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stellar mass fuction
stars seem to follow a universal 
mass function at birth --> IMF

(Kroupa 2002) Orion, NGC 3603, 30 Doradus 
(Zinnecker & Yorke 2007)



stellar masses
• distribution of stellar masses depends on

- turbulent initial conditions 
--> mass spectrum of prestellar cloud cores

- collapse and interaction of prestellar cores
--> accretion and N-body effects

- thermodynamic properties of gas
--> balance between heating and cooling
--> EOS (determines which cores go into collapse)

- (proto) stellar feedback terminates star formation
ionizing radiation, bipolar outflows, winds, SN

(Kroupa 2002)
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application to early star formation

(Kroupa 2002)



thermodynamics & fragmentation

degree of fragmentation depends on EOS!

polytropic EOS: p ∝ργ
γ<1: dense cluster of low-mass stars
γ>1: isolated high-mass stars
(see Li et al. 2003; also Kawachi & Hanawa 1998, Larson 2003)



dependency on EOS

(from Li, Klessen, & Mac Low 2003, ApJ, 592, 975)

γ=0.2 γ=1.0 γ=1.2

for γ<1 fragmentation is enhanced  cluster of low-mass stars
for γ>1 it is suppressed  formation of isolated massive stars



 (1)  p ∝ ργ        ρ ∝ p1/ γ 

 (2)  Mjeans ∝ γ3/2 ρ(3γ-4)/2 

how does that work?

• γ<1:  large density excursion for given pressure 
	

        〈Mjeans〉 becomes small

   number of fluctuations with M > Mjeans is large

• γ>1:   small density excursion for given pressure
   〈Mjeans〉 is large
   only few and massive clumps exceed Mjeans
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Figure 1. Evolution of temperatures in prestellar cloud cores with metallicities
Z/Z! = 0, 10−6, 10−5, 10−4, 10−3, 10−2, 10−1, and 1, as functions of the
number density, which is calculated by one-zone models. The dashed lines
indicate the constant Jeans masses. For those above 102 M! (below 1 M!), the
gas is assumed to be fully atomic (molecular) in drawing those lines.
(A color version of this figure is available in the online journal.)

3. PRESTELLAR COLLAPSE

Figure 2 presents the temperature evolution at the center of
the prestellar cores as a function of the number density. The
overall evolution is quite similar to that calculated by the one-
zone model (Figure 1), justifying the one-zone treatment for
the core evolution. There are, however, small disagreements,
in particular, at high densities and for low-metallicity cases.
We defer detailed discussion on these differences to later in
Section 3.4, but here describe which thermal processes control
the temperature evolution at each metallicity. The contribution
to the cooling and heating rates by individual processes are
presented in Figure 3 for different metallicities. This should be
compared with Figure 2 of O05, where similar plots for the
one-zone models are presented. In Figure 5, the effective ratio
of specific heat at the center, γ = d lnp/d lnρ, which gives
the variation of pressure in response to the density variation,
is shown for those cases. Note that γ − 1 equals the gradient
of the curve in Figure 2 for constant molecular weight. The
effective ratio of specific heat is an important index to examine
the dynamical response of self-gravitating clouds to thermal
evolution. For example, the clouds easily fragment as long as
γ < 1, while fragmentation is strongly prohibited for γ > 1 (Li
et al. 2003). Another critical value is γ = 4/3. If γ exceeds
this value, the dynamical collapse is halted as the pressure
overcoming the gravity, and a hydrostatic object is formed.

3.1. Thermal Evolution in the Metal-free Case

In this section, we review thermal evolution of the cloud core
of a metal-free gas. We then describe the effects of metallicity
later in Section 3.2. We focus on deviations from the metal-free
case. In the case of metallicity [M/H] = −6, metallicity effects
are so small that the temperature evolution is almost identical to
the metal-free one except for a slight offset at highest densities
(!1020 cm−3).

Let us summarize here the formation processes of H2, which
play a crucial role in the thermal evolution. The evolution of H2
concentrations is presented in Figure 4, along with those in the
cases with metals. Below ∼108 cm−3, H2 is formed by the H−
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Figure 2. Evolution of temperatures at the center of cloud cores during the
prestellar collapse for various metallicities. This is calculated by one-zone
model until 104 cm−3 (dotted vertical line) and by hydrodynamical models
for the higher density. The constant Jeans masses are indicated by the dashed
lines.
(A color version of this figure is available in the online journal.)

channel:

H + e → H− + γ , (9)
H− + H → H2 + e, (10)

catalyzed by a small amount of remaining electrons. With
their recombination proceeding, the H− channel is quenched
and the amount of formed H2 saturates at ∼10−3 (Figure 4).
After this plateau, the H2 abundance begins to increase again at
∼108 cm−3 via the three-body H2 formation:

2H + H → H2 + H (11)

and
2H + H2 → H2 + H2. (12)

All the hydrogen is converted to the molecular form via this
channel by the density ∼1011 cm−3.

Next, let us see the cooling and heating processes
(Figure 3(a)). Until very high density ∼1019–1020 cm−3 is
reached, cooling and heating are always almost balanced, so
that the evolution is nearly isothermal with temperature differ-
ing only by a small factor whereas density increases by many
orders of magnitudes. The effective ratio of specific heat γ re-
mains below 4/3, but is above 1 in this period except for brief
intervals around 109 cm−3 and 1011 cm−3, where γ falls slightly
below unity (Figure 5(a)). The heating is owing to the compres-
sion, but for 109–1012 cm−3, where the H2-formation heating
associated with the three-body reaction (Equation (11) below)
dominates. For the cooling, the H2-line emission contributes
most until ∼1013 cm−3, although some lines become optically
thick at ∼1011 cm−3 and this suppresses the cooling rate grad-
ually toward a higher density. The steep decline of the H2 line-
cooling rate at 1016 cm−3 is due to the H2 collision-induced
continuum absorption. Another molecular species in the metal-
free gas, HD, is known to play an important role in cooling
if a metal-free gas is once ionized (Uehara & Inutsuka 2000;
Nagakura & Omukai 2005; Greif & Bromm 2006; Yoshida et al.
2007; McGreer & Bryan 2008). In our case, however, it only
contributes comparably to H2 at a brief period at ∼104 cm−3.

With gradual increase of temperature, the balance of chemical
equilibrium between the H2 formation (Equation (11)) and its

EOS as function of metallicity

(Omukai et al. 2005, 2010)
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3. PRESTELLAR COLLAPSE

Figure 2 presents the temperature evolution at the center of
the prestellar cores as a function of the number density. The
overall evolution is quite similar to that calculated by the one-
zone model (Figure 1), justifying the one-zone treatment for
the core evolution. There are, however, small disagreements,
in particular, at high densities and for low-metallicity cases.
We defer detailed discussion on these differences to later in
Section 3.4, but here describe which thermal processes control
the temperature evolution at each metallicity. The contribution
to the cooling and heating rates by individual processes are
presented in Figure 3 for different metallicities. This should be
compared with Figure 2 of O05, where similar plots for the
one-zone models are presented. In Figure 5, the effective ratio
of specific heat at the center, γ = d lnp/d lnρ, which gives
the variation of pressure in response to the density variation,
is shown for those cases. Note that γ − 1 equals the gradient
of the curve in Figure 2 for constant molecular weight. The
effective ratio of specific heat is an important index to examine
the dynamical response of self-gravitating clouds to thermal
evolution. For example, the clouds easily fragment as long as
γ < 1, while fragmentation is strongly prohibited for γ > 1 (Li
et al. 2003). Another critical value is γ = 4/3. If γ exceeds
this value, the dynamical collapse is halted as the pressure
overcoming the gravity, and a hydrostatic object is formed.

3.1. Thermal Evolution in the Metal-free Case

In this section, we review thermal evolution of the cloud core
of a metal-free gas. We then describe the effects of metallicity
later in Section 3.2. We focus on deviations from the metal-free
case. In the case of metallicity [M/H] = −6, metallicity effects
are so small that the temperature evolution is almost identical to
the metal-free one except for a slight offset at highest densities
(!1020 cm−3).

Let us summarize here the formation processes of H2, which
play a crucial role in the thermal evolution. The evolution of H2
concentrations is presented in Figure 4, along with those in the
cases with metals. Below ∼108 cm−3, H2 is formed by the H−
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channel:

H + e → H− + γ , (9)
H− + H → H2 + e, (10)

catalyzed by a small amount of remaining electrons. With
their recombination proceeding, the H− channel is quenched
and the amount of formed H2 saturates at ∼10−3 (Figure 4).
After this plateau, the H2 abundance begins to increase again at
∼108 cm−3 via the three-body H2 formation:

2H + H → H2 + H (11)

and
2H + H2 → H2 + H2. (12)

All the hydrogen is converted to the molecular form via this
channel by the density ∼1011 cm−3.

Next, let us see the cooling and heating processes
(Figure 3(a)). Until very high density ∼1019–1020 cm−3 is
reached, cooling and heating are always almost balanced, so
that the evolution is nearly isothermal with temperature differ-
ing only by a small factor whereas density increases by many
orders of magnitudes. The effective ratio of specific heat γ re-
mains below 4/3, but is above 1 in this period except for brief
intervals around 109 cm−3 and 1011 cm−3, where γ falls slightly
below unity (Figure 5(a)). The heating is owing to the compres-
sion, but for 109–1012 cm−3, where the H2-formation heating
associated with the three-body reaction (Equation (11) below)
dominates. For the cooling, the H2-line emission contributes
most until ∼1013 cm−3, although some lines become optically
thick at ∼1011 cm−3 and this suppresses the cooling rate grad-
ually toward a higher density. The steep decline of the H2 line-
cooling rate at 1016 cm−3 is due to the H2 collision-induced
continuum absorption. Another molecular species in the metal-
free gas, HD, is known to play an important role in cooling
if a metal-free gas is once ionized (Uehara & Inutsuka 2000;
Nagakura & Omukai 2005; Greif & Bromm 2006; Yoshida et al.
2007; McGreer & Bryan 2008). In our case, however, it only
contributes comparably to H2 at a brief period at ∼104 cm−3.

With gradual increase of temperature, the balance of chemical
equilibrium between the H2 formation (Equation (11)) and its

EOS as function of metallicity

(Omukai et al. 2005, 2010)
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gas is assumed to be fully atomic (molecular) in drawing those lines.
(A color version of this figure is available in the online journal.)

3. PRESTELLAR COLLAPSE

Figure 2 presents the temperature evolution at the center of
the prestellar cores as a function of the number density. The
overall evolution is quite similar to that calculated by the one-
zone model (Figure 1), justifying the one-zone treatment for
the core evolution. There are, however, small disagreements,
in particular, at high densities and for low-metallicity cases.
We defer detailed discussion on these differences to later in
Section 3.4, but here describe which thermal processes control
the temperature evolution at each metallicity. The contribution
to the cooling and heating rates by individual processes are
presented in Figure 3 for different metallicities. This should be
compared with Figure 2 of O05, where similar plots for the
one-zone models are presented. In Figure 5, the effective ratio
of specific heat at the center, γ = d lnp/d lnρ, which gives
the variation of pressure in response to the density variation,
is shown for those cases. Note that γ − 1 equals the gradient
of the curve in Figure 2 for constant molecular weight. The
effective ratio of specific heat is an important index to examine
the dynamical response of self-gravitating clouds to thermal
evolution. For example, the clouds easily fragment as long as
γ < 1, while fragmentation is strongly prohibited for γ > 1 (Li
et al. 2003). Another critical value is γ = 4/3. If γ exceeds
this value, the dynamical collapse is halted as the pressure
overcoming the gravity, and a hydrostatic object is formed.

3.1. Thermal Evolution in the Metal-free Case

In this section, we review thermal evolution of the cloud core
of a metal-free gas. We then describe the effects of metallicity
later in Section 3.2. We focus on deviations from the metal-free
case. In the case of metallicity [M/H] = −6, metallicity effects
are so small that the temperature evolution is almost identical to
the metal-free one except for a slight offset at highest densities
(!1020 cm−3).

Let us summarize here the formation processes of H2, which
play a crucial role in the thermal evolution. The evolution of H2
concentrations is presented in Figure 4, along with those in the
cases with metals. Below ∼108 cm−3, H2 is formed by the H−
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Figure 2. Evolution of temperatures at the center of cloud cores during the
prestellar collapse for various metallicities. This is calculated by one-zone
model until 104 cm−3 (dotted vertical line) and by hydrodynamical models
for the higher density. The constant Jeans masses are indicated by the dashed
lines.
(A color version of this figure is available in the online journal.)

channel:

H + e → H− + γ , (9)
H− + H → H2 + e, (10)

catalyzed by a small amount of remaining electrons. With
their recombination proceeding, the H− channel is quenched
and the amount of formed H2 saturates at ∼10−3 (Figure 4).
After this plateau, the H2 abundance begins to increase again at
∼108 cm−3 via the three-body H2 formation:

2H + H → H2 + H (11)

and
2H + H2 → H2 + H2. (12)

All the hydrogen is converted to the molecular form via this
channel by the density ∼1011 cm−3.

Next, let us see the cooling and heating processes
(Figure 3(a)). Until very high density ∼1019–1020 cm−3 is
reached, cooling and heating are always almost balanced, so
that the evolution is nearly isothermal with temperature differ-
ing only by a small factor whereas density increases by many
orders of magnitudes. The effective ratio of specific heat γ re-
mains below 4/3, but is above 1 in this period except for brief
intervals around 109 cm−3 and 1011 cm−3, where γ falls slightly
below unity (Figure 5(a)). The heating is owing to the compres-
sion, but for 109–1012 cm−3, where the H2-formation heating
associated with the three-body reaction (Equation (11) below)
dominates. For the cooling, the H2-line emission contributes
most until ∼1013 cm−3, although some lines become optically
thick at ∼1011 cm−3 and this suppresses the cooling rate grad-
ually toward a higher density. The steep decline of the H2 line-
cooling rate at 1016 cm−3 is due to the H2 collision-induced
continuum absorption. Another molecular species in the metal-
free gas, HD, is known to play an important role in cooling
if a metal-free gas is once ionized (Uehara & Inutsuka 2000;
Nagakura & Omukai 2005; Greif & Bromm 2006; Yoshida et al.
2007; McGreer & Bryan 2008). In our case, however, it only
contributes comparably to H2 at a brief period at ∼104 cm−3.

With gradual increase of temperature, the balance of chemical
equilibrium between the H2 formation (Equation (11)) and its

EOS as function of metallicity

(Omukai et al. 2005, 2010)
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3. PRESTELLAR COLLAPSE

Figure 2 presents the temperature evolution at the center of
the prestellar cores as a function of the number density. The
overall evolution is quite similar to that calculated by the one-
zone model (Figure 1), justifying the one-zone treatment for
the core evolution. There are, however, small disagreements,
in particular, at high densities and for low-metallicity cases.
We defer detailed discussion on these differences to later in
Section 3.4, but here describe which thermal processes control
the temperature evolution at each metallicity. The contribution
to the cooling and heating rates by individual processes are
presented in Figure 3 for different metallicities. This should be
compared with Figure 2 of O05, where similar plots for the
one-zone models are presented. In Figure 5, the effective ratio
of specific heat at the center, γ = d lnp/d lnρ, which gives
the variation of pressure in response to the density variation,
is shown for those cases. Note that γ − 1 equals the gradient
of the curve in Figure 2 for constant molecular weight. The
effective ratio of specific heat is an important index to examine
the dynamical response of self-gravitating clouds to thermal
evolution. For example, the clouds easily fragment as long as
γ < 1, while fragmentation is strongly prohibited for γ > 1 (Li
et al. 2003). Another critical value is γ = 4/3. If γ exceeds
this value, the dynamical collapse is halted as the pressure
overcoming the gravity, and a hydrostatic object is formed.

3.1. Thermal Evolution in the Metal-free Case

In this section, we review thermal evolution of the cloud core
of a metal-free gas. We then describe the effects of metallicity
later in Section 3.2. We focus on deviations from the metal-free
case. In the case of metallicity [M/H] = −6, metallicity effects
are so small that the temperature evolution is almost identical to
the metal-free one except for a slight offset at highest densities
(!1020 cm−3).

Let us summarize here the formation processes of H2, which
play a crucial role in the thermal evolution. The evolution of H2
concentrations is presented in Figure 4, along with those in the
cases with metals. Below ∼108 cm−3, H2 is formed by the H−
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prestellar collapse for various metallicities. This is calculated by one-zone
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channel:

H + e → H− + γ , (9)
H− + H → H2 + e, (10)

catalyzed by a small amount of remaining electrons. With
their recombination proceeding, the H− channel is quenched
and the amount of formed H2 saturates at ∼10−3 (Figure 4).
After this plateau, the H2 abundance begins to increase again at
∼108 cm−3 via the three-body H2 formation:

2H + H → H2 + H (11)

and
2H + H2 → H2 + H2. (12)

All the hydrogen is converted to the molecular form via this
channel by the density ∼1011 cm−3.

Next, let us see the cooling and heating processes
(Figure 3(a)). Until very high density ∼1019–1020 cm−3 is
reached, cooling and heating are always almost balanced, so
that the evolution is nearly isothermal with temperature differ-
ing only by a small factor whereas density increases by many
orders of magnitudes. The effective ratio of specific heat γ re-
mains below 4/3, but is above 1 in this period except for brief
intervals around 109 cm−3 and 1011 cm−3, where γ falls slightly
below unity (Figure 5(a)). The heating is owing to the compres-
sion, but for 109–1012 cm−3, where the H2-formation heating
associated with the three-body reaction (Equation (11) below)
dominates. For the cooling, the H2-line emission contributes
most until ∼1013 cm−3, although some lines become optically
thick at ∼1011 cm−3 and this suppresses the cooling rate grad-
ually toward a higher density. The steep decline of the H2 line-
cooling rate at 1016 cm−3 is due to the H2 collision-induced
continuum absorption. Another molecular species in the metal-
free gas, HD, is known to play an important role in cooling
if a metal-free gas is once ionized (Uehara & Inutsuka 2000;
Nagakura & Omukai 2005; Greif & Bromm 2006; Yoshida et al.
2007; McGreer & Bryan 2008). In our case, however, it only
contributes comparably to H2 at a brief period at ∼104 cm−3.

With gradual increase of temperature, the balance of chemical
equilibrium between the H2 formation (Equation (11)) and its

EOS as function of metallicity

(Omukai et al. 2005, 2010)
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3. PRESTELLAR COLLAPSE

Figure 2 presents the temperature evolution at the center of
the prestellar cores as a function of the number density. The
overall evolution is quite similar to that calculated by the one-
zone model (Figure 1), justifying the one-zone treatment for
the core evolution. There are, however, small disagreements,
in particular, at high densities and for low-metallicity cases.
We defer detailed discussion on these differences to later in
Section 3.4, but here describe which thermal processes control
the temperature evolution at each metallicity. The contribution
to the cooling and heating rates by individual processes are
presented in Figure 3 for different metallicities. This should be
compared with Figure 2 of O05, where similar plots for the
one-zone models are presented. In Figure 5, the effective ratio
of specific heat at the center, γ = d lnp/d lnρ, which gives
the variation of pressure in response to the density variation,
is shown for those cases. Note that γ − 1 equals the gradient
of the curve in Figure 2 for constant molecular weight. The
effective ratio of specific heat is an important index to examine
the dynamical response of self-gravitating clouds to thermal
evolution. For example, the clouds easily fragment as long as
γ < 1, while fragmentation is strongly prohibited for γ > 1 (Li
et al. 2003). Another critical value is γ = 4/3. If γ exceeds
this value, the dynamical collapse is halted as the pressure
overcoming the gravity, and a hydrostatic object is formed.

3.1. Thermal Evolution in the Metal-free Case

In this section, we review thermal evolution of the cloud core
of a metal-free gas. We then describe the effects of metallicity
later in Section 3.2. We focus on deviations from the metal-free
case. In the case of metallicity [M/H] = −6, metallicity effects
are so small that the temperature evolution is almost identical to
the metal-free one except for a slight offset at highest densities
(!1020 cm−3).

Let us summarize here the formation processes of H2, which
play a crucial role in the thermal evolution. The evolution of H2
concentrations is presented in Figure 4, along with those in the
cases with metals. Below ∼108 cm−3, H2 is formed by the H−
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Figure 2. Evolution of temperatures at the center of cloud cores during the
prestellar collapse for various metallicities. This is calculated by one-zone
model until 104 cm−3 (dotted vertical line) and by hydrodynamical models
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lines.
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channel:

H + e → H− + γ , (9)
H− + H → H2 + e, (10)

catalyzed by a small amount of remaining electrons. With
their recombination proceeding, the H− channel is quenched
and the amount of formed H2 saturates at ∼10−3 (Figure 4).
After this plateau, the H2 abundance begins to increase again at
∼108 cm−3 via the three-body H2 formation:

2H + H → H2 + H (11)

and
2H + H2 → H2 + H2. (12)

All the hydrogen is converted to the molecular form via this
channel by the density ∼1011 cm−3.

Next, let us see the cooling and heating processes
(Figure 3(a)). Until very high density ∼1019–1020 cm−3 is
reached, cooling and heating are always almost balanced, so
that the evolution is nearly isothermal with temperature differ-
ing only by a small factor whereas density increases by many
orders of magnitudes. The effective ratio of specific heat γ re-
mains below 4/3, but is above 1 in this period except for brief
intervals around 109 cm−3 and 1011 cm−3, where γ falls slightly
below unity (Figure 5(a)). The heating is owing to the compres-
sion, but for 109–1012 cm−3, where the H2-formation heating
associated with the three-body reaction (Equation (11) below)
dominates. For the cooling, the H2-line emission contributes
most until ∼1013 cm−3, although some lines become optically
thick at ∼1011 cm−3 and this suppresses the cooling rate grad-
ually toward a higher density. The steep decline of the H2 line-
cooling rate at 1016 cm−3 is due to the H2 collision-induced
continuum absorption. Another molecular species in the metal-
free gas, HD, is known to play an important role in cooling
if a metal-free gas is once ionized (Uehara & Inutsuka 2000;
Nagakura & Omukai 2005; Greif & Bromm 2006; Yoshida et al.
2007; McGreer & Bryan 2008). In our case, however, it only
contributes comparably to H2 at a brief period at ∼104 cm−3.

With gradual increase of temperature, the balance of chemical
equilibrium between the H2 formation (Equation (11)) and its

EOS as function of metallicity

(Omukai et al. 2005, 2010)
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3. PRESTELLAR COLLAPSE

Figure 2 presents the temperature evolution at the center of
the prestellar cores as a function of the number density. The
overall evolution is quite similar to that calculated by the one-
zone model (Figure 1), justifying the one-zone treatment for
the core evolution. There are, however, small disagreements,
in particular, at high densities and for low-metallicity cases.
We defer detailed discussion on these differences to later in
Section 3.4, but here describe which thermal processes control
the temperature evolution at each metallicity. The contribution
to the cooling and heating rates by individual processes are
presented in Figure 3 for different metallicities. This should be
compared with Figure 2 of O05, where similar plots for the
one-zone models are presented. In Figure 5, the effective ratio
of specific heat at the center, γ = d lnp/d lnρ, which gives
the variation of pressure in response to the density variation,
is shown for those cases. Note that γ − 1 equals the gradient
of the curve in Figure 2 for constant molecular weight. The
effective ratio of specific heat is an important index to examine
the dynamical response of self-gravitating clouds to thermal
evolution. For example, the clouds easily fragment as long as
γ < 1, while fragmentation is strongly prohibited for γ > 1 (Li
et al. 2003). Another critical value is γ = 4/3. If γ exceeds
this value, the dynamical collapse is halted as the pressure
overcoming the gravity, and a hydrostatic object is formed.

3.1. Thermal Evolution in the Metal-free Case

In this section, we review thermal evolution of the cloud core
of a metal-free gas. We then describe the effects of metallicity
later in Section 3.2. We focus on deviations from the metal-free
case. In the case of metallicity [M/H] = −6, metallicity effects
are so small that the temperature evolution is almost identical to
the metal-free one except for a slight offset at highest densities
(!1020 cm−3).

Let us summarize here the formation processes of H2, which
play a crucial role in the thermal evolution. The evolution of H2
concentrations is presented in Figure 4, along with those in the
cases with metals. Below ∼108 cm−3, H2 is formed by the H−
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Figure 2. Evolution of temperatures at the center of cloud cores during the
prestellar collapse for various metallicities. This is calculated by one-zone
model until 104 cm−3 (dotted vertical line) and by hydrodynamical models
for the higher density. The constant Jeans masses are indicated by the dashed
lines.
(A color version of this figure is available in the online journal.)

channel:

H + e → H− + γ , (9)
H− + H → H2 + e, (10)

catalyzed by a small amount of remaining electrons. With
their recombination proceeding, the H− channel is quenched
and the amount of formed H2 saturates at ∼10−3 (Figure 4).
After this plateau, the H2 abundance begins to increase again at
∼108 cm−3 via the three-body H2 formation:

2H + H → H2 + H (11)

and
2H + H2 → H2 + H2. (12)

All the hydrogen is converted to the molecular form via this
channel by the density ∼1011 cm−3.

Next, let us see the cooling and heating processes
(Figure 3(a)). Until very high density ∼1019–1020 cm−3 is
reached, cooling and heating are always almost balanced, so
that the evolution is nearly isothermal with temperature differ-
ing only by a small factor whereas density increases by many
orders of magnitudes. The effective ratio of specific heat γ re-
mains below 4/3, but is above 1 in this period except for brief
intervals around 109 cm−3 and 1011 cm−3, where γ falls slightly
below unity (Figure 5(a)). The heating is owing to the compres-
sion, but for 109–1012 cm−3, where the H2-formation heating
associated with the three-body reaction (Equation (11) below)
dominates. For the cooling, the H2-line emission contributes
most until ∼1013 cm−3, although some lines become optically
thick at ∼1011 cm−3 and this suppresses the cooling rate grad-
ually toward a higher density. The steep decline of the H2 line-
cooling rate at 1016 cm−3 is due to the H2 collision-induced
continuum absorption. Another molecular species in the metal-
free gas, HD, is known to play an important role in cooling
if a metal-free gas is once ionized (Uehara & Inutsuka 2000;
Nagakura & Omukai 2005; Greif & Bromm 2006; Yoshida et al.
2007; McGreer & Bryan 2008). In our case, however, it only
contributes comparably to H2 at a brief period at ∼104 cm−3.

With gradual increase of temperature, the balance of chemical
equilibrium between the H2 formation (Equation (11)) and its

(Omukai et al. 2005, 2010)
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3. PRESTELLAR COLLAPSE

Figure 2 presents the temperature evolution at the center of
the prestellar cores as a function of the number density. The
overall evolution is quite similar to that calculated by the one-
zone model (Figure 1), justifying the one-zone treatment for
the core evolution. There are, however, small disagreements,
in particular, at high densities and for low-metallicity cases.
We defer detailed discussion on these differences to later in
Section 3.4, but here describe which thermal processes control
the temperature evolution at each metallicity. The contribution
to the cooling and heating rates by individual processes are
presented in Figure 3 for different metallicities. This should be
compared with Figure 2 of O05, where similar plots for the
one-zone models are presented. In Figure 5, the effective ratio
of specific heat at the center, γ = d lnp/d lnρ, which gives
the variation of pressure in response to the density variation,
is shown for those cases. Note that γ − 1 equals the gradient
of the curve in Figure 2 for constant molecular weight. The
effective ratio of specific heat is an important index to examine
the dynamical response of self-gravitating clouds to thermal
evolution. For example, the clouds easily fragment as long as
γ < 1, while fragmentation is strongly prohibited for γ > 1 (Li
et al. 2003). Another critical value is γ = 4/3. If γ exceeds
this value, the dynamical collapse is halted as the pressure
overcoming the gravity, and a hydrostatic object is formed.

3.1. Thermal Evolution in the Metal-free Case

In this section, we review thermal evolution of the cloud core
of a metal-free gas. We then describe the effects of metallicity
later in Section 3.2. We focus on deviations from the metal-free
case. In the case of metallicity [M/H] = −6, metallicity effects
are so small that the temperature evolution is almost identical to
the metal-free one except for a slight offset at highest densities
(!1020 cm−3).

Let us summarize here the formation processes of H2, which
play a crucial role in the thermal evolution. The evolution of H2
concentrations is presented in Figure 4, along with those in the
cases with metals. Below ∼108 cm−3, H2 is formed by the H−
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Figure 2. Evolution of temperatures at the center of cloud cores during the
prestellar collapse for various metallicities. This is calculated by one-zone
model until 104 cm−3 (dotted vertical line) and by hydrodynamical models
for the higher density. The constant Jeans masses are indicated by the dashed
lines.
(A color version of this figure is available in the online journal.)

channel:

H + e → H− + γ , (9)
H− + H → H2 + e, (10)

catalyzed by a small amount of remaining electrons. With
their recombination proceeding, the H− channel is quenched
and the amount of formed H2 saturates at ∼10−3 (Figure 4).
After this plateau, the H2 abundance begins to increase again at
∼108 cm−3 via the three-body H2 formation:

2H + H → H2 + H (11)

and
2H + H2 → H2 + H2. (12)

All the hydrogen is converted to the molecular form via this
channel by the density ∼1011 cm−3.

Next, let us see the cooling and heating processes
(Figure 3(a)). Until very high density ∼1019–1020 cm−3 is
reached, cooling and heating are always almost balanced, so
that the evolution is nearly isothermal with temperature differ-
ing only by a small factor whereas density increases by many
orders of magnitudes. The effective ratio of specific heat γ re-
mains below 4/3, but is above 1 in this period except for brief
intervals around 109 cm−3 and 1011 cm−3, where γ falls slightly
below unity (Figure 5(a)). The heating is owing to the compres-
sion, but for 109–1012 cm−3, where the H2-formation heating
associated with the three-body reaction (Equation (11) below)
dominates. For the cooling, the H2-line emission contributes
most until ∼1013 cm−3, although some lines become optically
thick at ∼1011 cm−3 and this suppresses the cooling rate grad-
ually toward a higher density. The steep decline of the H2 line-
cooling rate at 1016 cm−3 is due to the H2 collision-induced
continuum absorption. Another molecular species in the metal-
free gas, HD, is known to play an important role in cooling
if a metal-free gas is once ionized (Uehara & Inutsuka 2000;
Nagakura & Omukai 2005; Greif & Bromm 2006; Yoshida et al.
2007; McGreer & Bryan 2008). In our case, however, it only
contributes comparably to H2 at a brief period at ∼104 cm−3.

With gradual increase of temperature, the balance of chemical
equilibrium between the H2 formation (Equation (11)) and its
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two competing models:
• cooling due to atomic fine-

structure lines (Z > 10-3.5 Zsun)
• cooling due to coupling between 

gas and dust 
(Z > 10-5...-6 Zsun)

• which one is explains origin of  
extremely metal-poor stars
NB: lines would only make 
very massive stars, with 
M > few x10 Msun.



transition: Pop III to Pop II.5
SDSS J1029151+172927 
• is first ultra metal-poor star with Z 

~ 10-4.5 Zsun for all metals seen (Fe, 
C, N, etc.)
[see Caffau et al. 2011]

• this is in regime, where metal-lines 
cannot provide cooling

• this star in Leo is incompatible with 
metal-line cooling!
[see Schneider et al. 2011, Klessen et al. 2012]
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the low height on the Galactic plane (Z ∼ 1.0 kpc) may suggest a
Thick Disk orbit, this can be safely ruled out. The orbit solution
indicates that the star belongs to the Halo with the maximum
height above the galactic plane Zmax = 4.8 ± 0.4 kpc, the orbital
apocenter at Rmax = 9.6 ± 0.6 kpc, and is plunging towards the
Galactic centre, with orbital pericenter Rmin = 0.9± 0.1 kpc. See
Fig. 5. Adopting the proper motion values obtained in the previ-
ous section from the positions after 1990.0 we obtain a similar
orbit with a more extreme orbital pericenter Rmin = 0.4±0.1 kpc.
An even more extreme value of 0.2 ± 0.1 kpc is obtained in the
case we adopt a null value of the proper motion.

4.5. Abundances

Very few lines are measurable in the X-Shooter spectrum. The
Mg i-b triplet is not visible. Of the IR Ca ii triplet lines, only the
one at 854.2 nm is clearly visible, but it is contaminated by a
feature produced by the sky subtraction. Some Fe i lines can be
guessed, not really measured. The only clearly detectable line is
the Ca ii-K line at 393.3 nm. Its EW of 49.2 pm is consistent with
an abundance of [Ca/H]=–3.9. But the measured radial velocity
is of –30 km s−1, comparable to the X-Shooter UBV arm resolu-
tion of 7 900, meaning that the line is contaminated by the com-
ponent from the interstellar medium (ISM). From the X-Shooter
spectrum, we can deduce that this spectrum belongs to an ex-
tremely metal-poor star and put an upper limit on the metallicity
of about –4.0 respect to the solar metallicity.

The UVES spectrum resolves the stellar and IS components
of the Ca ii-K and Ca ii-H line (see Fig. 6). The EW of the stel-
lar Ca ii-K line is of 27.7 pm, corresponding to abundance of
[Ca/H]=–4.47. We do not take this line as abundance indicator,
because it is difficoult to disentangle the stellar and IS compo-
nent.

In the UVES spectrum we can see line of iron peak elements
(Fe i, Ni i) and α-elements (Mg i, Si i, Ca i, Ca ii, Ti ii). For the
light elements, Li and C-N, we could find no evident signature
in the spectra, so that we can provide only upper-limit.

For the abundance determination we rely on line profile fit-
ting, because some lines happen to be blended (sometimes sev-
eral lines of the same element) and some lines lie on the wings of
hydrogen lines. We computed grid of synthetic spectra, with the
effective temperature and gravity of the star, varying in [Fe/H] by
0.2 dex. We fitted the Fe i features to derive the 1D-LTE [Fe/H].
To derive the abundances of the other elements, we computed
grids of synthetic spectra, with [Fe/H] fixed, by varying the
abundance [X/Fe], of the element X by 0.2 dex, and then fitted
the line profiles.

4.6. The Li abundance

A 3D-NLTE (Sbordone et al. 2010) Li abundance of 2.2 (Spite
plateau) would imply in this star an EW for the Li doublet at
670.7 nm of about 4.7 pm. Such a feature should be visible in
the observed spectra, but no sign of the line is detectable in the
range. In the X-Shooter spectrum, taking into account its S/N
and resolution, we expect, according Cayrel’s formula (Cayrel
1988), that the limit for a feature to be visible is of about 1.5 pm
(3 × σ), that would correspond to a A(Li)=1.7, close to the Li
abundance derived for the cooler component of the binary sys-
tem CS 22876-32 (González Hernández et al. 2008). From the
S/N of the UVES spectrum (160) an upper limit on the EW of
0.1 pm implies A(Li)< 1.1 at 5×σ gives or A(Li)< 0.9 at 3×σ.

Fig. 6. The range of the Ca ii H and K lines. From top to bot-
tom, the SDSS, the X-Shooter, and the UVES spectrum (solid
black), overimposed the synthetic profile with metallicity -4.5,
α-enhanced by 0.4 dex (solid green).

This implies that the star is far below the Spite plateau. This
may be linked to the fact that, at extremely low metallicities,
the Spite plateau displays a “meltdown” (Sbordone et al. 2010)
i.e. an increased scatter and a lower mean Li abundance. This
meltdown is clearly shown in the two components of the ex-
tremely metal-poor binary system CS 22876-32 ([Fe/H]=–3.6,
the primary with effective temperature 6500K, the secondary
5900K), that show a different Li content (González Hernández
et al. 2008). The primary lies on the Spite plateau, while the sec-
ondary lies below at A(Li)= 1.8. The reasons for this meltdown
are not understood, it has been suggested that a Li depletion
mechanism, whose efficiency is metallicity dependent, could ex-
plain the observations. If this were the case, the Li abundance in
SDSS J102915+172927 would result from an efficient Li deple-
tion due to a combination of extremely low metallicity and rela-
tively low temperature. If the star were a horizontal branch star
(Hansen et al. 2011) it would be normal for it to be Li depleted.
However, we have already argued that low gravities, compati-
ble with an HB status, are ruled out. A sub-giant status should
not imply a large Li depletion. The absence of Li could be ex-
plained if SDSS J102915+172927 were a “blue straggler to be”
(Ryan et al. 2002). In this case we would expect a measurable
line broadening, due to rotation. In our UVES spectra we cannot
derive any line broadening above what is due to the instrumental
resolution, which is set by the seeing. Therefore all available evi-
dence suggests that SDSS J102915+172927 is in an evolutionary
status from the Main Sequence to the sub-giant branch.
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Table 4. SDSS J102915+172927. Abundances. [X/H] from fit is given for log g f from the line-list of LP.

Element [X/H]1D N lines SH A(X)!
+3Dcor. +NLTE cor. + 3D cor + NLTE cor

C ≤ −3.8 ≤ −4.5 G-band 8.50
N ≤ −4.1 ≤ −5.0 NH-band 7.86
Mg i −4.71 ± 0.11 −4.68 ± 0.11 −4.52 ± 0.11 −4.49 ± 0.12 5 0.1 7.54
Si i −4.27 −4.30 −3.93 −3.96 1 0.1 7.52
Ca i −4.72 −4.82 −4.44 −4.54 1 0.1 6.33
Ca ii −4.81 ± 0.11 −4.93 ± 0.03 −5.02 ± 0.02 −5.15 ± 0.09 3 0.1 6.33
Ti ii −4.75 ± 0.18 −4.83 ± 0.16 −4.76 ± 0.18 −4.84 ± 0.16 6 1.0 4.90
Fe i −4.73 ± 0.13 −5.02 ± 0.10 −4.60 ± 0.13 −4.89 ± 0.10 43 1.0 7.52
Ni i −4.55 ± 0.14 −4.90 ± 0.11 10 6.23
Sr ii ≤ −5.10 ≤ −5.25 ≤ −4.94 ≤ −5.09 1 0.01 2.92

For Mg i, Si i, Ca i, and Fe i, which are the minority species
in the model 5811/4.0/−4.5, the main non-LTE mechanism is
the overionization caused by superthermal radiation of non-
local origin below the thresholds of the levels with Eexc = 2.2-
4.5 eV (λthr = 2240-3450Å). In the extremely metal-poor at-
mosphere, deviations of the mean intensity of ionizing ultravi-
olet radiation from the Planck function are much larger com-
pared with that for the solar metallicity model (Fig. 9) result-
ing in much stronger departures from LTE. Figure 10 shows that
all the levels of Mg i, Ca i, and Fe i and the three lowest levels
of Si i are strongly underpopulated in the line formation layers
of the 5811/4.0/−4.5 model. Here, we use the departure coef-
ficients, bi = nNLTEi /nLTEi , where nNLTEi and nLTEi are the statis-
tical equilibrium and thermal (Saha-Boltzmann) number densi-
ties, respectively. Non-LTE leads to a weakening of the Mg i,
Si i, Ca i, and Fe i lines and positive non-LTE abundance correc-
tions ∆NLTE = log εNLTE− log εLTE. We comment on the obtained
results for individual species.

The observed Mg i lines arise in the transitions 3p 3P◦ -
3d 3D (382.9-383.8 nm) and 3p 3P◦ - 4s 3S (517.2, 518.3 nm).
For each line, the upper level is depleted to a lesser extent with
regard to its LTE population than is the lower level. Therefore,
the line is weaker compared with its LTE strength not only be-
cause of the general overionization (bl < 1), but also because of
rising the line source function (S lu % bu/bl Bν) above the Planck
function (Bν) in the line formation layers. Here, bu and bl are the
departure coefficients of the upper and lower levels, respectively.
All the investigated lines have similar non-LTE abundance cor-
rection at the level of +0.2 dex from the calculations with SH =
0.1 ( Table 5). As expected, the departures from LTE reduce in
case of increased H i collision rates (SH = 1).

The effect of bu/bl > 1 resulting in S lu > Bν is more promi-
nent for the only available line of silicon, Si i 390.5 nm. Its lower
level 3p 1S follows the ground state of Si i inside log τ5000 <
−1.5 due to collisional coupling, and it is strongly underpopu-
lated in the line formation layers. For the upper level 4s 1P◦, its
coupling to the high-excitation levels turns out stronger than a
coupling to the lower excitation levels, and it tends to follow the
continuum, Si ii. This explains why Si i 390.5 nm has a larger
non-LTE correction of ∆NLTE = 0.34 dex (SH = 0.1) compared to
the corresponding values for the Mg i lines and why ∆NLTE only
slightly reduces when move to SH = 1 (Table 5).

For the resonance line of Ca i at 422.6 nm, the non-LTE
mechanisms are very similar to that for the Mg i lines. Calcium
is the only element observed in SDSS J102915+172927 in two
ionization stages. Ca ii dominates the element number density
over atmospheric depths. Thus, no process seems to affect the

Ca ii ground-state population, and 4s keeps its thermodynamic
equilibrium value. The levels 3d and 4p follow the ground state
in deep layers, and their coupling is lost at the depths outside
log τ5000 < −1 where photon losses in the weakest line 849.8 nm
of the multiplet 3d − 4p start to become important. In these at-
mospheric layers, bu/bl < 1 is valid for each investigated line
of Ca ii resulting in dropping the line source function above the
Planck function and enhanced line absorption. For the resonance
line Ca ii 393.3 nm, departures from LTE occur only in the very
core and ∆NLTE amounts to −0.07 dex. Non-LTE correction is
larger in absolute value for the IR lines of multiplet 3d − 4p,
849.8, 854.2, and 866.2 because of the overpopulation of the
lower level.

In case of the Fe i lines, their weakening is mainly due to ove-
rionization. In SDSS J102915+172927, we measured only the
low-excitation Fe i lines, with Eexc = 0-1.5 eV. For each line, the
source function is quite similar to the Planck function for each
investigated line, because all the levels with Eexc = 0-4.5 eV be-
have similarly (Fig. 10). With very similar behavior of the depar-
ture coefficients for the lower levels, we calculated very similar
non-LTE corrections, as can be seen in Fig. 11. ∆NLTE varies be-
tween 0.29 and 0.36 dex in the calculations SH = 0.1. Similarly
to the Mg i lines, departures from LTE reduce significantly for
SH = 1.

Although only an upper limit was estimated for the Sr abun-
dance, we performed the non-LTE calculations for Sr ii with
[Sr/Fe] = −5.1. Non-LTE leads to weakened Sr ii 407.7 nm line,
and ∆NLTE amounts to 0.16 dex in case of pure electronic colli-
sions taken into account in SE calculations and decreases down
to 0.12 dex for SH = 1. For Ti ii, we estimated a non-LTE cor-
rection of –0.01 dex, assuming that the departures from LTE for
the investigated Ti ii lines are similar to that for the Fe ii lines of
similar excitation energy and equivalent width.

5. The ISM towards the star SDSSJ102915+172927
The interstellar feature is well modeled with one single compo-
nent model providing column density of log (Na i) = 12.11±0.01
cm−2 and log (Ca ii) = 12.02 ± 0.04 cm−2. The broadening of
the lines is of 7.3 ± 1.1 km s−1 in the Ca ii lines and of 5.2 ±
0.1 km s−1in Na i suggesting that the turbulence is the dominant
broadening factor and that the two ions do not sample precisely
the same material with the Ca ii lines tracing ionised gas not de-
tected in Na i.

The Na i column density is consistent with that observed to-
wards η Leo which at an angular distance of few degrees shows
log N(Na i)=12.08 cm−2.
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where [He] is the helium abundance, and n is the number den-
sity of hydrogen nuclei. At other temperatures, ⇥ ⌅ T 2

gr, so
long as Tgr < 200 K. For grain temperatures larger than 200 K,
it is necessary to account for the e�ects of ice-mantle evapo-
ration, while at much higher grain temperatures, the opacity
falls o� extremely rapidly due to the melting of the grains.
We account for these e�ects (see Semenov et al., 2003) and
so our opacity varies with dust temperature following the re-
lationship

⇥ = ⇥(T0) ⇥
�⌅⌅⌅⇤
⌅⌅⌅⇥

T 2 T < 200K
T 0 200K < T < 1500K
T�12 T > 1500K

(6)

2.2. Setup and Initial conditions
2.3. Thermodynamical evolution of gas and dust

Fig. 1.— Results of our low-resolution simulations, showing the dependence
of gas and dust temperatures on gas density for metallicities 10�4 and 10�5

times the solar value. In red, we show the gas temperature, and in blue the
dust temperature for the turbulent and rotating cloud. The simple core col-
lapse is overploted in dark red and green. The points with thinner features
are from the simulations without rotation or turbulence, while those showing
more scatter come from the simulations with rotation and turbulence. The
dashed lines show constant Jeans mass values.

Resolution Number of Particle Turbulence Angular
Level Particles Mass Momentum

(10�5M⇤) (Eturb/|Egrav|) (Erot/|Egrav|)
High 40 ⇥ 106 2.5 0.1 0.02
Low 4 ⇥ 106 25.0 0.1 0.02

0.0 0.00

TABLE 1
Simulation properties.

Fig. 2.— Number density maps for a slice through the high density region.
The image shows a sequence of zooms in the density structure in the gas
immediately before the formation of the first protostar.

We performed three sets of simulations, two at low resolution
and one at high resolution. The details are shown in Table 1.
Our low resolution simulations were performed to explore the
thermal evolution of the gas during the collapse, and had 4
million SPH particles which was insu⇥cient to fully resolve
fragmentation. We used these simulations to model the col-
lapse of an initially uniform gas cloud with an initial num-
ber density of 105 cm�3 and an initial temperature of 300 K.
We modelled two di�erent metallicities (10�4Z⇤ and 10�5Z⇤).
The initial cloud mass was 1000 M⇤, and the mass resolu-
tion was 25 ⇥ 10�3 M⇤. In one set of low-resolution simula-
tions the gas was initially at rest, while in the other, we in-
cluded small amounts of turbulent and rotational energy, with
Eturb/|Egrav| = 0.1 and � = Erot/|Egrav| = 0.02, where Egrav is
the gravitational potential energy, Eturb is the turbulent kinetic
energy and Erot is the rotational energy. For our high resolu-
tion simulations, which were designed to investigate whether
the gas would fragment, we employed 40 million SPH par-
ticles. We adopted initial conditions similar to those in the
low-resolution run with turbulence and rotation. As with the
low resolution runs, we simulated two metallicities, 10�4Z⇤
and 10�5Z⇤. The mass resolution (taken to be 100 times the
SPH particle mass) was 2.5 ⇥ 10�3M⇤.

3. ANALYSIS

In Figure 1, we compare the evolution of the dust and gas
temperatures in the low-resolution simulations. The dust tem-
perature, shown in the lower part of the panels, varies from the

transition: Pop III to Pop II.5
4 Dopcke et al.

CMB temperature in the low density region to the gas temper-
ature at much higher densities. At densities higher than 1011–
1012 cm�3, dust cooling starts to be e�ective and begins to
cool the gas. The gas temperature decreases to roughly 600 K
in the 10�5 Z⇥ simulations, and 300 K in the Z = 10�4Z⇥ case.
This temperature decrease significantly increases the number
of Jeans masses present in the collapsing region, making the
gas unstable to fragmentation. The dust and the gas temper-
atures couple for densities higher then 1013cm�3, when the
compressional heating starts to dominate again over the dust
cooling. The subsequent evolution of the gas is close to adia-
batic. If we compare the results of the runs with and without
rotation and turbulence, then the most obvious di�erence is
the much greater scatter in the n � T diagram in the former
case. Variations in the infall velocity lead to di�erent fluid el-
ements undergoing di�erent amounts of compressional heat-
ing. The overall e�ect is to reduce both the infall velocity
and the average compressional heating rate. This allows dust
cooling to dominate at a density that is up to five times smaller
than in the case without rotation or turbulence. The gas also
reaches a lower temperature, cooling down to ⇤ 200K (instead
of 300K) for the Z = 10�4Z⇥ case, and to ⇤ 400K (instead of
600K) for the Z = 10�5Z⇥ case. This behavior shows that
it is essential to use 3D simulations to follow the evolution
of the collapsing gas. A similar e�ect can be seen in Clark
et al. (2010). If we compare our results to the calculations of
Omukai et al. (2010), we find that dust cooling is considerably
less e�ective than predicted by the one-zone models, but the
agreement is better with their one-zone plus 1D hydrodynam-
ical models. We find that a metallicity of 10�4Z⇥ is required
to cool the gas down to 300 K, while for the same metallicity,
Omukai et al. (2010) find that the gas cools down to 200 K.

3.1. Fragmentation
We follow the thermodynamical evolution of the gas up to

very high densities of order 1017cm�3, where the Jeans mass
is ⇤ 10�2M⇥, and so we need a high resolution simulation to
study the fragmentation behaviour. The transport of angular
momentum to smaller scales during the collapse leads to the
formation of a dense disk-like structure, supported by rotation
which then fragments into several objects. Figure 2 shows the
density structure in the gas immediately before the formation
of the first protostar. The top-left panel shows a density slice
on a scale comparable to the size of the initial gas distribu-
tion. The structure is very filamentary and there are two main
overdense clumps in the center. If we zoom in on one of the
clumps, we see that its internal structure is also filamentary.
We can follow the collapse down to scales of the order of an
AU, but at this point we reach the limit of our computational
approach: as the gas collapses further, the Courant timestep
becomes very small, making it di⇥cult to follow the further
evolution of the cloud. In order to avoid this di⇥culty, we
replace very dense, gravitationally bound, and collapsing re-
gions by sink particles. Once the conditions for sink particle
creation are met, they start to form in the highest density re-
gions (Figure 3). Due to interactions with other sink particles
that result in an increase in velocity, some sink particles can
be ejected from the high-density region, but most of the par-
ticles still remain within the dense gas. Within 137 years of
the formation of the first sink particle, 45 sink particles have
formed. At this time, approximately 4.6M⇥ of gas has been
accreted by the sink particles.

Fig. 3.— Number density map showing a slice in the densest clump, and the
sink formation time evolution, for the 40 million particles simulation, and Z
= 10�4Z⇥. The box is 100AU x 100AU and the time is measured from the
formation of the first sink particle.

Fig. 4.— Sink particle mass function at the end of the simulations. High
and low resolution results and corresponding resolution limits are shown. To
resolve the fragmentation, the mass resolution should be smaller than the
Jeans mass at the point in the temperature-density diagram where dust and
gas couple and the compressional heating starts to dominate over the dust
cooling. At the time shown, around 5 M⇥ of gas had been accreted by the
sink particles in each simulation.

3.2. Properties of the fragments
Figure 4 shows the mass distribution of sink particles when

we stop the calculation. We typically find masses below 1M⇥,
with somewhat smaller values in the 10�4Z⇥ case compared
to the 10�5Z⇥ case. Both histograms have the lowest sink par-
ticle mass well above the resolution limit of 0.0025M⇥. Note
that in both cases, we are still looking at the very early stages
of star cluster evolution. As a consequence, the sink particle
masses in Figure 4 are not the same as the final protostellar
masses – there are many mechanisms that will a�ect the mass
function, such as continuing accretion, mergers between the
newly formed protostars, feedback from winds, jets and lu-
minosity accretion, etc. Nevertheless, we can speculate that
the typical stellar mass is similar to what is observed for Pop
II stars in the Milky Way. This suggests that the transition
from high-mass primordial stars to Population II stars with
mass function similar to that at the present day occurs early
in the metal evolution history of the universe, at metallicities
Zcrit < 10�5Z⇥. The number of protostars formed by the end

Dopcke et al. (2011, ApJ 729, L3)
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Fig. 1.—: Dependence of gas and dust temperatures on gas
density for metallicities 10−4, 10−5, and 10−6 and zero times
the solar value, calculated just before the first sink particle was
formed (see Table1). In red, we show the gas temperature,
and in blue the dust temperature. The dashed lines are lines
of constant Jeans mass.

3. ANALYSIS

3.1. Thermodynamical evolution of gas and dust
We have performed a set of four simulations for different

metallicities in order to test if dust can efficiently cool the gas
and change the fragmentation behavior. Since dust cooling is
consequence of inelastic gas-grain collisions, and these colli-
sions are more frequent for higher densities, we expect that its

cooling is more efficient at higher densities. The energy trans-
fer from gas to dust vanishes when they couple in temperature,
hence we also expect the cooling to cease when dust reaches
the gas temperature. In order to guide on the evaluation of the
effect of dust on the thermodynamic evolution of the gas and
verify these assumptions, we plot temperature and density for
the various metallicities tested in Figure 1. We compare the
evolution of the dust and gas temperatures in the simulations,
at the point of time just before the formation of the first sink
particle (see Table 1). The dust temperature (shown in blue)
varies from the CMB temperature in the low density region to
the gas temperature (shown in red) at much higher densities.

Changes in metallicity influence the the point in density
where dust cooling becomes efficient. For the Z = 10−4 Z"
case, dust cooling begins to be efficient at n ≈ 1011cm−3.
While for Z = 10−5 Z", the density where dust cooling be-
comes efficient is delayed until n ≈ 1013cm−3. For the Z
= 10−6 Z" case, dust cooling becomes important for n !
1014cm−3, preventing the gas temperature from getting higher
than 1500 K. For instance, the metal-free case reaches tem-
peratures of approximately 2000 K.

The efficiency of the cooling expressed in the temperature
drop also varies with metallicity. The gas temperature de-
creases to roughly 400 K in the 10−5 Z" simulation, and 200 K
in the Z = 10−4 Z" case. This temperature drop significantly
increases the number of Jeans masses present in the collaps-
ing region, making the gas unstable to fragmentation. The
dust and the gas temperatures couple for high densities, when
the compressional heating starts to dominate again over the
dust cooling. The subsequent evolution of the gas is close to
adiabatic.

When we compare our results to the calculations of Omukai
et al. (2010), we find good agreement with their 1D hydrody-
namical models, although we expected some small difference
due to effects of the turbulence and rotation (see Dopcke et al.,
2011) and also due to the use of different dust opacity models.

3.2. Heating and cooling rates.
The gas thermal evolution during the collapse takes differ-

ent paths depending on the metallicity, as expressed in the
density-temperature diagram (Figure 1). In order to explain
them, we take a closer look at the cooling and heating pro-
cesses involved.

In Figure 2 we show the main cooling and heating rates
divided into four panels for the different metallicities.

There are parts of the evolution where metallicity has no
important effect, such as for for n < 108cm−3, where PdV
heating dominates. For n > 108cm−3, H2 line cooling starts
to become important. And for densities as high as 1010cm−3,
heating and cooling processes are balanced for all cases.

The effect of the metallicity, and so the dust cooling, starts
to be seen for n ! 108cm−3. At n ≈ 8×109cm−3, for instance,
the two main coolants (dust and H2 line cooling) are compara-
ble to the two main heaters (H2 formation and PdV heating).
For all cases where dust was present, its cooling became the
most important thermal process at some point in the collapse.

These thermal processes affect the density-temperature di-
agram (Figure 1) in all cases, such as for n " 108cm−3, when
PdV heating dominates, the evolution is close to adiabatic.
When cooling and heating balance, for 108 " n/cm−3 " 1011,
the evolution is close to isothermal.

The other thermal processes play a minor role during the
collapse. For example, H2 dissociation cooling only becomes

[M/H] = -4

[M/H] = -6

[M/H] = -ininity
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Fig. 6.—: Sink particle mass function at the point when 4.7
M! of gas had been accreted by the sink particles in each sim-
ulation. To resolve the fragmentation, the mass resolution is
smaller than the Jeans mass at the point in the temperature-
density diagram where dust and gas couple and the compres-
sional heating starts to dominate over the dust cooling.

creating more sparse over-densities.

3.7. Mass accretion
The mass accreted by the sink particles varied within the

different metallicities, and changed the final IMF. This dif-
ferent accretion can also influence the expected accretion lu-
minosity. We did not take this thermal process into account
during the calculations, but it is relevant to speculate if it is
comparable to the other thermal processes, and necessary to
include in future simulations.

In Figure 10 we present accretion properties for the new-
born stellar systems. The top panel shows how the total mass
in sinks evolve with time, and the comparison for different Z.
The accretion rate varies from 0.02 to 0.17 M! yr−1, and it is
on average lower for the Z = 10−4 Z! case. The Z = 10−4 Z!
case accreted mass slower than the others, taking the longest
time to accrete 4.7M!.

In the bottom panel of Figure 10, we show the accretion
luminosity calculated by considering that all gas was accreted

Fig. 7.—: Timescales for fragmentation (bottom panel) and
accretion (middle panel), and also their fraction (top panel)
versus enclosed gas mass (Menc) for the metallicities tested.
The values were calculated just before the first sink particle
was formed.

Fig. 8.—: Timescales for fragmentation and accretion for dif-
ferent metallicities. t f rag(〈N/(dN/dt)〉) indicates the aver-
age for the number of sink particles (N) divided by the time
variation of that number, or the sink particle formation rate.
tacc(〈M/(dM/dt)〉) is the average accretion time, which is cal-
culated by dividing the total mass in sink particles dived by
the mass accretion rate.
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Fig. 6.—: Sink particle mass function at the point when 4.7
M! of gas had been accreted by the sink particles in each sim-
ulation. To resolve the fragmentation, the mass resolution is
smaller than the Jeans mass at the point in the temperature-
density diagram where dust and gas couple and the compres-
sional heating starts to dominate over the dust cooling.

creating more sparse over-densities.

3.7. Mass accretion
The mass accreted by the sink particles varied within the

different metallicities, and changed the final IMF. This dif-
ferent accretion can also influence the expected accretion lu-
minosity. We did not take this thermal process into account
during the calculations, but it is relevant to speculate if it is
comparable to the other thermal processes, and necessary to
include in future simulations.

In Figure 10 we present accretion properties for the new-
born stellar systems. The top panel shows how the total mass
in sinks evolve with time, and the comparison for different Z.
The accretion rate varies from 0.02 to 0.17 M! yr−1, and it is
on average lower for the Z = 10−4 Z! case. The Z = 10−4 Z!
case accreted mass slower than the others, taking the longest
time to accrete 4.7M!.

In the bottom panel of Figure 10, we show the accretion
luminosity calculated by considering that all gas was accreted

Fig. 7.—: Timescales for fragmentation (bottom panel) and
accretion (middle panel), and also their fraction (top panel)
versus enclosed gas mass (Menc) for the metallicities tested.
The values were calculated just before the first sink particle
was formed.

Fig. 8.—: Timescales for fragmentation and accretion for dif-
ferent metallicities. t f rag(〈N/(dN/dt)〉) indicates the aver-
age for the number of sink particles (N) divided by the time
variation of that number, or the sink particle formation rate.
tacc(〈M/(dM/dt)〉) is the average accretion time, which is cal-
culated by dividing the total mass in sink particles dived by
the mass accretion rate.
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gravoturbulent fragmentation mode
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Figure 1. Evolution of temperatures in prestellar cloud cores with metallicities
Z/Z! = 0, 10−6, 10−5, 10−4, 10−3, 10−2, 10−1, and 1, as functions of the
number density, which is calculated by one-zone models. The dashed lines
indicate the constant Jeans masses. For those above 102 M! (below 1 M!), the
gas is assumed to be fully atomic (molecular) in drawing those lines.
(A color version of this figure is available in the online journal.)

3. PRESTELLAR COLLAPSE

Figure 2 presents the temperature evolution at the center of
the prestellar cores as a function of the number density. The
overall evolution is quite similar to that calculated by the one-
zone model (Figure 1), justifying the one-zone treatment for
the core evolution. There are, however, small disagreements,
in particular, at high densities and for low-metallicity cases.
We defer detailed discussion on these differences to later in
Section 3.4, but here describe which thermal processes control
the temperature evolution at each metallicity. The contribution
to the cooling and heating rates by individual processes are
presented in Figure 3 for different metallicities. This should be
compared with Figure 2 of O05, where similar plots for the
one-zone models are presented. In Figure 5, the effective ratio
of specific heat at the center, γ = d lnp/d lnρ, which gives
the variation of pressure in response to the density variation,
is shown for those cases. Note that γ − 1 equals the gradient
of the curve in Figure 2 for constant molecular weight. The
effective ratio of specific heat is an important index to examine
the dynamical response of self-gravitating clouds to thermal
evolution. For example, the clouds easily fragment as long as
γ < 1, while fragmentation is strongly prohibited for γ > 1 (Li
et al. 2003). Another critical value is γ = 4/3. If γ exceeds
this value, the dynamical collapse is halted as the pressure
overcoming the gravity, and a hydrostatic object is formed.

3.1. Thermal Evolution in the Metal-free Case

In this section, we review thermal evolution of the cloud core
of a metal-free gas. We then describe the effects of metallicity
later in Section 3.2. We focus on deviations from the metal-free
case. In the case of metallicity [M/H] = −6, metallicity effects
are so small that the temperature evolution is almost identical to
the metal-free one except for a slight offset at highest densities
(!1020 cm−3).

Let us summarize here the formation processes of H2, which
play a crucial role in the thermal evolution. The evolution of H2
concentrations is presented in Figure 4, along with those in the
cases with metals. Below ∼108 cm−3, H2 is formed by the H−
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Figure 2. Evolution of temperatures at the center of cloud cores during the
prestellar collapse for various metallicities. This is calculated by one-zone
model until 104 cm−3 (dotted vertical line) and by hydrodynamical models
for the higher density. The constant Jeans masses are indicated by the dashed
lines.
(A color version of this figure is available in the online journal.)

channel:

H + e → H− + γ , (9)
H− + H → H2 + e, (10)

catalyzed by a small amount of remaining electrons. With
their recombination proceeding, the H− channel is quenched
and the amount of formed H2 saturates at ∼10−3 (Figure 4).
After this plateau, the H2 abundance begins to increase again at
∼108 cm−3 via the three-body H2 formation:

2H + H → H2 + H (11)

and
2H + H2 → H2 + H2. (12)

All the hydrogen is converted to the molecular form via this
channel by the density ∼1011 cm−3.

Next, let us see the cooling and heating processes
(Figure 3(a)). Until very high density ∼1019–1020 cm−3 is
reached, cooling and heating are always almost balanced, so
that the evolution is nearly isothermal with temperature differ-
ing only by a small factor whereas density increases by many
orders of magnitudes. The effective ratio of specific heat γ re-
mains below 4/3, but is above 1 in this period except for brief
intervals around 109 cm−3 and 1011 cm−3, where γ falls slightly
below unity (Figure 5(a)). The heating is owing to the compres-
sion, but for 109–1012 cm−3, where the H2-formation heating
associated with the three-body reaction (Equation (11) below)
dominates. For the cooling, the H2-line emission contributes
most until ∼1013 cm−3, although some lines become optically
thick at ∼1011 cm−3 and this suppresses the cooling rate grad-
ually toward a higher density. The steep decline of the H2 line-
cooling rate at 1016 cm−3 is due to the H2 collision-induced
continuum absorption. Another molecular species in the metal-
free gas, HD, is known to play an important role in cooling
if a metal-free gas is once ionized (Uehara & Inutsuka 2000;
Nagakura & Omukai 2005; Greif & Bromm 2006; Yoshida et al.
2007; McGreer & Bryan 2008). In our case, however, it only
contributes comparably to H2 at a brief period at ∼104 cm−3.

With gradual increase of temperature, the balance of chemical
equilibrium between the H2 formation (Equation (11)) and its

EOS as function of metallicity

(Omukai et al. 2005, 2010)
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gas is assumed to be fully atomic (molecular) in drawing those lines.
(A color version of this figure is available in the online journal.)

3. PRESTELLAR COLLAPSE

Figure 2 presents the temperature evolution at the center of
the prestellar cores as a function of the number density. The
overall evolution is quite similar to that calculated by the one-
zone model (Figure 1), justifying the one-zone treatment for
the core evolution. There are, however, small disagreements,
in particular, at high densities and for low-metallicity cases.
We defer detailed discussion on these differences to later in
Section 3.4, but here describe which thermal processes control
the temperature evolution at each metallicity. The contribution
to the cooling and heating rates by individual processes are
presented in Figure 3 for different metallicities. This should be
compared with Figure 2 of O05, where similar plots for the
one-zone models are presented. In Figure 5, the effective ratio
of specific heat at the center, γ = d lnp/d lnρ, which gives
the variation of pressure in response to the density variation,
is shown for those cases. Note that γ − 1 equals the gradient
of the curve in Figure 2 for constant molecular weight. The
effective ratio of specific heat is an important index to examine
the dynamical response of self-gravitating clouds to thermal
evolution. For example, the clouds easily fragment as long as
γ < 1, while fragmentation is strongly prohibited for γ > 1 (Li
et al. 2003). Another critical value is γ = 4/3. If γ exceeds
this value, the dynamical collapse is halted as the pressure
overcoming the gravity, and a hydrostatic object is formed.

3.1. Thermal Evolution in the Metal-free Case

In this section, we review thermal evolution of the cloud core
of a metal-free gas. We then describe the effects of metallicity
later in Section 3.2. We focus on deviations from the metal-free
case. In the case of metallicity [M/H] = −6, metallicity effects
are so small that the temperature evolution is almost identical to
the metal-free one except for a slight offset at highest densities
(!1020 cm−3).

Let us summarize here the formation processes of H2, which
play a crucial role in the thermal evolution. The evolution of H2
concentrations is presented in Figure 4, along with those in the
cases with metals. Below ∼108 cm−3, H2 is formed by the H−
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Figure 2. Evolution of temperatures at the center of cloud cores during the
prestellar collapse for various metallicities. This is calculated by one-zone
model until 104 cm−3 (dotted vertical line) and by hydrodynamical models
for the higher density. The constant Jeans masses are indicated by the dashed
lines.
(A color version of this figure is available in the online journal.)

channel:

H + e → H− + γ , (9)
H− + H → H2 + e, (10)

catalyzed by a small amount of remaining electrons. With
their recombination proceeding, the H− channel is quenched
and the amount of formed H2 saturates at ∼10−3 (Figure 4).
After this plateau, the H2 abundance begins to increase again at
∼108 cm−3 via the three-body H2 formation:

2H + H → H2 + H (11)

and
2H + H2 → H2 + H2. (12)

All the hydrogen is converted to the molecular form via this
channel by the density ∼1011 cm−3.

Next, let us see the cooling and heating processes
(Figure 3(a)). Until very high density ∼1019–1020 cm−3 is
reached, cooling and heating are always almost balanced, so
that the evolution is nearly isothermal with temperature differ-
ing only by a small factor whereas density increases by many
orders of magnitudes. The effective ratio of specific heat γ re-
mains below 4/3, but is above 1 in this period except for brief
intervals around 109 cm−3 and 1011 cm−3, where γ falls slightly
below unity (Figure 5(a)). The heating is owing to the compres-
sion, but for 109–1012 cm−3, where the H2-formation heating
associated with the three-body reaction (Equation (11) below)
dominates. For the cooling, the H2-line emission contributes
most until ∼1013 cm−3, although some lines become optically
thick at ∼1011 cm−3 and this suppresses the cooling rate grad-
ually toward a higher density. The steep decline of the H2 line-
cooling rate at 1016 cm−3 is due to the H2 collision-induced
continuum absorption. Another molecular species in the metal-
free gas, HD, is known to play an important role in cooling
if a metal-free gas is once ionized (Uehara & Inutsuka 2000;
Nagakura & Omukai 2005; Greif & Bromm 2006; Yoshida et al.
2007; McGreer & Bryan 2008). In our case, however, it only
contributes comparably to H2 at a brief period at ∼104 cm−3.

With gradual increase of temperature, the balance of chemical
equilibrium between the H2 formation (Equation (11)) and its

EOS as function of metallicity

(Omukai et al. 2005, 2010)
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Z = 0• slope of EOS in the density range 5 
cm-3 ≤ n ≤ 16 cm-3 is γ≈1.06.

• with non-zero angular momentum, 
disk forms.

• disk is unstable against frag- 
mentation at high density
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Fig. 3.—: Number density maps for a slice through the high
density region for Z = 10−4 Z" (top), 10−5 Z", 10−6 Z", and
0 (bottom). The image shows a sequence of zooms in the
density structure in the gas immediately before the formation
of the first protostar.

Fig. 4.—: Enclosed gas mass divided by Bonnor-Ebert mass
versus radius for different metallicities. The values were cal-
culated at the time just before the first sink was formed and the
center is taken to be the position of the densest SPH particle.

more flat mass distribution.
Now we can compare the predicted values before sink for-

mation started, with the final accretion and fragmentation
timescales. Figure 8 shows the timescales for fragmentation
and accretion for different metallicities on the end of the cal-
culations. The mean fragmentation time, and the mean accre-
tion time explain the difference in the sink particle mass distri-
bution in Figure 6. For Z ≤ 10−5 Z", the fragmentation time is
always higher than the accretion time, indicating that the sink
particles will accrete faster than they can be generated, result-
ing in a more flat mass distribution. When the fragmentation
time is higher than the accretion time (for Z = 10−4 Z"), the
gas rather fragments, than moves to the center and is accreted.
As a consequence, more mass goes into the low-mass objects,
when compared to the high-mass ones. This behavior agrees
well with the predictions from before fragmentation started,
shown in Figure 7.

3.6. Radial mass distribution
Another property of the star-forming cloud that we ob-

served to vary in our calculations is the mass spacial distri-
bution. The dependence of the enclosed gas and sink mass on
the distance from the sinks center of mass, for the different
Z, is show in Figure 9. The Z = 0 case has almost all the
sink particle mass in r < 8AU. The gas density for this case is
also higher in this region, when compared to the other metal-
licities, showing that the gas and sink particles mass density
follow each other. In the Z = 0 simulation, there is ∼80% of
the mass in sinks within 8 AU from the center of mass. And
for the other cases, this happens for radius ∼ 30AU. For ra-
dius bigger than 150 AU, the gas becomes the most massive
component, for all Z.

This more concentrated gas and sink mass towards the cen-
ter happens probably because for the Z = 0 case, the gas had
higher temperatures in the central region. And so there was
less influence by turbulent and rotational motions, which were

(Greif et al. 2011, Dopcke et al., in preparation)
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Fig. 2.— Density, velocity, pressure, and temperature of the
shocked gas after 1 Myr. Black dots represent the test simulation,
while the grey (green) lines show the dimensionalized ST solu-
tion. Apart from deviations caused by higher-order shocks and
kernel smoothing, the simulation reproduces the analytic profiles
relatively well.

(DM and gas). We initialize the simulation at z = 100
deep in the linear regime, and for this purpose adopt
a concordance Λ cold dark matter (ΛCDM) cosmology
with the following parameters: matter density Ωm =
1−ΩΛ = 0.3, baryon density Ωb = 0.04, Hubble param-
eter h = H0/

°
100 km s−1 Mpc−1

¢
= 0.7, spectral index

ns = 1.0, and a top-hat fluctuation power σ8 = 0.9 (e.g.,
Spergel et al. 2003). Initial density and velocity pertur-
bations are imprinted according to a Gaussian random
field, and grow proportional to the scale factor until the
onset of nonlinearity. At this point the detailed chemi-
cal evolution of the gas becomes crucial, and we apply
the same chemical network as in Johnson et al. (2007) to
track the abundances of H, H+, H−, H2, H+

2 , He, He+,
He++, and e−, as well as the five deuterium species D,
D+, D−, HD and HD−. All relevant cooling mechanisms
in the temperature range 10−108 K are implemented, in-
cluding H and He resonance processes, bremsstrahlung,
inverse Compton, and molecular cooling for H2 and HD.
Metal cooling does not become important for the entire
lifetime of the SN remnant, yet we postpone a more de-
tailed discussion of this issue to §5. We do not take into
account the emission of radiation by the post-shock gas,
which acts to create a thin layer of fully ionized material
ahead of the shock and suppresses molecule formation
(e.g., Shull & McKee 1979; Shapiro & Kang 1987; Kang
& Shapiro 1992), since (a) the SN remnant expands into
an H ii region, and (b) we find that molecule formation
becomes important only at late times, when the post-
shock gas has cooled to 104 K (see §3.4).

With these ingredients, the first star forms in a halo of
Mvir � 5 × 105 M⊙ and rvir � 100 pc at z � 20 in the
canonical fashion (e.g., Bromm et al. 1999, 2002; Abel et
al. 2002). We determine its location by identifying the
first particle that reaches a density of nH = 104 cm−3. At
this point the gas ‘loiters’ around a temperature of 200 K
and typically attains a Jeans mass of a few 103 M⊙ before

Fig. 3.— The hydrogen number density averaged along the line
of sight in a slice of 10/h kpc (comoving) around the first star,
forming in a halo of total mass Mvir � 5 × 105 M⊙ at z � 20.
Evidently, the host halo is part of a larger conglomeration of less
massive minihalos, and subject to the typical bottom-up evolution
of structure formation.

further collapsing (e.g., Bromm et al. 2002; Glover 2005).
For simplicity, we assume that such a clump forms a sin-
gle star, and find that its location is reasonably well re-
solved by the minimum resolution mass, Mres � 500 M⊙.
In Figure 3, we show the hydrogen number density in the
x-y and y-z plane, centered on the formation site of the
first star. Evidently, the host halo is part of a larger
overdensity that will collapse in the near future and lead
to multiple merger events. This behavior is characteris-
tic of bottom-up structure formation, and our simulation
therefore reflects a cosmological environment typical for
these redshifts.

2.4.2. H ii Region

The treatment of the H ii region around the star
is crucial for the early and late time behavior of the
SN remnant. The photoevaporation of the host mini-
halo greatly reduces the central density and extends the
energy-conserving ST phase, whereas after an intermedi-
ate stage the enhanced pressure in the H ii region leads to
an earlier transition to the final, momentum-conserving
phase. Additionally, the shock fulfills the stalling crite-
rion, i.e. ṙsh = cs, where cs is the sound speed of the
photoheated IGM, much earlier in the H ii region com-
pared to previously unheated gas. We have found that
neglecting the presence of the H ii region around the star,
extending well into the IGM, leads to a final shock radius
a factor of 2 larger, which demonstrates its importance
for the long-term evolution of the SN remnant.

To determine the size and structure of the H ii region,
we proceed analogously to Johnson et al. (2007). In de-
tail, we initially photoheat and photoionize a spherically
symmetric region surrounding the star up to a maximum
distance of 200 pc, where we find a neighbouring mini-
halo. We determine the necessary heating and ionization
rates by using the properties of a 200 M⊙ Pop III star

(Greif et al., 2007, ApJ, 670, 1)
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Fig. 3.—: Number density maps for a slice through the high
density region for Z = 10−4 Z" (top), 10−5 Z", 10−6 Z", and
0 (bottom). The image shows a sequence of zooms in the
density structure in the gas immediately before the formation
of the first protostar.

Fig. 4.—: Enclosed gas mass divided by Bonnor-Ebert mass
versus radius for different metallicities. The values were cal-
culated at the time just before the first sink was formed and the
center is taken to be the position of the densest SPH particle.

more flat mass distribution.
Now we can compare the predicted values before sink for-

mation started, with the final accretion and fragmentation
timescales. Figure 8 shows the timescales for fragmentation
and accretion for different metallicities on the end of the cal-
culations. The mean fragmentation time, and the mean accre-
tion time explain the difference in the sink particle mass distri-
bution in Figure 6. For Z ≤ 10−5 Z", the fragmentation time is
always higher than the accretion time, indicating that the sink
particles will accrete faster than they can be generated, result-
ing in a more flat mass distribution. When the fragmentation
time is higher than the accretion time (for Z = 10−4 Z"), the
gas rather fragments, than moves to the center and is accreted.
As a consequence, more mass goes into the low-mass objects,
when compared to the high-mass ones. This behavior agrees
well with the predictions from before fragmentation started,
shown in Figure 7.

3.6. Radial mass distribution
Another property of the star-forming cloud that we ob-

served to vary in our calculations is the mass spacial distri-
bution. The dependence of the enclosed gas and sink mass on
the distance from the sinks center of mass, for the different
Z, is show in Figure 9. The Z = 0 case has almost all the
sink particle mass in r < 8AU. The gas density for this case is
also higher in this region, when compared to the other metal-
licities, showing that the gas and sink particles mass density
follow each other. In the Z = 0 simulation, there is ∼80% of
the mass in sinks within 8 AU from the center of mass. And
for the other cases, this happens for radius ∼ 30AU. For ra-
dius bigger than 150 AU, the gas becomes the most massive
component, for all Z.

This more concentrated gas and sink mass towards the cen-
ter happens probably because for the Z = 0 case, the gas had
higher temperatures in the central region. And so there was
less influence by turbulent and rotational motions, which were
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(Clark et al. 2011b, Science, 331, 1040)

Figure 1: Density evolution in a 120 AU region around the first protostar, showing the build-up
of the protostellar disk and its eventual fragmentation. We also see ‘wakes’ in the low-density
regions, produced by the previous passage of the spiral arms.
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important disk parameters

Figure 2: Radial profiles of the disk’s physical properties, centered on the first protostellar core
to form. The quantities are mass-weighted and taken from a slice through the midplane of the
disk. In the lower right-hand plot we show the radial distribution of the disk’s Toomre parameter,
Q = cs�/⇥G�, where cs is the sound speed and � is the epicyclic frequency. Beause our disk
is Keplerian, we adopted the standard simplification, and replaced � with the orbital frequency.
The molecular fraction is defined as the number density of hydrogen molecules (nH2), divided
by the number density of hydrogen nuclei (n), such that fully molecular gas has a value of 0.5
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(Greif et al., in prep.)

Teaser: fully sink-less simulations, following the disk build-up over 15 years 
(resolving the protostars - first cores - down to 100 km)
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Figure 4. Mass abundance of He, O, Si, and Fe in Z = 0 (top) and 10−4 Z" (bottom) 25 M" stars after the end of RT-driven mixing. The snapshots are of the simulation
at 3.1 × 104 s, 6.3 × 104 s, and 2.7 × 104 s for z25B, z25D, and z25G, and 1.4 × 104 s, 5.3 × 104 s, and 1.2 × 105 s for models u25B, u25D, and u25G, respectively.
Red Z = 0 stars again show much more mixing than blue Z = 10−4 Z" stars, although it is not as extreme as in the 15 M" models, in which the difference in outer
radius between the z- and u-series progenitors was greater. Mixing again rises with explosion energy, which is 0.6, 1.2, 2.4 Bethe from left to right across the panels.
Spurious jetting is also visible along the y- and x-axes in the u-series models. Like the 15 M" stars shown in Figure 3, both mixing and the amplitudes of the RT
instabilities clearly increase with explosion energy at both metallicities.

more mixing in the internal layers than higher-mass models.
The z-series SNe have far more mixing than u-series SNe. SNe
with higher explosion energies exhibit more mixing and less
fallback than SNe with lower explosion energies. In particular,
the B series SNe with subnormal explosion energies, 0.6 Bethe
instead of the canonical 1.2 Bethe, eject almost no iron with the
exception of model z15B.

The z-series models all show more mixing than their u-series
counterparts. The 25 M" models show the most mixing of the
models in the u-series, while the 40 M" u-series runs show the
smallest degree of mixing. All the 40 M" models experience a
great deal of fallback, but the u-series models show the most
because they are more compact. The higher explosion energy
models exhibit less fallback.

4.3.5. Comparison with Kepler Estimations of Mixing

The large one-dimensional surveys of SNe derive final esti-
mates of elemental yields by artificially mixing the layers of
the SN after explosive nucleosynthesis is complete. Surveys
employing the KEPLER code estimate mixing by passing a run-

ning boxcar average of width (in mass coordinate) W through
the star, where W is 10% the mass of the helium core. That is,
the abundances at points that fell within a bin of width W were
averaged together and set to this average, the bin was moved for-
ward by one point, and the process repeated, moving outward
through the star. This is done four times, artificially mixing the
mass shells. In Figure 7, we compare KEPLER estimations of
mixing with our two-dimensional CASTRO results. In our two-
dimensional CASTRO simulations, we find that some elemental
shells are more mixed than others. The RT instability typically
forms at the He–H or O–He boundary and advances inward.
This results in the helium and oxygen layers being more mixed
than in KEPLER and the iron, and sometimes silicon, layers being
less mixed than the KEPLER estimations for the z-series models.
Our compact U-series models show less mixing in all elements
than in KEPLER.

4.3.6. Numerical Artifacts and Model Limitations

Numerical artifacts arising from the mesh geometry are most
prominent in the higher explosion energy, u-series models,

The metallicities of extremely metal-
poor stars in the halo are consistent 
with the yields of core-collapse 
supernovae, i.e. progenitor stars with 20 
- 40 M☉
(e.g. Tominaga et al. 2007, Izutani et al. 2009, Joggerst et al. 
2009, 2010)

Fig. 6.—Comparison between the [X/Fe] trends of observed stars (crosses: the previous studies [e.g., Gratton & Sneden 1991; Sneden et al. 1991; Edvardsson et al.
1993; McWilliam et al. 1995a, 1995b; Ryan et al. 1996;McWilliam 1997; Carretta et al. 2000; Primas et al. 2000; Gratton et al. 2003; Bensby et al. 2003]; open circles: CA04;
open squares: HO04) and those of individual starsmodels ( filled circles: normal SNe; filled triangles: HNewith caseA; filled rhombus: HNewith case B) and IMF integration
( filled squares). The parameters are shown in Table 1.

Fig. 7.—Same as Fig. 3, but for MMS ¼ 25 M", E51 ¼ 5.

Fig. 8.—Comparison between the abundance pattern of the C-rich EMP star
(circles with error bars: CS 29498#043; Aoki et al. 2004) and the theoretical
faint SN yields (solid line: 25F). The mixing-fallback parameters are determined
so as to reproduce the abundance pattern of CS 29498#043.

(Joggerst et al. 2009, 2010)

(Tom
inaga et al. 2007)
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Figure 2. Schematic diagram illustrating the TreeCol concept.
During the tree walk to obtain the gravitational forces, the pro-
jected column densities of the tree nodes (the boxes shown on the
right) are mapped onto a spherical grid surrounding the particle
for which the forces are being computed (the “target” particle,
shown on the left). The tree already stores all of the information
necessary to compute the column density of each node, the posi-
tion of the node in the plane of the sky of the target particle, and
the angular extent of the node. This information is used to com-
pute the column density map at the same time that the tree is
being walked to calculate the gravitational forces. Provided that
the tree is already employed for the gravity calculation, the in-
formation required to create the 4⇡ steradian map of the column
densities can be obtained for minimal computational cost.

constructing this map at the same time as the tree is be-
ing “walked” to determine the gravitational forces, we can
minimize the amount of additional communication necessary
between CPUs holding di↵erent portions of the tree. Since
the structure of the tree, and how it is walked, will be im-
portant for our discussion, we will first give a brief overview
of how a tree-based gravity solver works. For the purpose of
this discussion, we consider a solver based on an oct-tree, as
used in e.g. the Gadget SPH code (Springel 2005), although
we note that solvers based on other tree structures, such as
binary trees, do exist (e.g. the binary tree employed by Benz
1988, which later found its way into other high profile stud-
ies, such as Bonnell et al. 1998 and Bate et al. 2003). Also,
although we discuss the implementation in an SPH code, we
stress that this is only for convenience. The ideas discussed
in this paper are equally applicable to grid-based fluid codes
that employ a gravitational tree.

A tree-based solver starts by constructing a tree, split-
ting the computational volume up into a series of nested
boxes, or ‘nodes’. The ‘root’ node is the largest in the hi-
erarchy and contains all of the computational points in the
simulation. This large ‘parent’ node is then split up into
eight smaller ‘daughter’ nodes as shown in Figure 1. The
daughter nodes are further refined (becoming parents them-
selves) until each tree node contains only one particle (illus-
trated in Figure 1 by the blue dots). These smallest nodes
at the very bottom of the hierarchy are typically termed
‘leaves’. At each point in the hierarchy, the tree stores the
information about the contents of the parent node (includ-
ing its position, mass and size) that will be needed during
the gravitational force calculation. Once the construction of
the tree is complete, each particle is located in a leaf node
situated at the bottom of a nested hierarchy of other nodes.

Once the tree is built, it can then be “walked” to get

the gravitational forces. The idea behind the speed-up of-
fered by the tree gravity solver over direct summation is
simple: any region of structured mass that is far away can
be well approximated as a single, unstructured object, since
the distances to each point in the structure are essentially
the same. Strictly, this is only true if the angular size of the
structure is small, and so tree-codes tend to adopt an angle,
rather than a distance, for testing whether or not structures
can be approximated. This angle is often referred to as the
“opening angle” of the tree, and we will denote it hereafter
as ✓tol.

To walk the tree to obtain the gravitational force on
a given particle, the algorithm starts at the root node and
opens it up, testing whether the daughter nodes subtend
an angle of less than ✓tol. If the angle is smaller than ✓tol,
the properties of the daughter nodes (mass, position, cen-
tre of mass) are used to calculate their contribution to the
force. As such, any substructure within the daughter nodes
is ignored, and the mass inside in the nodes is assumed to be
uniformly distributed within their boundaries. If one or more
of these nodes subtends an angle larger than ✓tol, the nodes
are opened and the process is repeated on their daughter
nodes, and so on, until nodes are found that appear smaller
than ✓tol. To increase the accuracy of the force calculation,
the nodes often store multipole moments that account for
the fact that the node is not a point mass, but rather a
distributed object that subtends some finite angle (e.g. see
Binney & Tremaine 1987). These moments are calculated
during the tree construction, for all levels of the node hier-
archy except the leaves, since these are either well approxi-
mated as point masses – as is the case for a stellar N -body
calculation – or are SPH particles, which have their own
prescription for how they are distributed in space (Bate et
al. 1995).

The above method is sketched in Figure 1, which shows
the tree structure in black, and the nodes, marked in red,
that would be used to evaluate the gravitational force on
the large blue particle with the orange highlight. In the
cases where the nodes are leaves (containing only a single
particle), the position of the particle itself is used. As the
total number of force calculations can be substantially de-
creased in comparison to the number required when using
direct summation, tree-based gravity solvers o↵er a consider-
able speed-up at the cost of a small diminution in accuracy.
Barnes & Hut (1989) showed that for a distribution of N

self-gravitating particles, the computational cost of a tree-
based solver scales as N log N , compared to the N

2 scaling
associated with direct summation. They also showed that
the multipole moments allowed quite large opening angles,
with ✓tol values as large as 0.5 radians resulting in errors of
less than a percent.

2.2 Basic idea behind TreeCol

The TreeCol method makes use of the fact that each node
in the tree stores the necessary properties for constructing
a column density map. The mass and size of the node can
be used to calculate the column density of the node, and
its position and apparent angular size allow us to determine
the region on the sky that is covered by the node. Note also
that column density, just like the total gravitational force, is
a simple sum over the contributing material, meaning that

c� 0000 RAS, MNRAS 000, 000–000
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Table 1. A summary of the mean column densities (⌃̄) in the
cloud models presented in Sections 3.1 and 3.2, for both the
true map (the first line) and each of the TreeCol maps. For the
TreeCol results we give the number of pixels used in the col-
umn density map (Npix), the opening angle of the tree (✓tol), and
the percentage error compared to the true map from the SPH
particles. Note that due to the way the pixel-averaged maps are
obtained (see Section 3), their average column density is identical
to that in the full SPH map, and so we do not include it here.

Model Npix ✓tol ⌃̄ Error
[g cm�2] [%]

Spherical cloud 3.060 ⇥10�3

48 0.3 3.234 ⇥10�3 5.7
48 0.5 3.274 ⇥10�3 7.0
192 0.3 3.205 ⇥10�3 4.7
192 0.5 3.239 ⇥10�3 5.8
768 0.3 3.192 ⇥10�3 4.3
768 0.5 3.226 ⇥10�3 5.4

Turbulent cloud 1.151 ⇥10�2

48 0.3 1.126 ⇥10�2 2.2
192 0.3 1.125 ⇥10�2 2.3
768 0.3 1.133 ⇥10�2 1.6

to perform. It is already obvious from the pixel-averaged
maps that even at the 768 pixel level, many of the very dense
features are going to be missing from the map. Nevertheless,
the mean column densities in the coarse, pixellated maps
are all within 0.1 percent of the mean column in the full
SPH map, and so they are still a good representation of the
column density distribution in the cloud, even if they are
unable to resolve the small-scale detail.

The images in Figure 9 show results from TreeCol for
this cloud, including the TreeCol column density maps and
their associated relative errors. Given the amount of struc-
ture in the cloud, we construct the maps in this figure while
keeping the tree-opening angle fixed at 0.3. Overall we see
that the algorithm behaves well, and the features present in
the pixel-averaged maps are recovered, even at our highest
mapping-resolution of 768 pixels. For the 2 lower-resolution
maps (48, and 192 pixels), the errors in the maps are mainly
small, and TreeCol typically recovers the column densities
to around 5 percent. However, we see that the errors in the
768 pixel map are again quite high, and for the same reasons
as we seen in the previous test, namely that the pixellation
of the map is too high for the adopted tree-opening angle,
and so the structure of the tree is beginning to show in the
map.

Although the cloud studied here is more complicated
than that studied in Section 3.1, the errors in the mean col-
umn density (given in Table 1) are actually lower than they
are in the spherical cloud, and range from 1.6 to 2.3 per-
cent. Unfortunately, the extra small-scale structure means
that the way in which the error relates to the number of
pixels is not as consistent here as it was for the previous
cloud set-up. As one moves to higher number of pixels, the
small-scale, high-column features start to become resolved,
but then there are three main limitations with the method
that start to introduce noise: first, the node’s orientation is
ignored in TreeCol and redefined in a way that is convenient

Figure 10. The dust temperature profiles for two uniform den-
sity clouds (10�19g cm�3) of mass 1 and 10 M�, heated by the
Black (1994) interstellar radiation field. Orange points show the
output from the RADMC-3D Monte Carlo radiative transfer code
– run with 803 grid cells and 2 ⇥ 107 photon packets – and the
blue points denote the output from an SPH simulation that uses
the column density information recovered by TreeCol in conjunc-
tion with the method for calculating dust temperatures given in
Goldsmith (2001). In the SPH simulation we use 261932 particles
and a tree-opening angle of 0.5. The dust opacities are a combina-
tion of Ossenkopf & Henning (1994) (non-coagulated and thick ice
mantle grains) for wavelengths longer than 1µm, and those given
in Mathis, Mezger & Panagia (1983) for shorter wavelengths. For
these clouds, the TreeCol results reproduce the temperature pro-
files well, sitting within the 1K scatter of the profile from the
Monte Carlo code.

for the theta/phi coord-scheme; second, the boundaries of
the node may not reflect accurately the true boundaries of
the object contained (e.g. a spherical blob can be contained
inside a cubic node); and finally, sub-structure inside the
node is lost. These three limitations of TreeCol all combine
to produce the same e↵ect: mass that should be in a given
pixel, let’s call it pixel ‘a’, can end up in a neighbouring pixel
‘b’. So although the mass isn’t lost, it can be displaced. This
causes both pixels to have an error, and is why the maps in
Figure 9 can be noisy when the pixel resolution is increased.
However, because Equation 11 is based around the idea of
mass conservation (albeit in an idealized manner) the mass
isn’t entirely lost, and so the error in the mean column re-
mains low.

4 TREECOL APPLICATION: DUST HEATING
BY THE INTERSTELLAR RADIATION
FIELD

Although we have seen that TreeCol can typically deliver
a fairly accurate column density map of the sky, there are
situations in which the errors in the map can be as much

c� 0000 RAS, MNRAS 000, 000–000
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Table 1. A summary of the mean column densities (⌃̄) in the
cloud models presented in Sections 3.1 and 3.2, for both the
true map (the first line) and each of the TreeCol maps. For the
TreeCol results we give the number of pixels used in the col-
umn density map (Npix), the opening angle of the tree (✓tol), and
the percentage error compared to the true map from the SPH
particles. Note that due to the way the pixel-averaged maps are
obtained (see Section 3), their average column density is identical
to that in the full SPH map, and so we do not include it here.
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768 0.5 3.226 ⇥10�3 5.4

Turbulent cloud 1.151 ⇥10�2

48 0.3 1.126 ⇥10�2 2.2
192 0.3 1.125 ⇥10�2 2.3
768 0.3 1.133 ⇥10�2 1.6

to perform. It is already obvious from the pixel-averaged
maps that even at the 768 pixel level, many of the very dense
features are going to be missing from the map. Nevertheless,
the mean column densities in the coarse, pixellated maps
are all within 0.1 percent of the mean column in the full
SPH map, and so they are still a good representation of the
column density distribution in the cloud, even if they are
unable to resolve the small-scale detail.

The images in Figure 9 show results from TreeCol for
this cloud, including the TreeCol column density maps and
their associated relative errors. Given the amount of struc-
ture in the cloud, we construct the maps in this figure while
keeping the tree-opening angle fixed at 0.3. Overall we see
that the algorithm behaves well, and the features present in
the pixel-averaged maps are recovered, even at our highest
mapping-resolution of 768 pixels. For the 2 lower-resolution
maps (48, and 192 pixels), the errors in the maps are mainly
small, and TreeCol typically recovers the column densities
to around 5 percent. However, we see that the errors in the
768 pixel map are again quite high, and for the same reasons
as we seen in the previous test, namely that the pixellation
of the map is too high for the adopted tree-opening angle,
and so the structure of the tree is beginning to show in the
map.

Although the cloud studied here is more complicated
than that studied in Section 3.1, the errors in the mean col-
umn density (given in Table 1) are actually lower than they
are in the spherical cloud, and range from 1.6 to 2.3 per-
cent. Unfortunately, the extra small-scale structure means
that the way in which the error relates to the number of
pixels is not as consistent here as it was for the previous
cloud set-up. As one moves to higher number of pixels, the
small-scale, high-column features start to become resolved,
but then there are three main limitations with the method
that start to introduce noise: first, the node’s orientation is
ignored in TreeCol and redefined in a way that is convenient

Figure 10. The dust temperature profiles for two uniform den-
sity clouds (10�19g cm�3) of mass 1 and 10 M�, heated by the
Black (1994) interstellar radiation field. Orange points show the
output from the RADMC-3D Monte Carlo radiative transfer code
– run with 803 grid cells and 2 ⇥ 107 photon packets – and the
blue points denote the output from an SPH simulation that uses
the column density information recovered by TreeCol in conjunc-
tion with the method for calculating dust temperatures given in
Goldsmith (2001). In the SPH simulation we use 261932 particles
and a tree-opening angle of 0.5. The dust opacities are a combina-
tion of Ossenkopf & Henning (1994) (non-coagulated and thick ice
mantle grains) for wavelengths longer than 1µm, and those given
in Mathis, Mezger & Panagia (1983) for shorter wavelengths. For
these clouds, the TreeCol results reproduce the temperature pro-
files well, sitting within the 1K scatter of the profile from the
Monte Carlo code.

for the theta/phi coord-scheme; second, the boundaries of
the node may not reflect accurately the true boundaries of
the object contained (e.g. a spherical blob can be contained
inside a cubic node); and finally, sub-structure inside the
node is lost. These three limitations of TreeCol all combine
to produce the same e↵ect: mass that should be in a given
pixel, let’s call it pixel ‘a’, can end up in a neighbouring pixel
‘b’. So although the mass isn’t lost, it can be displaced. This
causes both pixels to have an error, and is why the maps in
Figure 9 can be noisy when the pixel resolution is increased.
However, because Equation 11 is based around the idea of
mass conservation (albeit in an idealized manner) the mass
isn’t entirely lost, and so the error in the mean column re-
mains low.

4 TREECOL APPLICATION: DUST HEATING
BY THE INTERSTELLAR RADIATION
FIELD

Although we have seen that TreeCol can typically deliver
a fairly accurate column density map of the sky, there are
situations in which the errors in the map can be as much
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B fields in the early universe?

• we know the universe is magnetized (now)

• knowledge about B-fields in the high-redshift 
universe is extremely uncertain

- inflation / QCD phase transition / Biermann battery / 
Weibel instability

• they are thought to be extremely small 

• however, THIS MAY BE WRONG!



small-scale turbulent dynamo

• idea: the small-scale turbulent dynamo can generate 
strong magnetic fields from very small seed fields

• approach: model collapse of primordial gas ---> 
formation of the first stars in low-mass halo at 
redshift z ~ 20 

• method: solve ideal MHD equations with very high 
resolution

- grid-based AMR code FLASH 
(effective resolution 655363)



questions

• small-scale turbulent dynamo is expected to operate 
during Pop III star formation

• process is fast (104 x tff), so primordial halos may 
collapse with B-field at saturation level!

• simple models indicate saturation levels of ~10% 
--> larger values via αΩ dynamo?

• QUESTIONS:

- does this hold for “proper” halo calculations (with 
chemistry and cosmological context)?

- what is the strength of the seed magnetic field?



magnetic field structure density structure

(Sur et al. 2010, ApJ, 721, L734)



(Federrath et al., 2011, ApJ, 731, 62)



Magnetic field amplification by gravity-driven turbulence 7

Fig. 3.— a) Spherical slice of the gas density inside the Jeans volume at � = 12 for our run with 128 cells per Jeans length. b) Velocity
streamlines on a linear color scale ranging from dark blue (0 km s�1) to light gray (5 km s�1). c) Magnetic field lines, showing a highly
tangled and twisted magnetic field structure typical of the small-scale dynamo; yellow: 0.5mG, red: 1mG. d) Four randomly chosen,
individual field lines. The green one, in particular, is extremely tangled close to the center of the Jeans volume. e) Contours of the vorticity
modulus, |⌅⇥ v|, showing elongated, filamentary structures typically seen in subsonic turbulence (e.g., Frisch 1995). f) Spherical slice of
the divergence of the velocity field, ⌅ · v; white: compression, red: expansion.

(Federrath et al., 2011, ApJ, 731, 62)



(Sur et al. 2010, ApJ, 721, L734)

Field amplification during first 
collapse seems unavoidable.

QUESTIONS:

• Is it really the small scale dynamo? 
• What is the saturation value? 
  Can the field reach dynamically 
  important strength?

radial density profile

radial velocity profile

Mach number profile



analysis of magnetic field spectra

B fluctuation spectrum 
in flat inner core

B fluctuation spectrum 
in 1/r2 fall-off

(Federrath et al., 2011, ApJ, 731, 62)
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FIG. 2. (Color online) Three-dimensional renderings of the density on a logarithmic scale in the range 0.5 � �/�0 � 50, and
magnetic field lines for solenoidal forcing at M = 0.1 (a) and M = 10 (c), and compressive forcing at M = 0.1 (b) and M = 10
(d). The stretch-twist-fold mechanism of the dynamo [1] is evident in all models, but operates with di�erent e⇥ciency due to
the strongly varying compressibility and flow structure of the plasma. The M = 10 models are dominated by shocks.

FIG. 3. (Color online) Growth rate (top), and saturation level
(bottom) as a function of the Mach number for all runs with
solenoidal (crosses) and compressive forcing (diamonds). The
solid lines show empirical fits with equation (4). The labeled
data points indicate four models (M ⇥ 0.4, 2.5 for sol. and
comp. forcing), using ideal MHD on 1283 grid cells (a), non-
ideal MHD on 2563 (b), and 5123 grid cells (c), demonstrating
convergence for the given magnetic Prandtl (Pm = 2) and
kinematic Reynolds number (Re ⇥ 1500).

duces more space-filling, tangled field configurations, sug-
gesting that the dynamo is more e⇤ciently excited with
solenoidal forcing. This is quantitatively shown in fig-
ure 3, where we plot the growth rates, �, in the relation
Em = Em0 exp(�t), and the saturation level, (Em/Ek)sat
with the magnetic and kinetic energies Em and Ek as a

function of Mach number for all models. Both � and
(Em/Ek)sat depend strongly on M and on the turbu-
lent forcing. Solenoidal forcing gives growth rates and
saturation levels that are always higher than in compres-
sive forcing, as indicted by the di⇥erent field geometries
shown in figure 2. Both � and (Em/Ek)sat change sig-
nificantly at the transition from subsonic to supersonic
turbulence. We conclude that the formation of shocks
at M ⇥ 1 is responsible for destroying some of the co-
herent vortical motions necessary to drive the dynamo
[4]. However, as M is increased further, vorticity gener-
ation in oblique, colliding shocks [19] starts to dominate
over the destruction. The very small growth rates of the
subsonic, compressively driven models is due to the fact
that hardly any vorticity is excited. In the absence of the
baroclinic term, (1/⇥2)⌅⇥�⌅p, the only way to generate
vorticity, ! = ⌅�u, with compressive (curl-free) forcing
is via viscous interactions in the vorticity equation [6]:

⇤t! = ⌅� (u� !) + �⌅2! + 2�⌅� (S⌅ ln ⇥) . (3)

The second term on the right hand side of the last equa-
tion is di⇥usive. However, even with zero initial vorticity,
the last term generates vorticity via viscous interactions
in the presence of logarithmic density gradients. The
small seeds of vorticity generated this way are exponen-
tially amplified by the non-linear term, ⌅ � (u� !), in
analogy to the induction equation for the magnetic field,
if the Reynolds numbers are high enough [20]. For very
low Mach numbers, however, density gradients start to
vanish, thus explaining the steep drop of dynamo growth
in compressively driven turbulence at low Mach number.
Analytic estimates [21] suggest that � ⇤ M3 in com-
pressively driven, acoustic turbulence [22], indicated as
dotted line in figure 3. The solid lines are fits with an
empirical model function,

f(x) =

✓
p0

xp1 + p2
xp3 + p4

+ p5

◆
xp6 . (4)

The fit parameters are given in table I. We emphasize
that the fits do not necessarily reflect the true asymp-

saturation level for subsonic, 
solenoidal turbulence

saturation level for subsonic, 
compressive turbulence

(Federrath et al., 2011, PRL, 107, 114505)
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Kazantsev theory
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We take L to be the Jeans length, as this is the e↵ective
driving scale for turbulence in a collapsing system (Fed-
errath et al. 2011). Hence we set L ⇡

p
�kT/(Gm2n),

where G is the gravitational constant.
The resulting Reynolds numbers are shown in Figure 1 as
a function of the density. The critical magnetic Reynolds
numbers (5) are also indicated for the two extreme types
of turbulence.

Magnetic Prandtl Number— The definition of the mag-
netic Prandtl number is Pm ⌘ Rm/Re = ⌫/⌘. We can
calculate this quantity easily by using the equations (7)
and (11). In Figure 1 the density dependency of the
magnetic Prandtl number is shown.

Chemical and Thermal Evolution of The Gas— We deter-
mine the chemical and thermal evolution of gravitation-
ally collapsing primordial gas using the one-zone model
of Glover & Savin (2009), together with a modification
suggested by Schleicher et al. (2009) that relates the col-
lapse time to the equation of state. Glover & Savin
(2009) model the chemistry of the gas with a chemical
network that includes around 30 di↵erent atomic and
molecular species linked by around 400 di↵erent chemi-
cal reactions. In our calculations, we use the same initial
chemical abundances as in the default model in Glover &
Savin (2009). The elemental abundances of helium, deu-
terium and lithium relative to hydrogen are taken to be
0.083 for helium, 2.6⇥10�5 for deuterium and 4.3⇥10�10

for lithium (Cyburt 2004). The initial density and tem-
perature of the gas were assumed to be n0 = 1cm�3 and
T0 = 1000 K, respectively, but we have verified that our
results have little sensitivity to these values.
In Figure 2, we show how the fractional abundances of H,
He, H2, H+, Li+ and free electrons vary with increasing
density in our calculations. At densities n < 108 cm�3,
ionized hydrogen is the main positive ion, while at higher
densities, Li+ dominates. The sharp drop in the H+

abundance at densities n > 108 cm�3 results from the
removal of H+ from the gas by the reaction chain Glover
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Fig. 2.— The fractional abundances of di↵erent chemical species
as a function of the number density.
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3. RESULTS

3.1. Validity of our Approximation

In Figure 1 the magnetic Prandtl number Pm is shown
as a function of the density. During the whole collapse
its value changes over 25 orders of magnitude. At the
beginning of the collapse Pm ⇡ 1015, which is very high.
However, with increasing density Pm decreases rapidly.
We assume the approximation of large magnetic Prandtl
numbers to be valid until a particle density of about
106 cm�3, when Pm ⇡ 105 (see Schober et al. (2011)).
This means we can use the formula (6) safely to calculate
the growth rate of the small-scale dynamo up to densities
of roughly 106 cm�3. For larger densities the growth rate
decreases. Even for low magnetic Prandtl numbers, the
growth rate decreases only by a factor of a few (Schober
et al. 2011).

3.2. Small-Scale Dynamo Action during the Collapse

Critical Magnetic Reynolds Number— The dependence of
the magnetic Reynolds number on the density is shown in
Figure 1 together with the two extreme cases of Rmcrit.
One can see that the magnetic Reynolds number is larger
than Rmcrit for all densities. This means that the small-
scales dynamo can operate at all densities, unless, of
course, it is already saturated.

Growth Rate of Magnetic Fields— With the quantities de-
termined in the last section, we can calculate the growth
rate of the small-scale dynamo with equation (6) and
analyse the two extreme types of turbulence, Kolmogorov
with # = 1/3 and Burgers turbulence with # = 1/2. We
find

�K=
37

36

V

L
Re1/2,

�B=
11

60

V

L
Re1/3. (14)

For the typical velocity of the gas V we again use the
sound speed cs and for the typical length L we use the
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Fig. 3.— The growth rate of the magnetic field for Kolmogorov
(green line) and Burgers turbulence (orange line) as a function of
the density. The black dashed lines are power-law fits. We also
show the dissipation time scale for Kolmogorov turbulence (blue
line) and Burgers turbulence (red line) as well as the inverse free-
fall time scale (black line).

Jeans length. Figure 3 shows the growth rates for the two
extreme cases of turbulence as a function of the density.
We fit the growth rates with a simple power law

�(n) = a nb, (15)

where n is in units of particles per cm3. For Kolmogorov
turbulence we find aK = 7.91⇥10�13 s�1 and bK = 0.75.
In the case of Burgers turbulence we find aB = 1.12 ⇥
10�14 s�1 and bB = 0.67.
We compare the growth rates of the small-scale dynamo
� to the inverse free-fall time 1/T↵ = (Gmn)1/2. The
result is shown in Figure 3. In our model the magnetic
field on the fastest-growing scale increases one to three
orders of magnitude faster than the halo collapses. Note,
however, that the dynamo growth is exponential in time.
This means that one e-folding in density corresponds to
10 e-foldings in the growth rate for Burgers turbulence,
which is roughly 104, and 1000 e-foldings for Kolmogorov
turbulence, which is roughly 10434!

Dissipation of Magnetic Energy— The magnetic field
growth comes to an end, when dissipative processes be-
come important and prevent further amplification. Then
the field has reached its saturation level. The dissipation
term in the induction equation (2) is ⌘Ohmr2B. We ap-
proximate this by ⌘OhmB/`2 and @B/@t by B�Ohm. We
then get

B�Ohm ⇡ ⌘Ohm
B

`2
, �Ohm ⇡ ⌘Ohm

`2
. (16)

�Ohm is the rate of magnetic energy dissipation. We de-
termine this quantity on the viscous scale `c = LRe�3/4

in oder to compare it to the growth rate of the small-scale
dynamo. The resulting dissipation rate is also displayed
in Figure 3. For low densities it is many orders of mag-
nitude lower than the other rates. This means that the
magnetic field can grow almost without dissipation dur-
ing the collapse. With increasing density the dissipation
rate increases and reaches the inverse free-fall time at a
density of approximately 106 cm�3. This behavior may
change if we include besides the Ohmic resistivity also
the ambipolar di↵usivity.

The Resulting Magnetic Field— We now have all the nec-
essary ingredients to calculate the expected magnetic en-
ergy density EB = B2/(8⇡) as a function of time. In
principle, EB evolves as

dEB

dt
= �EB � �OhmEB, (17)

where � is the growth rate and �Ohm the Ohmic dissi-
pation rate introduced above. However, the dissipation
rate is very small at low densities, as shown in Figure 3,
and we can neglect �OhmEB. We integrate (17) for the
time interval

tcoll =
1p

Gm0n0

� 1p
Gmn

, (18)

which is the time it took the system to contract from the
starting density n0 = 1cm�3 to the current density n. We
adopt an initial mean particle mass ofm0 = 2.2⇥10�24 g.
The collapse is very slow in the beginning and becomes
very fast in the end. The total time of the collapse is
roughly 2.6 ⇥ 1015 s = 8.2 ⇥ 107 yr. We can rewrite
equation (17) in terms of the density using

dt

dn
=

Gm

2(Gmn)3/2
(19)

and find
dEB

dn
=

Gm

2(Gmn)3/2
�(n)EB. (20)

For the dependence of the growth rate on the density
we use the power-law fit from equation (15). Then the
solution of equation (19) is

EB(n) = EB,0 exp

0

@
a
⇣
nb�1/2 � nb�1/2

0

⌘

2
p
Gm(b� 1/2)

1

A . (21)

If we include the e↵ect of amplification due to spherical
gravitational compression, we get an additional factor of
(n/n0)2/3. A natural upper limit of the magnetic field is
given by equipartition with the turbulent kinetic energy.
With B2

max/(8⇡) = 1/2⇢V 2 we find the maximum mag-
netic field strength Bmax =

p
4⇡⇢V 2. Using the thermal

velocity (3kT/m)1/2 for a typical turbulent velocity, we
find

Bmax =
p
12⇡kTn. (22)

As the magnetic field strength can never be larger than
the saturation value Bmax, we have

B(n)=min

8
<

:B0 exp

0

@
a
⇣
nb�1/2 � nb�1/2

0

⌘

4
p
Gm(b� 1/2)

1

A

⇥
✓

n

n0

◆2/3

, Bmax

)
. (23)

In Figure 4 we show the resulting growth of the field
strength. As an initial field strength B0 we use 10�20 G,
which is conservative value for a field generated by a Bier-
mann battery (Biermann 1950; Xu et al. 2008). The field
strength grows extremely fast with the density. For Kol-
mogorov turbulence the saturation value is obtained al-
ready at a density of about 1.07 cm�3. The collapse time
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at this density is roughly 1.7⇥ 1014 s ⇡ 5.4⇥ 106 yr. For
Burgers turbulence the dynamo is saturated at roughly
32 cm�3, which refers to a collapse time of roughly
2.5⇥ 1015 s ⇡ 8.0⇥ 107 yr.
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Fig. 4.— The magnetic field strength as a function of the density.
The green line is the field generated by the small-scale dynamo with
Kolmogorov turbulence, the orange line indicates the field in case
of Burgers turbulence. The red line is the maximum magnetic field
strength. The total field strength is the minimum of the dynamo
generated field and the saturated field.

Expected Evolution at Higher Densities— During satura-
tion, the coherence length of the magnetic field will
shift towards larger scales, a well-known behavior for the
small-scale dynamo (Schekochihin et al. 2002b; Branden-
burg & Subramanian 2005). Analytical arguments sug-
gest this to occur on the eddy-timescale. For this to be
relevant during collapse, the eddy-timescale needs to be
smaller than the collapse timescale. For this reason, the
small-scale dynamo is unlikely to produce magnetic fields
on scales larger than the Jeans scale. We note, however,
that additional stretching of the field lines may occur
during the collapse.
We further note that the free-fall timescale provides a
natural upper limit for the dissipation time at higher
densities. In fact, for Pm < 1, the resistive scale be-
comes larger than the viscous scale, so we can no longer
assume equipartition on the viscous scale. Due to the
steep scaling of the dissipation rate with 1/`2, the physi-
cal dissipation rate will thus considerably decrease in this
regime.

4. CONCLUSIONS

By using the results from the Kazantsev theory and
modeling the physical and chemical processes in a
collapsing primordial halo we were able to follow the
evolution of the small-scale magnetic field.
We find that the magnetic Reynolds number during
the collapse is always larger than the critical value
for small-scale dynamo action. This means that the
small-scale dynamo indeed is operating during the
collapse of primordial gas clouds.
We have seen that the weak magnetic seed fields on small
scales are amplified very rapidly during the collapse of
a primordial halo. Saturation takes place very early,
because the growth rates for all types of turbulence are

very large. In our model the magnetic energy reaches
equipartition with the turbulent kinetic energy at a
density of roughly 1.1 cm�3 for Kolmogorov turbulence
and 30 cm�3 for Burgers turbulence (with an exemplary
initial magnetic field strength of 10�20 G).

Our results show that the magnetic energy on small-
scales can grow to very high values. In order to under-
stand the influence of this strong field on the dynamical
evolution of the halo gas it is important to know whether
the small-scale magnetic field can be transformed into a
coherent large-scale field. However, this is beyond the
scope of the current analysis. In addition, we also did not
include certain non-ideal magnetohydrodynamical pro-
cesses like ambipolar di↵usion. Together with the e↵ects
of helicity of the magnetic field these physical processes
will be considered in future work.
If indeed the processes discussed here would produce
dynamically significant large-scale fields, then the mag-
netic field would influence the star formation process
within high-redshift halos. For example, since recent
high-resolution simulations indicate that the accretion
disks around the very first stars were strongly suscepti-
ble to fragmentation (Turk et al. 2009; Stacy et al. 2010;
Clark et al. 2011; Greif et al. 2011; Smith et al. 2011) it is
expected that most primordial stars formed as members
of binary or higher-order multiple systems with a wide
range of masses rather than being isolated very high-
mass stars only. From studies of low-mass star formation
in the present day, we know that the presence of mag-
netic fields with field strengths close to the equipartition
value can e↵ectively redistribute angular momentum via
a process called magnetic braking (Machida et al. 2008a;
Mouschovias & Paleologou 1979) and can thereby reduce
the fragmentation probability in the disk (Hennebelle &
Ciardi 2009; Peters et al. 2011; Hennebelle et al. 2011;
Seifried et al. 2011). The correct treatment of magnetic
fields in calculations of primordial star formation there-
fore is prerequisite to better understand the mass func-
tion and multiplicity of metal-free stars.
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questions

• small-scale turbulent dynamo is expected to operate 
during Pop III star formation

• process is fast (104 x tff), so primordial halos may 
collapse with B-field at saturation level!

• simple models indicate saturation levels of ~10% 
--> larger values via αΩ dynamo?

• QUESTIONS:

- does this hold for “proper” halo calculations (with 
chemistry and cosmological context)?

- what is the strength of the seed magnetic field?
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of competing processes (such as turbulence, B-field, feedback, thermal 
pressure)

• detailed studies require the consistent treatment of many different 
physical processes (this is a theoretical and computational challenge)

• star formation is regulated by several feedback loops, which are still 
poorly understood

progress in understanding stellar birth at present days and in 
the early universe depends on developing new multi-scale and 
multi-physics numerical methods
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