

### Star Cluster Formation in the Turbulent ISM

Ralf Klessen Zentrum für Astronomie der Universität Heidelberg

### Star Cluster Formation in the Turbulent ISM

- importance of initial conditions: history matters!
- importance of dynamics: fragmentation induced starvation
- importance of geometry: interpreting line profiles





Star formation is intrinsically a multi-scale and multi-physics problem, where it is difficult to single out individual processes. Progress requires a comprehensive theoretical approach.

Star formation is intrinsically a multi-scale and multi-physics problem, where it is difficult to single out individual processes. Progress requires a comprehensive theoretical approach.

#### selected open questions

- what processes determine the initial mass function (IMF) of stars?
- what are the initial conditions for star cluster formation? how does cloud structure translate into cluster structure?
- how do molecular clouds form and evolve?
- what drives turbulence?
- what triggers / regulates star formation on galactic scales?
- how does star formation depend on metallicity? how do the first stars form?
- star formation in extreme environments (galactic center, starburst, etc.), how does it differ from a more "normal" mode?

#### selected open questions

#### • what processes determine the initial mass function (IMF) of stars?

- what are the initial conditions for star cluster formation? how does cloud structure translate into cluster structure?
- how do molecular clouds form and evolve?
- what drives turbulence?
- what triggers / regulates star formation on galactic scales?
- how does star formation depend on metallicity?
   how do the first stars form?
- star formation in extreme environments (galactic center, starburst, etc.), how does it differ from a more "normal" mode?

### stellar mass fuction

stars seem to follow a universal mass function at birth --> IMF





Orion, NGC 3603, 30 Doradus (Zinnecker & Yorke 2007)

### stellar masses

- distribution of stellar masses depends on
  - turbulent initial conditions
     --> mass spectrum of prestellar cloud cores
  - collapse and interaction of prestellar cores
     --> accretion and N-body effects
  - thermodynamic properties of gas
     --> balance between heating and cooling
     --> EOS (determines which cores go into collapse)
  - (proto) stellar feedback terminates star formation ionizing radiation, bipolar outflows, winds, SN



### stellar masses

#### • distribution of stellar masses depends on

- turbulent initial conditions
   --> mass spectrum of prestellar cloud cores
- collapse and interaction of prestellar cores
   --> accretion and N-body effects
- thermodynamic properties of gas
   --> balance between heating and cooling
   --> EOS (determines which cores go into collapse)
- (proto) stellar feedback terminates star formation ionizing radiation, bipolar outflows, winds, SN







#### example: model of Orion cloud







#### Dynamics of nascent star cluster

in dense clusters protostellar interaction may be come important!







### ICs of star cluster formation

#### • key question:

- what is the initial density profile of cluster forming cores?
   how does it compare low-mass cores?
- observers answer:
  - very difficult to determine!
    - most high-mass cores have some SF inside
    - infra-red dark clouds (IRDCs) are difficult to study
  - but: new results with Herschel



IRDC observed with Herschel, Peretto et al. (2010)

#### • key question:

- what is the initial density profile of cluster forming cores? how does it compare low-mass cores?
- theorists answer:
  - top hat (Larson Penston)
  - Bonnor Ebert (like low-mass cores)
  - power law  $\rho \propto r^{-1}$  (logotrop)
  - power law  $\rho \propto r^{-3/2}$  (Krumholz, McKee, et
  - power law  $\rho \propto r^{-2}$  (Shu)
  - and many more



• does the density profile matter?

- in comparison to
  - turbulence ...
  - radiative feedback ...
  - magnetic fields ...
  - thermodynamics ...



- address question in simple numerical experiment
- perform extensive parameter study
  - different profiles (top hat, BE, r<sup>-3/2</sup>, r<sup>-3</sup>)
  - different turbulence fields
    - different realizations
    - different Mach numbers
    - solenoidal turbulence dilatational turbulence both modes
  - no net rotation, no B-fields (at the moment)





| Run      | $t_{ m sim}~[ m kyr]$ | $t_{ m sim}/t_{ m ff}^{ m core}$ | $t_{ m sim}/t_{ m ff}$ | $N_{ m sinks}$ | $\langle M  angle   [M_\odot]$ | $M_{ m max}$ |
|----------|-----------------------|----------------------------------|------------------------|----------------|--------------------------------|--------------|
| TH-m-1   | 48.01                 | 0.96                             | 0.96                   | 311            | 0.0634                         | 0.86         |
| TH-m-2   | 45.46                 | 0.91                             | 0.91                   | 429            | 0.0461                         | 0.74         |
| BE-c-1   | 27.52                 | 1.19                             | 0.55                   | 305            | 0.0595                         | 0.94         |
| BE-c-2   | 27.49                 | 1.19                             | 0.55                   | 331            | 0.0571                         | 0.97         |
| BE-m-1   | 30.05                 | 1.30                             | 0.60                   | 195            | 0.0873                         | 1.42         |
| BE-m-2   | 31.94                 | 1.39                             | 0.64                   | 302            | 0.0616                         | 0.54         |
| BE-s-1   | 30.93                 | 1.34                             | 0.62                   | 234            | 0.0775                         | 1.14         |
| BE-s-2   | 35.86                 | 1.55                             | 0.72                   | 325            | 0.0587                         | 0.51         |
| PL15-c-1 | 25.67                 | 1.54                             | 0.51                   | 194            | 0.0992                         | 8.89         |
| PL15-c-2 | 25.82                 | 1.55                             | 0.52                   | 161            | 0.1244                         | 12.3         |
| PL15-m-1 | 23.77                 | 1.42                             | 0.48                   | 1              | 20                             | 20.0         |
| PL15-m-2 | 31.10                 | 1.86                             | 0.62                   | 308            | 0.0653                         | 6.88         |
| PL15-s-1 | 24.85                 | 1.49                             | 0.50                   | 1              | 20                             | 20.0         |
| PL15-s-2 | 35.96                 | 2.10                             | 0.72                   | 422            | 0.0478                         | 4.50         |
| PL20-c-1 | 10.67                 | 0.92                             | 0.21                   | 1              | 20                             | 20.0         |

ICs with flat inner density profile on average form more fragments

number of protostars

| Run      | $t_{ m sim}~[ m kyr]$ | $t_{ m sim}/t_{ m ff}^{ m core}$ | $t_{ m sim}/t_{ m ff}$ | $N_{ m sinks}$ | $\langle M  angle   [M_\odot]$ | $M_{ m max}$ |
|----------|-----------------------|----------------------------------|------------------------|----------------|--------------------------------|--------------|
| TH-m-1   | 48.01                 | 0.96                             | 0.96                   | 311            | 0.0634                         | 0.86         |
| TH-m-2   | 45.46                 | 0.91                             | 0.91                   | 429            | 0.0461                         | 0.74         |
| BE-c-1   | 27.52                 | 1.19                             | 0.55                   | 305            | 0.0595                         | 0.94         |
| BE-c-2   | 27.49                 | 1.19                             | 0.55                   | 331            | 0.0571                         | 0.97         |
| BE-m-1   | 30.05                 | 1.30                             | 0.60                   | 195            | 0.0873                         | 1.42         |
| BE-m-2   | 31.94                 | 1.39                             | 0.64                   | 302            | 0.0616                         | 0.54         |
| BE-s-1   | 30.93                 | 1.34                             | 0.62                   | 234            | 0.0775                         | 1.14         |
| BE-s-2   | 35.86                 | 1.55                             | 0.72                   | 325            | 0.0587                         | 0.51         |
| PL15-c-1 | 1 25.67               | 1.54                             | 0.51                   | 194            | 0.0992                         | 8.89         |
| PL15-c-2 | 2 25.82               | 1.55                             | 0.52                   | 161            | 0.1244                         | 12.3         |
| PL15-m-  | 23.77                 | 1.42                             | 0.48                   |                | 20                             | 20.0         |
| PL15-m-  | 2 31.10               | 1.86                             | 0.62                   | 308            | 0.0653                         | 6.88         |
| PL15-s-1 | 24.85                 | 1.49                             | 0.50                   | 1              | 20                             | 20.0         |
| PL15-s-2 | 2 35.96               | 2.10                             | 0.72                   | 422            | 0.0478                         | 4.50         |
| PL20-c-1 | 10.67                 | 0.92                             | 0.21                   | T              | 20                             | 20.0         |
|          |                       |                                  |                        |                |                                |              |

ICs with flat inner density profile on average form more fragments

however, the real situation is very complex: details of the initial turbulent field matter

number of protostars

Girichids et al. (2011abc)

- different density profiles lead to very different fragmentation behavior
- fragmentation is strongly suppressed for very peaked, power-law profiles
- this is good because it may explain some of the theoretical controversy, we have in the field
- this is *bad*, because all current calculations are "wrong" in the sense that the formation process of the star-forming core is neglected.
- CONCLUSION: take molecular cloud formation into account in theoretical / numerical models!

## stellar mass fuction

- distribution of stellar masses depends on
  - turbulent initial conditions
     --> mass spectrum of prestellar cloud cores
  - collapse and interaction of prestellar cores
     --> accretion and N-body effects
  - thermodynamic properties of gas
     --> balance between heating and cooling
     --> EOS (determines which cores go into collapse)
  - (proto) stellar feedback terminates star formation ionizing radiation, bipolar outflows, winds, SN, etc.



### stellar masses

- distribution of stellar masses depends on
  - turbulent initial conditions
     --> mass spectrum of prestellar cloud cores
  - collapse and interaction of prestellar cores
     --> accretion and N-body effects
  - thermodynamic properties of gas
     --> balance between heating and cooling
     --> EOS (determines which cores go into collapse)
  - (proto) stellar feedback terminates star formation ionizing radiation, bipolar outflows, winds, SN







# line profiles

- key question:
  - what can we learn from line profiles about the dynamic state of prestellar cores?
  - what are the best tracers?

# line profiles

#### • key question:

- what can we learn from line profiles about the dynamic state of prestellar cores?
- what are the best tracers?



# line profiles

#### • key question:

- what can we learn from line profiles about the dynamic state of prestellar cores?

#### - what are the best tracers?

| Tracer             | Transition Line       | Critical Density $n_{crit}$         | Optically              |
|--------------------|-----------------------|-------------------------------------|------------------------|
|                    |                       | $\rm cm^{-3}$                       |                        |
| $N_2H^+$           | $J = (1-0)^2, (3-2)$  | $1.6 \times 10^5,  3.0 \times 10^6$ | thin                   |
| $^{13}\mathrm{CO}$ | J = (3-2)             | $1.9 \times 10^3$                   | hin                    |
| $\rm H^{13}CO^+$   | J = (3-2)             | $1.7 \times 10^5$                   | hin                    |
| HCN                | $J = (1-0) - (5-4)^3$ | $1.0 \times 10^6 - 9.7 \times 10^8$ | thick                  |
| $\mathrm{HCO}^+$   | $J = (1-0) - (5-4)^3$ | $1.6 \times 10^5 - 1.7 \times 10^7$ | $\operatorname{thick}$ |
| CS                 | $J = (1-0) - (5-4)^3$ | $4.7 \times 10^5 - 8.1 \times 10^6$ | thick                  |



Smith et al. (2012, ApJ, 750, 64), Smith et al. (2013, ApJ, 771, 24), Chira et al. (in preparation)

/



A Summary of the Classification Types Assigned to the HCN F(2–1) Lines from Filaments A, B, and C using the Line Profile Shapes

| Filament | Blue  | Red  | Ambiguous |
|----------|-------|------|-----------|
| A        | 5/14  | 4/14 | 5/14      |
| В        | 7/14  | 2/14 | 5/14      |
| С        | 3/14  | 1/14 | 10/14     |
| Total    | 15/42 | 7/42 | 20/42     |
|          | 36%   | 17%  | 47%       |

**Note.** Despite the fact that the embedded cores are collapsing, a blue asymmetric line profile is seen in only 36% of cases.

#### result depends on transition



#### result depends on transition

![](_page_34_Figure_1.jpeg)

![](_page_35_Figure_0.jpeg)

looking at the velocity and density along the line of sight, we can understand the resulting line profile

**Figure 3.3:** upper panel: Line profile of HCN (1-0) observed in Core C at  $i = 0^{\circ}$  and  $\phi = 0^{\circ}$ . lower panel:  $n \cdot v$  - Diagram of Core C at  $i = 0^{\circ}$  and  $\phi = 0^{\circ}$ . The number density and velocity distribution are plotted with dashed lines. Thick black lines mark regions with number densities higher than  $3 \times 10^{4}$  cm<sup>-3</sup>, red lines mark areas within a radius of 0.05 pc around the core centre. One sees that the origin of the line profile component arounf 0 km s<sup>-1</sup> can be associated with the central core region where number density is highest. The second component belongs to the density bump at z = 0.07 pc.

Smith et al. (2012, ApJ, 750, 64), Smith et al. (2013, ApJ, 771, 24), Chira et al. (in preparation)

HCN

![](_page_36_Figure_0.jpeg)

Figure A.14: n - v - diagram of Core A at  $i = 135^{\circ}$  and  $\phi = 0^{\circ}$ . As in Fig. A.13.

![](_page_36_Figure_2.jpeg)

![](_page_36_Figure_3.jpeg)

HCN

![](_page_37_Figure_0.jpeg)

![](_page_38_Figure_0.jpeg)

HCN with  $N_2H^+$  (1-0) as reference line

HCN with N<sub>2</sub>H<sup>+</sup> (3-2) as reference line HCN with  $H^{13}CO^+$  (3-2) as reference line

The "higher" the transition, the better the classification. BUT: The "higher" the transition, the weaker the signal

**CONCLUSION:** The best tracer of our sample is the (4-3) transition of HCN, but the (3-2) and (5-4) transitions also okay.

#### **Take Away Points**

- importance of initial conditions: history matters!
- *importance of dynamics:* fragmentation induced starvation
- importance of geometry: interpreting line profiles