (respectively) the sound speed, surface density and disk thickness at radius r.

Figure 7: (a) Dominant heating and cooling processes in the gas that forms the second sink particle. (b) Upper line: ratio of the thermal timescale, t_{thermal} , to the free-fall timescale, t_{ff} , for the gas that forms the second sink particle. Periods when the gas is cooling are indicated in blue, while periods when the gas is heating are indicated in red. Lower line: ratio of t_{thermal} to the orbital timescale, t_{orbital} , for the same set of SPH particles (c) Temperature evolution of the gas that forms the second sink (d) Density evolution of the gas that forms the second sink

Arepo study: surface density at different times

one out of five halos

Arepo study: mass spectrum of fragments

primordial star formation

- - turbulence
 - thermodynamics
 - feedback
 - magnetic fields

to influence Pop III/II star formation.

- masses of Pop III stars still uncertain (surprises from new generation of high-resolution calculations that go beyond first collapse)
- disks unstable: Pop III stars should be binaries or part of small clusters

questions

- is claim of Pop III stars with $M \sim 0.5 M_{\odot}$ really justified?
 - stellar collisions
 - magnetic fields
 - radiative feedback
- how would we find them?
 - spectral features
- where should we look?
- what about magnetic fields?

decreasing spatial scales

B fields in the early universe?

- we know the universe is magnetized (now)
- knowledge about B-fields in the high-redshift universe is extremely uncertain
 - inflation / QCD phase transition / Biermann battery / Weibel instability
- they are thought to be extremely small
- however, THIS MAY BE WRONG!

small-scale turbulent dynamo

- *idea*: the small-scale turbulent dynamo can generate strong magnetic fields from very small seed fields
- approach: model collapse of primordial gas ---> formation of the first stars in low-mass halo at redshift z ~ 20
- method: solve ideal MHD equations with very high resolution
 - grid-based AMR code FLASH (effective resolution 65536³)

magnetic field structure

density structure

Field amplification during first collapse seems unavoidable.

QUESTIONS:

- Is it really the small scale dynamo?
- What is the saturation value? Can the field reach dynamically important strength?

analysis of magnetic field spectra

P(B)

analysis of magnetic field spectra

first attempts to calculate the saturation level.

Brandenburg & Subramanian 2005)

QUESTIONS: • Is this true in a proper cosmological context? • What does it mean for the formation of the first stars

questions

- small-scale turbulent dynamo is expected to operate during Pop III star formation
- process is fast (10⁴ x t_{ff}), so primordial halos may collapse with B-field at saturation level!
- simple models indicate saturation levels of ~10%
 --> larger values via αΩ dynamo?
- QUESTIONS:
 - does this hold for "proper" halo calculations (with chemistry and cosmological context)?
 - what is the strength of the seed magnetic field?

decreasing spatial scales

decreasing spatial scales

early universe

Galactic scale star formation

High-mass star formation: What set upper stellar mass limit? Can we see UC HII regions flicker?

First star formation: Are there still Pop III stars around? How can we see them? And where?

Magnetic fields in the primordial universe: Is there a minimum primordial field? What is the influence of B on Pop III star?

