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Plato's allegory of the cave* 

* The Republic 
  (514a-520a) Laszlo Szücs, image from criticalthinking-mc205.wikispaces.com
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astronomer

Plato's allegory of the cave*  ↔ Astronomical observations

* The Republic 
  (514a-520a) Laszlo Szücs, image from criticalthinking-mc205.wikispaces.com
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Plato's allegory of the cave*  ↔ Astronomical observations
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Following Wilson et al. 2009

Intensity 
[erg cm-2 s-1 

Hz-1 ster-1]

Brightness 
temperature 
[K]

I(12CO)

I(13CO)

Assumptions I.
I(12CO) is optically thick

Along a line of sight uniform Tex and 
same for 12CO and 13CO

J=1-0

115.271 GHz

110.201 GHz

I(13CO) is optically thin

LTE

Assumptions II.
Uniform N(12CO)/N(13CO) ~ 60 *

N(H2)/N(12CO) ratio ~ 6.6×103 **

*  Langer & Penzias (1990)
** Pineda et al.  (2009)

Column density  
            [cm-2]

12CO/13CO ratio in GMC simulations 7

τ13(v) = −ln

[
1− T 13

B

5.3

{
exp

(
5.3
Tex

− 1

)−1

− 0.16

}−1]

(4)

Tex = 5.5 ln

(
1 +

5.5
TB,peak + 0.82

)−1

(5)

4.1 Derived column density estimates

4.2 Morphology

5 SUMMARY
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Figure 4. CO isotopic column density ratio as the function of the 12CO

3.1 Fitting formula

4 EMISSION MAPS

To compare the real column densities of our simulated clouds
to the ones that we would derive from observations, we
performed line radiative transfer calculations. We calcu-
lated the emission in ±6 kms−1 velocity range around the
J = 1 → 0 transition of 12CO (λ0 = 2600.76µm) and 13CO
(λ0 = 2720.41µm) molecules. Then we used standard analy-
sis methods and assumptions (e.g. Chapter 15.4.1 in Wilson
2009) to derive column densities.

In the interstellar medium, the assumption of molecule
energy levels are populated according the thermal distri-
bution (i.e. local thermodynamic equilibrium (LTE)), is of-
ten invalid. To account for non-LTE conditions we used the
Large Velocity Gradient (LVG) approximation, described in
detail in Ossenkopf (1997); Shetty et al. (2011a). The non-
thermal excitation/deexitation is mainly driven by collisions
with other molecules or atoms. As the most abundant par-
ticle in the dense ISM, the hydrogen molecule is the most
probable collisional partner for CO molecules. We account
for the two spin isomers of the hydrogen molecule: using
the mixture of ortho- (75%) and para-hydrogen (25%). The
collisional rates are adopted from the Leiden Atomic and
Molecular Database2 (Schier et al. 2005; Yang et al. 2010).
In addition to the LVG approximation, in which the escape
probability of a photon emitted by a given transition de-
pends on the velocity gradient of the neighbouring cells, we
also consider the escape probability of photons due to the
finite size of the cloud. For the later the smallest column den-
sity that a given cell ”sees” must be given. Here we adopt
the constant length scale of 5pc (roughly the radius of the
cloud) trough to whole domain and calculate the column
density based on this length and the local number density.
This approach results in underestimated escape probabilities
in the high density regions of the cloud.

For the radiative transport calculations we used the
RADMC3D code. The input parameters of the calcula-
tion are the number density of the modelled species (12CO
or 13CO), the number density of the collisional partners

2 http://home.strw.leidenuniv.nl/˜moldata/

(ortho- and para-hydrogen molecules), the gas temperature,
resolved and unresolved (micro-turbulent) velocity of the
gas, and the line data (energy levels, statistical weights,
Einstein A-coefficients and collisional rate coefficients). The
SpH data of number densities, gas velocity and tempera-
ture were interpolated to a regular grid of (512 pixel)3 as
described in section 2 and used as the input. The micro-
turbulent velocities were set uniformly according Larson’s
law by vmt = 1.1 × 105 × (0.032 [pc])0.38 [cms−1] (Larson
1981), where 0.032 pc is the linear size of a pixel. The line
data was adopted from Yang et al. (2010). The two dimen-
sional intensity maps were calculated with the velocity res-
olution of 0.09 kms−s.

The outputs of the radiative transfer calculation are
the point–point–velocity intensity map and optical depths
at each considered wavelengths for both isotopic species. To
calculate the column densities from these synthetic emis-
sion maps we follow Wilson (2009) and adopt the following
assumptions:

• all CO molecules along a line of sight has a uniform
excitation temperature in the J = 1 → 0.

• the excitation temperature is the same for 12CO and
13CO

• LTE applies and the level populations follow the Boltz-
mann distribution

• the 12CO J = 1 → 0 line is completely optically thick
(τ12CO > 1)

• the 13CO J = 1 → 0 line is completely optically thin
(τ13CO << 1)

• the 12CO and 13CO lines are emitted from the same
partial of gas

These assumptions although shown to be invalid in some
situations (Molina et al. 2013) are still standards when in-
terpreting observational data (see e.g. Goldsmith et al. 2008;
Pineda et al. 2008).

N(13CO) = 3.0× 1014
Tex

∫
τ13(v)dv

1− exp(−5.3/Tex)
(3)

c⃝ 0000 RAS, MNRAS 000, 000–000

Example: from CO emission to total column density

Laszlo Szücs et al., in prep. 
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Star FormationMagnetic field amplification by gravity-driven turbulence 7

Fig. 3.— a) Spherical slice of the gas density inside the Jeans volume at � = 12 for our run with 128 cells per Jeans length. b) Velocity
streamlines on a linear color scale ranging from dark blue (0 km s�1) to light gray (5 km s�1). c) Magnetic field lines, showing a highly
tangled and twisted magnetic field structure typical of the small-scale dynamo; yellow: 0.5mG, red: 1mG. d) Four randomly chosen,
individual field lines. The green one, in particular, is extremely tangled close to the center of the Jeans volume. e) Contours of the vorticity
modulus, |⌅⇥ v|, showing elongated, filamentary structures typically seen in subsonic turbulence (e.g., Frisch 1995). f) Spherical slice of
the divergence of the velocity field, ⌅ · v; white: compression, red: expansion.
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agenda

• star formation theory !

- phenomenology!

- challenges!

- our current understanding and its limitations!

• applications!

- the interstellar medium!

- the stellar mass function at birth (IMF)

NGC 3324 (Hubble, NASA/ESA)



phenomenology



Hubble Ultra-Deep FieldHubble Ultra-Deep Field

• star formation sets in very 
early after the big bang!

• stars always form in galaxies 
and protogalaxies!

• we cannot see the first 
generation of stars, but 
maybe the second one



M51 with Hubble (additional processing R. Gendler)

• correlation between stellar  
birth and large-scale dynamics!

• spiral arms!

• tidal perturbation from 
neighboring galaxy



HI Maps

SFR Maps

H2 Maps

• HI gas more extended!

• H2 and SF well correlated

atomic  
hydrogen!
!

!

molecular  
hydrogen!
!

!

star  
formation!

galaxies from THINGS and HERACLES survey  
(images from Frank Bigiel, ZAH/ITA)
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Orion

Orion Nebula Cluster (ESO, VLT,  
M. McCaughrean) 



• stars form in molecular clouds!

• stars form in clusters!

• stars form on ~ dynamical time!

• (protostellar) feedback is very 
important

Orion Nebula Cluster (ESO, VLT, M. McCaughrean) 



Ionizing radiation from central star Θ1C Orionis 

• strong feedback: UV radiation 
from Θ1C Orionis affects star 
formation on all cluster scales

Trapezium stars in the center of the ONC (HST, Johnstone et al. 1998)



Pleiades (DSS, Palomar Observatory Sky Survey)

eventually, clusters like the ONC 
(1 Myr) will evolve into clusters 
like the Pleiades (100 Myr)



theoret
ical

  

approach



decrease in spatial scale / increase in density 

• density!

- density of ISM: few particles per cm3!

- density of molecular cloud: few 100 particles per cm3!

- density of Sun: 1.4 g /cm3!

• spatial scale!

- size of molecular cloud: few 10s of pc!

- size of young cluster: ~ 1 pc!

- size of Sun: 1.4 x 1010 cm

Andromeda (R. Gendler)

NGC 602 in LMC (Hubble)

Proplyd in Orion (Hubble)

Sun (SOHO)
Earth



decrease in spatial scale / increase in density 

• contracting force!

-  only force that can do this compression 
 is GRAVITY 

• opposing forces!

-  there are several processes that can oppose gravity!

-  GAS PRESSURE!

-  TURBULENCE!

-  MAGNETIC FIELDS 

-  RADIATION PRESSURE

Andromeda (R. Gendler)

NGC 602 in LMC (Hubble)

Proplyd in Orion (Hubble)

Sun (SOHO)
Earth



decrease in spatial scale / increase in density 

• contracting force!

-  only force that can do this compression 
 is GRAVITY 

• opposing forces!

-  there are several processes that can oppose gravity!

-  GAS PRESSURE!

-  TURBULENCE!

-  MAGNETIC FIELDS 

-  RADIATION PRESSURE

Andromeda (R. Gendler)
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Proplyd in Orion (Hubble)
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Modern star formation 
theory is based on the 
complex interplay between 
all these processes.



Carina with HST

Modern star formation 
theory is based on the 
complex interplay between 
all these processes.



HH 901/902 in Carina with HST

Modern star formation 
theory is based on the 
complex interplay between 
all these processes.



•Jeans (1902): Interplay between  
self-gravity and thermal pressure 
- stability of homogeneous spherical 

density enhancements against  
gravitational collapse 

- dispersion relation: 
!
!
!

- instability when  
!

- minimal mass:  
  

early theoretical models

Sir James Jeans, 1877 - 1946
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•von Weizsäcker (1943, 1951)  and  
Chandrasekhar (1951): concept of 
MICROTURBULENCE 
- BASIC ASSUMPTION: separation of  

scales between dynamics and turbulence 
lturb � ldyn 

- then turbulent velocity dispersion contributes 
to effective soundspeed: 
!
!

-! Larger effective Jeans masses ! more stability 
- BUT: (1)  turbulence depends on k: 
 
          (2) supersonic turbulence    !          usually 

first approach to turbulence

S. Chandrasekhar,  
1910 - 1995

222
rmscc cc σ+!

)(krms
2σ

22
srms ck >>)(σ

C.F. von Weiszäcker,  
1912 - 2007



problems of early dynamical theory

•molecular clouds are highly Jeans-unstable, 
yet, they do NOT form stars at high rate  
and with high efficiency (Zuckerman & Evans 1974 conundrum) 
(the observed  global SFE in molecular clouds is ~5%)  
! something prevents large-scale collapse. 
•all throughout the early 1990’s, molecular clouds 

had been thought to be long-lived quasi-equilibrium 
entities. 
•molecular clouds are magnetized



•Mestel & Spitzer (1956): Magnetic 
fields can prevent collapse!!! 
-Critical mass for gravitational  

collapse in presence of B-field 

!
!

-Critical mass-to-flux ratio 
(Mouschovias & Spitzer 1976) 
  
!

!

-Ambipolar diffusion can initiate collapse

magnetic star formation 
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• BASIC ASSUMPTION: Stars form from  
magnetically highly subcritical cores 

• Ambipolar diffusion slowly  
increases (M/Φ): τAD ≈ 10τff 

• Once (M/Φ) > (M/Φ)crit : 
dynamical collapse of SIS 

•  Shu (1977) collapse solution 

•  dM/dt = 0.975 cs
3/G = const.  

• Was (in principle) only intended  
for isolated, low-mass stars

“standard theory” of star formation 

Frank Shu, 1943 -  

magnetic field



problems of “standard theory”

• Observed B-fields are weak, at most 
marginally critical (Crutcher 1999, Bourke et al. 
2001) 

• Magnetic fields cannot prevent decay of 
turbulence 
(Mac Low et al. 1998, Stone et al. 1998, Padoan & 
Nordlund 1999) 

• Structure of prestellar cores 
(e.g. Bacman  et al. 2000, Alves et al. 2001) 

• Strongly time varying dM/dt 
(e.g. Hendriksen et al. 1997, André et al. 2000) 

• More extended infall motions than 
predicted by the standard model 
(Williams & Myers 2000, Myers et al. 2000) 

• Most stars form as binaries 
(e.g. Lada 2006)

• As many prestellar cores as protostellar 
cores in SF regions (e.g. André et al 2002) 

• Molecular cloud clumps are chemically 
young  
(Bergin & Langer 1997, Pratap et al 1997, Aikawa 
et al 2001) 

• Stellar age distribution small (τff << τAD)  
(Ballesteros-Paredes et al. 1999, Elmegreen 2000, 
Hartmann 2001) 

• Strong theoretical criticism of the SIS as 
starting condition for gravitational 
collapse 
(e.g. Whitworth et al 1996, Nakano 1998, as 
summarized in Klessen & Mac Low 2004) 

• Standard AD-dominated theory is 
incompatible with observations  
(Crutcher et al. 2009, 2010ab, Bertram et al. 2011)

 (see e.g. Mac Low & Klessen, 2004, Rev. Mod. Phys., 76, 125-194)
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• laminar flows turn turbulent at high Reynolds numbers  
  

                                   
 
V= typical velocity on scale L,  ν = η/ρ = kinematic viscosity,     
turbulence for Re > 1000 ➞ typical values in ISM 108-1010 

• Navier-Stokes equation (transport of momentum) 
!

Re =

advection

dissipation

=

V L

⌫
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• putting all together, the momentum equation for ideal
gases in the absence of external forces, (2.24) or (2.20), but
with corrections from velocity gradients in non-equilibrium
systems to the stress-energy tensor (2.31), reads
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• the right-rand side of this equation can be simplified to
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• the left-hand side of (2.33) can be rewritten using the conti-
nuity equation (2.3),
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• we have now derived the transport equation for momen- see also Landau & Lifschitz, Vol.
6 “Hydrodynamics” §15tum in hydrodynamics, the Navier-Stokes equation:
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(2.36)

as expected, this simplifies to the Euler equation (2.24),

⇢
d~v
dt
= �~rP

for inviscid fluids, i.e. for ⌘ = ⇣ = 0;

 shear viscosity bulk viscosity 
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• we now examine how the symmetric and the antisymmet- the Levi-Civita tensor ✏i jk is the
totally skew-symmetric tensor
of rank 3; its values are

✏i jk =

8

>

>

>

<

>

>

>

:

1 even permutations of 123
�1 odd permutations of 123

0 some indices are equal

recall also that
@xl

@x j
= �l j

ric parts behave if the velocity field is caused by rigid rota-
tion,

~v = ~! ⇥ ~x , vi = ✏i jk! jxk , (2.26)

we see that the antisymmetric part turns into
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while the symmetric part vanishes; our tensor �i j there-
more must be symmetric;

• we go one step further and we split the tensor �i j into a
contribution from shear flows (with vanishing trace) which
deform the medium and a contribution from compression
(with vanishing off-diagonal elements);

• the trace of 1/2(@vi/@x j +@v j/@xi) simply is the divergence of
~v:

tr
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and we can construct the trace-free residual, the shear ten-
sor, as
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• putting it all together, we obtain the most general form of
the viscous stress tensor,

�i j ⌘ ⌘
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where the coefficients ⌘ and ⇣ determine the relative impor-
tance of shear and compression to the viscous stresses in
the fluids; consequently, ⌘ is called shear viscosity coeffi-
cient (sometimes second viscosity) and ⇣ bulk viscosity co-
efficient; both are characteristics of the material under con-
sideration and can be determined experimentally;

• the corresponding the stress-energy tensor with contribu-
tions from velocity gradients is then

Ti j = ⇢viv j + P�i j � �i j , (2.31)

where the minus sign is conventional;

viscous stress tensor   

properties of turbulence



• laminar flows turn turbulent at high Reynolds numbers  
  

                                   
 
V= typical velocity on scale L,  ν = η/ρ = kinematic viscosity,     
turbulence for Re > 1000 ➞ typical values in ISM 108-1010 

• vortex streching --> turbulence is intrinsically anisotropic  
(only on large scales you may get  
homogeneity & isotropy in a statistical sense;  
see Landau & Lifschitz, Chandrasekhar, Taylor, etc.) 
 
  
(ISM turbulence: shocks & B-field  
cause additional inhomogeneity) 

!

Re =

advection

dissipation

=

V L

⌫

properties of turbulence
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log kL-1 ηK-1

energy source & scale 
NOT known  
(supernovae, winds,  
spiral density waves?)

dissipation scale not known 
(ambipolar diffusion,   
molecular diffusion?)

• scale-free behavior of turbulence 
in the range 
!
• slope between -5/3 ... -2 
• energy “flows” from large to small 

scales, where it turns into heat 

  

€ 

L
ηK

≈ Re3/ 4

transfer

turbulent cascade in ISM



•

 molecular clouds 

σrms  ≈ several km/s 
Mrms > 10 
    L  > 10 pc
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log kL-1 ηK-1

energy source & scale 
NOT known  
(supernovae, winds,  
spiral density waves?)

dissipation scale not known 
(ambipolar diffusion,   
molecular diffusion?)
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subsonic
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•

 massive cloud cores 

σrms  ≈ few km/s         
Mrms ≈ 5 
      L ≈ 1 pc 

•

dense  
protostellar  
cores 

σrms << 1 km/s          
Mrms ≤ 1    
     L ≈ 0.1 pc 

turbulent cascade in ISM



• BASIC ASSUMPTION:   
  
star formation is controlled by interplay between 
supersonic turbulence and self-gravity  

• turbulence plays a dual role: 

- on large scales it provides support 

- on small scales it can trigger collapse 

• some predictions: 

- dynamical star formation timescale τff 

- high binary fraction 

- complex spatial structure of  
embedded star clusters 

- and many more . . .

gravoturbulent star formation

Mac Low & Klessen, 2004, Rev. Mod. Phys., 76, 125-194 
McKee & Ostriker, 2007, ARAA, 45, 565



dynamical SF in a nutshell

interstellar gas is highly inhomogeneous 
gravitational instability 
thermal instability  
turbulent compression (in shocks δρ/ρ ∝ M2; in atomic gas: M ≈ 1...3)  

cold molecular clouds can form rapidly in high-density regions at stagnation 
points of convergent large-scale flows  

chemical phase transition:  atomic ! molecular 
process is modulated by large-scale dynamics in the galaxy 

inside cold clouds: turbulence is highly supersonic (M ≈ 1...20)  
→ turbulence creates large density contrast,  
    gravity selects for collapse  
 

((((→ GRAVOTUBULENT FRAGMENTATION  
turbulent cascade: local compression within a cloud provokes collapse ! 
formation of individual stars and star clusters 

 (e.g. Mac Low & Klessen, 2004, Rev. Mod. Phys., 76, 125-194)

 space
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Density structure of MC’s

(Motte, André, & Neri 1998)

molecular clouds 
are highly 
inhomogeneous 
!

stars form in the 
densest and coldest 
parts of the cloud    
!
ρ-Ophiuchus cloud 
seen in dust 
emission

let‘s focus on 
a cloud core 
like this one



Evolution of cloud cores

How does this core evolve? 
Does it form one single massive star or 
cluster with mass distribution?  
!
Turbulent cascade „goes through“ cloud 
core  
--> NO scale separation possible  
--> NO effective sound speed   
Turbulence is supersonic! 
--> produces strong density contrasts: 
     δρ/ρ ≈ M2  
--> with typical M ≈ 10 --> δρ/ρ ≈ 100! 
many of the shock-generated fluctuations 
are Jeans unstable and go into collapse 
-->  expectation: core breaks up and  
      forms a cluster of stars



Evolution of cloud cores

indeed ρ-Oph B1/2 contains several 
cores (“starless” cores are denoted by !, cores 
with embedded protostars by ")

(Motte, André, & Neri 1998)



Formation and evolution of cores

protostellar cloud cores form at   
stagnation point in convergent  
turbulent flows 

!

!

!

!

if M > Mcrit ∝ρ-1/2 T3/2:       collapse & star formation 

pf M < Mcrit ∝ρ-1/2 T3/2:      reexpansion after end of  
            external compression 

!

typical timescale: t ≈ 104 ... 105 yr

(e.g. Vazquez-Semadeni et al 2005)



What happens to distribution of 
cloud cores?

Two exteme cases:  
(1)  turbulence dominates energy budget: 

α=Ekin/|Epot| >1  
--> individual cores do not interact  
--> collapse of individual cores  
     dominates stellar mass growth  
--> loose cluster of low-mass stars 

(2)  turbulence decays, i.e. gravity dominates: 
α=Ekin/|Epot| <1  
--> global contraction  
--> core do interact while collapsing  
--> competition influences mass growth  
--> dense cluster with high-mass stars 

Formation and evolution of cores



turbulence creates a hierarchy of clumps



as turbulence decays locally, contraction sets in



as turbulence decays locally, contraction sets in



while region contracts, individual clumps collapse to form stars



while region contracts, individual clumps collapse to form stars



individual clumps collapse to form stars



individual clumps collapse to form stars



in dense clusters, clumps may merge while collapsing  
--> then contain multiple protostars

α=Ekin/|Epot| < 1



in dense clusters, clumps may merge while collapsing  
--> then contain multiple protostars



in dense clusters, clumps may merge while collapsing  
--> then contain multiple protostars



in dense clusters, competitive mass growth  
becomes important 



in dense clusters, competitive mass growth  
becomes important 



•

•

in dense clusters, N-body effects influence mass growth



•

•

•

low-mass objects may 
become ejected --> accretion stops



feedback terminates star formation



result: star cluster, possibly with HII region



NGC 602 in the LMC: Hubble Heritage Image



• energy balance 

- in molecular clouds:  

- kinetic energy ~ potential energy ~ magnetic energy > thermal energy  

- models based on HD turbulence misses important physics 

- in certain environments (Galactic Center, star bursts), energy density  
in cosmic rays and radiation is important as well 

• time scales  

- star clusters form fast, but more slowly than predicted by HD only 
(feedback and magnetic fields do help) 

- initial conditions do matter  
(turbulence does not erase memory of past dynamics)  

• star formation efficiency (SFE) 

- SFE in gravoturbulent models is too high (again more physics needed) 

some concerns of simple model



• stars form from the complex interplay of self-gravity and a large number of 
competing processes (such as turbulence, B-field, feedback, thermal pressure) 

• the relative importance of these processes depends on the environment 

- prestellar cores --> thermal pressure is important 
molecular clouds --> turbulence dominates 

- massive star forming regions (NGC602): radiative feedback is important  
small clusters (Taurus): evolution maybe dominated by external turbulence   

• star formation is regulated by various feedback processes 

• star formation is closely linked to global galactic dynamics (KS relation)

current status

/(Larson’s relation: σ    L1/2)}

Star formation is intrinsically a multi-scale and multi-physics 
problem, where it is difficult to single out individual processes. 
Simple theoretical approaches usually fail.  



Carina with HST

Star formation is intrinsically a multi-scale and multi-physics 
problem, where it is difficult to single out individual processes. 
Progress requires a comprehensive numerical approach.



HH 901/902 in Carina with HST

Star formation is intrinsically a multi-scale and multi-physics 
problem, where it is difficult to single out individual processes. 
Progress requires a comprehensive numerical approach.  



HH 901/902 in Carina with HST

• what processes determine the initial mass function (IMF) of stars? 

• what are the initial conditions for star cluster formation? 
how does cloud structure translate into cluster structure?  

• how do molecular clouds form and evolve?   

• what drives turbulence? 

• what triggers / regulates star formation on galactic scales? 

• how does star formation depend on metallicity?  
how do the first stars form? 

• star formation in extreme environments (galactic center, starburst, etc.), 
how does it differ from a more “normal” mode? 

!

selected open questions



HH 901/902 in Carina with HST

• what processes determine the initial mass function (IMF) of stars? 

• what are the initial conditions for star cluster formation? 
how does cloud structure translate into cluster structure?  

• how do molecular clouds form and evolve?   

• what drives turbulence? 

• what triggers / regulates star formation on galactic scales? 

• how does star formation depend on metallicity?  
how do the first stars form? 

• star formation in extreme environments (galactic center, starburst, etc.), 
how does it differ from a more “normal” mode? 

!

selected open questions



HI Maps

galaxies from THINGS and HERACLES survey  
(images from Frank Bigiel, ZAH/ITA)



H2 Maps

galaxies from THINGS and HERACLES survey  
(images from Frank Bigiel, ZAH/ITA)



SFR Maps

galaxies from THINGS and HERACLES survey  
(images from Frank Bigiel, ZAH/ITA)

• HI gas more extended!

• H2 and SF well correlated



(Dobbs & Bonnell 2007)

example: full galaxy model



example: full galaxy model3

tween the cell or particle of interest and the edge of the
computational volume when computing the column density
or the dust extinction. This is a reasonable choice if one is
interested in modelling a isolated molecular cloud (see e.g.
Glover & Clark 2012b), but in the large-scale simulations
presented here, it would lead to a substantial overestimate
of the column densities along lines of sight passing through
the mid-plane of the disk. To avoid this, we define a shield-
ing length Lsh = 30 pc, and when calculating our column
density and extinction maps, we include contributions only
from gas located at a distance L ! Lsh from the arepo

cell of interest. Our choice of a value for 30 pc for Lsh is
motivated by the fact that in the solar neighbourhood, the
typical distance to the nearest O or B star is of order 30 pc
(Reed 2000; Máız-Apellániz 2001).

2.3 Galactic potential

The final ingredient needed to study molecular cloud forma-
tion is a model for the galactic potential. For this we adopt
the approach of Dobbs (2006) and impose an analytical po-
tential representing a four-armed spiral upon a disc of gas
without self-gravity. A logarithmic potential that produces
a flat rotation curve of v0 = 220 kms−1 Binney & Tremaine
(1987) is combined with a potential for the outer halo from
Caldwell & Ostriker (1981). This is then perturbed by a
four-armed spiral component from Cox & Gómez (2002).
The spiral potential has a pitch angle α = 15◦, and a pat-
tern speed of 2 × 10−8 rad yr−1, which corresponds to a
co-rotation radius of 11 kpc. The gas is therefore orbiting
faster than the spiral pattern in these simulations.

This scheme is of course an oversimplification that ne-
glects stellar feedback and the self-gravity of the gas. The
lack of stellar feedback means that we will have too many
molecular clouds in the simulation compared to models with
feedback (c.f. Hopkins et al. 2012). However, this will to
some extent be offset by the absence of self-gravity, which
will generally decrease the number of large clouds formed.
The absence of self-gravity is unlikely to be a major ob-
stacle in forming H2 and CO as the transition from atomic
to molecular gas occurs at number densities of about 1-100
cm−3, where the contribution from self-gravity is still small
compared to the global potential. Owing to the lack of stel-
lar feedback, we advise treating the total values of the H2

and CO masses in our simulation with caution. However,
we reproduce the morphology of a multiphase, filamentary,
spiral galaxy well and therefore believe that we have an ac-
curate picture of the ratio of CO to H2 across the disc. If
anything, our lack of feedback will lead us to underestimate
the amount of dark gas, as there will be more dense, fully-
molecular clouds that are bright in CO emission than there
would be if we were to include feedback.

2.4 Initial Conditions

The initial setup of each simulation is a uniform torus of
thickness 200 pc, inner radius 5 kpc, and outer radius 10 kpc.
The potential applied to the gas imparts a clockwise radial
velocity of 220 kms−1 and causes the gas to drift to the disc
mid-plane. We do not include the inner portion of the disc,
both for reason of computational efficiency, and also because

Table 1. The simulation parameters

Simulation Surface Density Radiation Field
M⊙ pc−2 G0

Milky Way 10 1
Low Density 4 1
Strong Field 10 10
Low & Weak 4 0.1

1000

4tra
ns

itio
n transition

220 km/s 

Figure 1. Top: Schematic diagram illustrating the refinement
scheme. The numbers in each section represent the mean mass of
gas in each arepo cell. The sections all rotate with the mean gas
motion at 7.5 kpc. We focus our analysis on the highly refined
4 M⊙ section after the galaxy has completed one and a half full
rotations. Bottom: Spatial resolution as a function of gas number
density. Gas with a number density greater than 35 cm−3 has a
cell radius of less than 1 pc.

the behaviour of gas in this region will be strongly influenced
by interactions with the galactic bar, if one is present. In
addition, we expect the interstellar radiation field in this
region to be significantly higher than in the region we study
in this paper. The disc composition is initially fully atomic
and we assume a carbon abundance (by number) relative to
hydrogen of 1.4× 10−4 , an oxygen abundance of 3.2× 10−4 ,
and a dust to gas ratio of 0.01. As the gas rotates in the
potential, spiral structure develops and molecules form in
the dense gas.

We performed four simulations, with parameters as out-

c⃝ 2010 RAS, MNRAS 000, 1–16
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faster than the spiral pattern in these simulations.
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to molecular gas occurs at number densities of about 1-100
cm−3, where the contribution from self-gravity is still small
compared to the global potential. Owing to the lack of stel-
lar feedback, we advise treating the total values of the H2

and CO masses in our simulation with caution. However,
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the amount of dark gas, as there will be more dense, fully-
molecular clouds that are bright in CO emission than there
would be if we were to include feedback.
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The initial setup of each simulation is a uniform torus of
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Figure 1. Top: Schematic diagram illustrating the refinement
scheme. The numbers in each section represent the mean mass of
gas in each arepo cell. The sections all rotate with the mean gas
motion at 7.5 kpc. We focus our analysis on the highly refined
4 M⊙ section after the galaxy has completed one and a half full
rotations. Bottom: Spatial resolution as a function of gas number
density. Gas with a number density greater than 35 cm−3 has a
cell radius of less than 1 pc.

the behaviour of gas in this region will be strongly influenced
by interactions with the galactic bar, if one is present. In
addition, we expect the interstellar radiation field in this
region to be significantly higher than in the region we study
in this paper. The disc composition is initially fully atomic
and we assume a carbon abundance (by number) relative to
hydrogen of 1.4× 10−4 , an oxygen abundance of 3.2× 10−4 ,
and a dust to gas ratio of 0.01. As the gas rotates in the
potential, spiral structure develops and molecules form in
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the mid-plane of the disk. To avoid this, we define a shield-
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tential representing a four-armed spiral upon a disc of gas
without self-gravity. A logarithmic potential that produces
a flat rotation curve of v0 = 220 kms−1 Binney & Tremaine
(1987) is combined with a potential for the outer halo from
Caldwell & Ostriker (1981). This is then perturbed by a
four-armed spiral component from Cox & Gómez (2002).
The spiral potential has a pitch angle α = 15◦, and a pat-
tern speed of 2 × 10−8 rad yr−1, which corresponds to a
co-rotation radius of 11 kpc. The gas is therefore orbiting
faster than the spiral pattern in these simulations.

This scheme is of course an oversimplification that ne-
glects stellar feedback and the self-gravity of the gas. The
lack of stellar feedback means that we will have too many
molecular clouds in the simulation compared to models with
feedback (c.f. Hopkins et al. 2012). However, this will to
some extent be offset by the absence of self-gravity, which
will generally decrease the number of large clouds formed.
The absence of self-gravity is unlikely to be a major ob-
stacle in forming H2 and CO as the transition from atomic
to molecular gas occurs at number densities of about 1-100
cm−3, where the contribution from self-gravity is still small
compared to the global potential. Owing to the lack of stel-
lar feedback, we advise treating the total values of the H2

and CO masses in our simulation with caution. However,
we reproduce the morphology of a multiphase, filamentary,
spiral galaxy well and therefore believe that we have an ac-
curate picture of the ratio of CO to H2 across the disc. If
anything, our lack of feedback will lead us to underestimate
the amount of dark gas, as there will be more dense, fully-
molecular clouds that are bright in CO emission than there
would be if we were to include feedback.

2.4 Initial Conditions

The initial setup of each simulation is a uniform torus of
thickness 200 pc, inner radius 5 kpc, and outer radius 10 kpc.
The potential applied to the gas imparts a clockwise radial
velocity of 220 kms−1 and causes the gas to drift to the disc
mid-plane. We do not include the inner portion of the disc,
both for reason of computational efficiency, and also because

Table 1. The simulation parameters

Simulation Surface Density Radiation Field
M⊙ pc−2 G0

Milky Way 10 1
Low Density 4 1
Strong Field 10 10
Low & Weak 4 0.1

1000

4tra
ns

itio
n transition

220 km/s 

Figure 1. Top: Schematic diagram illustrating the refinement
scheme. The numbers in each section represent the mean mass of
gas in each arepo cell. The sections all rotate with the mean gas
motion at 7.5 kpc. We focus our analysis on the highly refined
4 M⊙ section after the galaxy has completed one and a half full
rotations. Bottom: Spatial resolution as a function of gas number
density. Gas with a number density greater than 35 cm−3 has a
cell radius of less than 1 pc.

the behaviour of gas in this region will be strongly influenced
by interactions with the galactic bar, if one is present. In
addition, we expect the interstellar radiation field in this
region to be significantly higher than in the region we study
in this paper. The disc composition is initially fully atomic
and we assume a carbon abundance (by number) relative to
hydrogen of 1.4× 10−4 , an oxygen abundance of 3.2× 10−4 ,
and a dust to gas ratio of 0.01. As the gas rotates in the
potential, spiral structure develops and molecules form in
the dense gas.

We performed four simulations, with parameters as out-

c⃝ 2010 RAS, MNRAS 000, 1–16
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Figure 2. The gas column density in the highly resolved section of the disc in the Milky Way simulation. The gas has a range of
morphologies, from dense spiral arms, to filamentary spurs, to diffuse inter-arm regions.

is predominantly present in the spiral arms, but there is also
molecular gas in inter-arm spurs and in the inner regions
of the disc. In the inter-arm regions molecular hydrogen is
often found in long filaments which were originally spurs
connected to the spiral arms but were sheared off as the
disc rotated. Figure 5 shows the ratio of H2 to CO column
densities in the gas. There is considerable variation in the
abundance of CO. In particular, the long inter-arm filaments
which are so apparent in Figure 4 are much less visible in CO
emission. This can be attributed to their narrow filamentary
geometry being inefficient at shielding the gas from the am-
bient radiation field. Due to the low abundance of CO in
these regions the molecular gas is likely to appear ‘dark’ in
observations.

3.2 Dark Gas Fraction

In order to quantify the amount of CO dark molecular gas in
the simulation we plot in Figure 6 the cumulative molecular
hydrogen fraction against NCO . For a given column density
sensitivity threshold this will correspond to the dark gas
fraction which we define here as the CO dark fraction of the
total molecular mass

fDG =
Mx

H2

MCO
H2

+Mx
H2

(1)

where Mx
H2

is the mass of CO dark H2 and MCO
H2

is the mass
of CO bright H2. So if an observation is sensitive down to CO
column densities of 1016 cm−2 then Figure 6 shows that 46%
of the molecular gas would be ‘dark’. Half of the molecular
gas is below a CO column density of 6.5× 1016 cm−2. This
definition of the dark gas fraction is equivalent to that of
Wolfire et al. (2010), and is in contrast to some authors who

c⃝ 2010 RAS, MNRAS 000, 1–16



Rowan Smith et al. (2014, in prep.)

6 Smith et al.

Figure 4. The H2 column density in the highly resolved segment of the Milky Way simulation. H2 is predominantly formed in the spiral
arms and long filaments in the inter-arm regions.

define the dark gas fraction relative to the total atomic and
molecular gas. We will discuss how our calculated values
compare to those in the literature in Section 5.

Figure 6 shows two distinct regimes, an initial smooth
increase in H2 mass up to column densities of a few times
1017 cm−2, and then a rapid increase where the gas begins
to self-shield. These two regimes correspond to diffuse and
dense clouds. It is important to note that diffuse clouds are
likely to be only partially molecular (Savage et al. 1977;
Liszt et al. 2010). In the Milky Way simulation 17.2% of the
total mass in the disc is in gas with a molecular hydrogen
abundance between 0.1 and 0.3. In contrast 26.5 % of the
total gas mass is purely atomic, 15.9% has an H2 abundance
of less than 0.1, and 40.4% has an abundance of greater
than 0.3. This implies that partially molecular gas is an
important part of the Milky Way mass budget. However gas
with an abundance of 0.1 < fH2 < 0.3 has a mean density

of < n >= 25.9 cm−3 and temperature of < T >= 104.4 K
so, while it does contain CO dark H2, it is unlikely to form
stars.

3.3 CO abundance

From our data it is possible to derive the correlation be-
tween the CO column density, NCO and the abundance of
CO relative to molecular hydrogen ZCO = NCO/NH2 , and
then compare this to observations. The left panel of Figure
7 shows the relation between NH2 and NCO in our simula-
tion. In blue we show a fit proposed by Sheffer et al. (2008)
to the values derived from UV absorption observations. The
observed relation from Sheffer et al. (2008) is higher than
that in our simulation below densities of 1020 cm−2. This
could be due to uncertainties in our chemical modelling at
low density Simon do you want to comment on this?

c⃝ 2010 RAS, MNRAS 000, 1–16



Rowan Smith et al. (2014, in prep.)

7

Figure 5. The CO/H2 column density ratio in the highly resolved
segment of the Milky Way simulation. The CO is predominantly
found in the spiral arms and does not trace the more diffuse H2

in the inter-arm regions well.

Figure 6. Dark gas fraction when sensitive down to a given value
of NCO . Half of the molecular gas is below a CO column density
of 6.5× 1016 cm−2

Alternatively, the difference could be because we calculate
our column densities based on a top down view of the galaxy,
whereas Sheffer et al. (2008) are using long sight-lines within
the plane of the galaxy. Moreover, there needs to be suffi-
cient CO present for the gas to be detectable in absorption
which will bias the observational sample to larger values at
low column densities. Above densities of a few times 1020

cm−2 the observations are in good agreement with our val-
ues.

In the middle panel we show the relative abundance
ZCO =NCO/NH2 as a function of hydrogen column den-
sity. At low column densities the abundance is much lower
than the value of 10−4 commonly assumed in molecular gas.
As can be seen by the scatter in the distribution of ZCO

at H2 column densities of 1020 cm−2, there is consider-
able variability in this column density regime. Similar re-
gional variability in CO abundances has been seen in diffuse
gas clouds by Liszt & Pety (2012). The right hand panel
of Figure 7 shows the correlation between NCO and ZCO

in our simulation. There is a tight correlation between the
two quantities as both are determined by the same local
conditions. We preform a χ2 fit of the distribution above
NCO values of 1010 cm−2 using a function of the form
log(ZCO) = AlogN(CO) + B to obtain an empirical for-
mula that can be used to predict CO relative abundances
for a given CO column density. The best fit values are A=-
18.1 and B=0.8 such that,

log(ZCO[cm
−2]) = −18.1log(NCO [cm−2]) + 0.8. (2)

3.4 Estimated X-factor

To obtain useful observational insights, we now use NCO to
estimate the integrated CO emission WCO. In observations
an X-factor with an empirically determined value of 2 ×

1020 cm−2 (K km s−1)−1 (Bolatto et al. 2013) is usually
applied to WCO to deduce NH2 . In this work we do not
solve the full radiative transfer problem, as applying non-
LTE radiative transfer to one eighth of a galactic disk is
prohibitively computationally expensive. Instead we use a
curve of growth approach (Pineda et al. 2008; Glover et al.
2010) to estimate the CO emission.

We first compute the average CO temperature of the
column density grid by calculating the CO abundance
weighted mean temperature of the cells in each grid point

TCO =
n
∑

i=0

TiACOi/
n
∑

i=0

ACOi. (3)

For the high column density gas we can assume that the gas
is in local thermal equilibrium and the upper levels of the
molecule are well populated due to collisions. In this case,
the excitation temperature of the gas will tend towards the
kinetic temperature of the gas. For the more diffuse gas the
excitation temperature will lie between the kinetic temper-
ature and the temperature of the ambient radiation field.
Burgh et al. (2007) found an average excitation temper-
ature of Tex = 4.1 K along diffuse CO sightlines in the
Milkyway. This is lower than the gas temperature which
has a typical CO weighted value of TCO = 25 K of at
1015 < NCO ! 1016 cm−2 in our simulation. However, we
will use the CO weighted gas temperature as the excitation
temperature at low densities. This is due to the tendency
of sub-thermally excited CO to emit more brightly due to
the higher gas temperature as noted by Liszt et al. (2010);
Goldreich & Kwan (1974). This ensures that our estimate of
WCO is a conservative one that overestimates the emission
at low densities, and consequently minimises our estimated
CO dark molecular gas fraction.

Assuming local thermal equilibrium, and an excitation
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Figure 10. The morphology of CO dark molecular gas. The greyscale background image shows the NH2
plotted in Figure 4 and the

purple points show the magnitude of the integrated CO emission WCO. Many of the clouds in the inter-arm region have no WCO emission
above 0.1 K kms−1 and are thus entirely ‘dark’.

Table 2. Total gas fractions at various H2 abundances for the four simulations. In all cases the partially molecular gas is a non-negligible
part of the gas budget compared to the molecular mass.

Simulation Atomic Mainly Atomic Partially Molecular Molecular
fH2

< 10−5 10−5 < fH2
< 10−1 10−1 < fH2

< 0.3 0.3 < fH2
< 0.5

Milky Way 0.265 0.159 0.172 0.404
Low Density 0.706 0.170 0.090 0.035
Strong Field 0.863 0.031 0.041 0.066
Low & Weak 0.123 0.299 0.201 0.378

simulation where there is not enough mass in the disc to
build up large column densities in the inter-arm regions.
Table 3 shows that the three comparison simulations gener-
ally have CO dark molecular gas fractions above 50 percent
when we adopt thresholds of NCO = 1016 and WCO =0.1.

This suggests that the CO dark gas fraction is likely to be
higher than that of the Milky Way disc in solar metallic-
ity external galaxies which have a lower surface density or
higher ambient radiation field.

Table 3 also shows the estimated value of XCO in all
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above 0.1 K kms−1 and are thus entirely ‘dark’.

Table 2. Total gas fractions at various H2 abundances for the four simulations. In all cases the partially molecular gas is a non-negligible
part of the gas budget compared to the molecular mass.

Simulation Atomic Mainly Atomic Partially Molecular Molecular
fH2

< 10−5 10−5 < fH2
< 10−1 10−1 < fH2

< 0.3 0.3 < fH2
< 0.5

Milky Way 0.265 0.159 0.172 0.404
Low Density 0.706 0.170 0.090 0.035
Strong Field 0.863 0.031 0.041 0.066
Low & Weak 0.123 0.299 0.201 0.378

simulation where there is not enough mass in the disc to
build up large column densities in the inter-arm regions.
Table 3 shows that the three comparison simulations gener-
ally have CO dark molecular gas fractions above 50 percent
when we adopt thresholds of NCO = 1016 and WCO =0.1.

This suggests that the CO dark gas fraction is likely to be
higher than that of the Milky Way disc in solar metallic-
ity external galaxies which have a lower surface density or
higher ambient radiation field.

Table 3 also shows the estimated value of XCO in all
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There is 
lots of H2 
gas that is 
NOT traced 
by CO
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Figure 7. The relationship between NH2
, NCO and ZCO in the Milky Way simulation. The plotted points are a two dimensional

histogram of the gas distribution with the blue points representing the least populated parts of the distribution and orange the most
densely populated. The blue line show a fit derived by Sheffer et al. (2008) from their UV absorption studies. At low column densities
there is considerable local variation in the amount of CO present in the gas as shown by the large scatter in the distributions at these
column densities.

temperature to estimate level populations, the relationship
between NCO and the optical depth, τ10 is,

τ10 =
A10c

3

8πν3
10

g1
g0

f0

[

1− exp

(

−E10

kT

)]

NCO

∆v
(4)

where A10 is the spontaneous radiative transition rate for
the J = 1 → 0 transition, ν10 is the frequency of the tran-
sition, E10 = hν10 is the corresponding energy, g0 and g1
are the statistical weights of the J = 0 and J = 1 levels,
respectively, and f0 is the fractional level population of the
J = 0 level. We take values for A10 and ν10 from the Lei-
den Atomic and Molecular data base (Schöier et al. 2005).
Following the arguments presented in Bolatto et al. (2013)
we obtain an estimate of the velocity dispersion of the gas
by assuming that the gas in each column density pixel is in
energy equilibrium such that ∆v =

√

GM/5rcell. For the
dense highly molecular gas this results in typical values of
around 3 kms−1 which is similar to the values used in Glover
et al. (2010) for dense clouds. For a temperature of T=10
K typical of cold molecular gas the CO becomes optically
thick at column densities of NCO ∼ 2× 1016 cm−2.

We then use the curve of growth method of Pineda et al.
(2008) which uses the integral of the photon escape proba-
bility β(τ ) to calculate the integrated CO intensity

WCO = 2Tb∆(v)

∫ τ10

0

β(τ )dτ (5)

where Tb is the brightness temperature. We approximate
β(τ ) by assuming that it is the same as for a plane-parallel,
uniform slab Tielens (2005):

β(τ ) =

{

[1− exp(−2.34τ )]4.68τ if τ ! 7

(4τ [ln(τ/
√
π)]1/2)−1 if τ > 7

Finally we integrate the escape probability for each grid cell
from zero to its optical depth and derive the estimated value
of WCO associated with each value of NCO and NH2 .

In Figure 8 we plot the dark gas fraction as a function
of the estimated WCO , and find that 42% of the gas has

Figure 8. Dark gas fraction as a function of estimated WCO .
42% of the molecular mass lies below WCO values of less than 0.1
K kms−1.

integrated CO emission of less than 0.1 K kms−1. The per-
centage of CO dark molecular gas derived from Figure 8 is
very similar to the value of 46% found from Figure 6 us-
ing a column density threshold of NCO = 1016 cm−2. Our
estimate of WCO is approximate, however in past work by
Glover et al. (2010) we have found it reliable to within a
factor of three when compared with true radiative transfer.
A factor of three change in WCO would only change Figure
8 very slightly and would make no qualitative changes to
our conclusion.

Using the integrated intensity it is possible to calculate
the CO-to-H2 conversion factor XCO =NH2/WCO for each
cell. Figure 9 shows WCO as a function of NH2 with the solid
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HH 901/902 in Carina with HST

• what processes determine the initial mass function (IMF) of stars? 

• what are the initial conditions for star cluster formation? 
how does cloud structure translate into cluster structure?  

• how do molecular clouds form and evolve?   

• what drives turbulence? 

• what triggers / regulates star formation on galactic scales? 

• how does star formation depend on metallicity?  
how do the first stars form? 

• star formation in extreme environments (galactic center, starburst, etc.), 
how does it differ from a more “normal” mode? 

!

selected open questions
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stellar mass fuction
stars seem to follow a universal  
mass function at birth --> IMF

(Kroupa 2002) Orion, NGC 3603, 30 Doradus  
(Zinnecker & Yorke 2007)



(Kroupa 2002)

power-law approximation to the 
IMF (Kroupa, Tout, Gillmore 1993, 
Kroupa 2002) 

IMF: observations 1



(Kroupa 2002)

(Chabrier 2003)

IMF: observations 2



IMF: observations 3

system vs. single-star IMF
comparison at low-mass end

(Chabrier 2003)



BUT: maybe variations 
with galaxy type 
(bottom heavy in the 
centers of large ellipticals)

4 M. Cappellari et al.

Figure 1. The Virial Plane and it projections. The top two panels show the two main projections of the VP in the (MJAM,σe) and (MJAM, Rmax
e ) coordinates.

Overlaid are lines of constant σe = 50, 100, 200, 300, 400, 500 km s−1 (dashed blue), constant Rmax
e = 0.1, 1, 10, 100 kpc (dot-dashed red) and constant

Σe = 108, 109, 1010, 1011 M⊙ kpc−2 (dotted black) predicted by the virial relation. The observed (MJAM, σe, Rmax
e ) points follow the relation so closely

that the coordinates provide a unique mapping on these diagram and one can reliably infer all characteristics of the galaxies from any individual projection. In
each panel the galaxies are coloured according to the (LOESS smoothed) log(M/L)JAM, as shown in the colour bar at the bottom. Moreover in all panels the
thick red line shows the ZOE relation given by equation (3), again projected according to the virial relationMJAM = 5.0 × σ2

eR
max
e /G. While the top two

panels contain different observable quantities, the bottom two panels merely apply a coordinate transformation to the quantities in the top two panels, to show
the effective phase space density feff ≡ 1/(σRe

2) and effective mass surface density Σe ≡ MJAM/(2πRe
2). Two galaxies stand out for being significantly

above the ZOE in the (MJAM,σe) and (MJAM,Σe) projections. The top one is NGC 5845 and the bottom one is NGC 4342.

3 PROJECTIONS OF THE VIRIAL PLANE

3.1 TotalM/L variations

We have shown in Paper XIX that the existence of the FP is almost
entirely due, with good accuracy, to a virial equilibrium condition
combined with a smooth variation in M/L. Once this is clarified,
the edge-on projection of the Virial Plane becomes uninteresting
from the point of view of the study of galaxy formation, as it merely
states an equilibrium condition satisfied by galaxies and it does not
encode any memory of the formation process itself. This is in agree-
ment with previous findings with simulations (Nipoti et al. 2003;
Boylan-Kolchin et al. 2006). All information provided by scaling
relations on galaxy formation is now encoded in the non edge-on
projections of the Virial Plane, and first of all in the distribution
ofM/L on that plane. In Paper XIX we also confirmed thatM/L
correlates remarkably tightly with σe (Cappellari et al. 2006). This
is especially true (i) for slow rotators, (ii) for galaxies in clusters
and (iii) at the high-end of the σe range. Here we look at the entire

Virial Plane and try to clarify the reason for these and other galaxy
correlations.

In a classic paper Bender et al. (1992) studied the distribution
of hot stellar systems in a three-dimensional space, they called κ
space, defined in such a way that one of the axes was empirically de-
fined to lie nearly orthogonal to the plane. This made it easy to look
at both the edge-on and face-on versions of the plane. In this paper,
thanks to the availability of state-of-the-art integral-field kinemat-
ics and the construction of detailed dynamical models, we can use
mass as one of the three variables (MJAM,σe, Re). We have shown
that in these variables the plane is extremely thin and follows the
scalar virial equationMJAM = 5.0 × σ2

eR
max
e /G within our tight

errors. This implies that any projection of the plane contains the
same amount of information, except for a change of coordinates.
Instead of looking at the plane precisely face-on, we decided to con-
struct special projections that correspond to physically-meaningful
and easy-to-interpret quantities.

c⃝ 2012 RAS, MNRAS 000, 1–25

(Cappellari et al. 2012, Nature, 484, 485, Cappellari et al. 2012ab, MNRAS, submitted,  
also van Dokkum & Conroy 2010, Nature, 468, 940,  Wegner et al. 2012, AJ, 144, 78, and others)

from JAM (Jeans anisotropic multi 
Gaussian expansion) modeling!
!
inferred excess of low-mass stars 
compared to Kroupa IMF!
!
   

IMF: observations 4



IMF: theoretical approach

distribution of stellar masses depends on 
turbulent initial conditions  
--> mass spectrum of prestellar cloud cores 
collapse and interaction of prestellar cores 
--> competitive accretion and N-body effects 
thermodynamic properties of gas 
--> balance between heating and cooling 
--> EOS (determines which cores go into collapse) 
(proto) stellar feedback terminates star formation 
ionizing radiation, bipolar outflows, winds, SN

(e.g. Larson 2003, Prog. Rep. Phys.; Mac Low & Klessen, 2004, Rev. Mod. Phys, 76, 125 - 194)



IMF: theoretical approach

distribution of stellar masses depends on 
turbulent initial conditions  
--> mass spectrum of prestellar cloud cores ??? 
collapse and interaction of prestellar cores 
--> competitive accretion and N-body effects 
thermodynamic properties of gas 
--> balance between heating and cooling 
--> EOS (determines which cores go into collapse) 
(proto) stellar feedback terminates star formation 
ionizing radiation, bipolar outflows, winds, SN

(e.g. Larson 2003, Prog. Rep. Phys.; Mac Low & Klessen, 2004, Rev. Mod. Phys, 76, 125 - 194)

 
 



image from Alyssa Goodman: COMPLETE survey



Schmidt et al. (2009, A&A, 494, 127)



combine scale free process ! POWER LAW BEHAVIOR  
- turbulence (Padoan & Nordlund 2002, Hennebelle & Chabrier   2008) 
- gravity in dense clusters (Bonnell & Bate 2006, Klessen 2001) 
- universality: dust-induced EOS kink insensitive to radiation  
  field (Elmegreen et al. 2008) 

with highly stochastic processes ! central limit theorem 
! GAUSSIAN DISTRIBUTION  
- basically mean thermal Jeans length (or feedback) 
- universality: insensitive to metallicity (Clark et al. 2009, submitted) 

caveat: everybody gets the IMF!

+ =



caveat: everybody gets the IMF!

+ =

“everyone” gets the right IMF  
! better look for secondary indicators 

stellar multiplicity  
protostellar spin (including disk) 
spatial distribution + kinematics in young clusters 
magnetic field strength and orientation  



distribution of stellar masses depends on 
turbulent initial conditions  
--> mass spectrum of prestellar cloud cores 
collapse and interaction of prestellar cores 
--> competitive mass growth and N-body effects 
thermodynamic properties of gas 
--> balance between heating and cooling 
--> EOS (determines which cores go into collapse) 
(proto) stellar feedback terminates star formation 
ionizing radiation, bipolar outflows, winds, SN

(e.g. Larson 2003, Prog. Rep. Phys.; Mac Low & Klessen, 2004, Rev. Mod. Phys, 76, 125 - 194)

IMF



example: model of Orion cloud
„model“ of Orion cloud: 
15.000.000 SPH particles, 
104 Msun in 10 pc, mass resolution 
0,02 Msun, forms ~2.500 
„stars“ (sink particles) 

!
isothermal EOS, top bound, bottom 
unbound 

!
has clustered as well as distributed 
„star“ formation 

!
efficiency varies from 1% to 20% 

!
develops full IMF  
(distribution of sink particle masses)

(Bonnell, Smith, Clark, & Bate 2010, MNRAS, 410, 2339)



(Spitzer: Megeath et al.)

example: model of Orion cloud
„model“ of Orion cloud: 
15.000.000 SPH particles, 
104 Msun in 10 pc, mass resolution 
0,02 Msun, forms ~2.500 
„stars“ (sink particles) 

!
MASSIVE STARS 

- form early in high-density  
  gas clumps (cluster center) 

- high accretion rates,    
  maintained for a long time 

!
LOW-MASS STARS 

- form later as gas falls into  
  potential well 
- high relative velocities 

- little subsequent accretion

(Bonnell et al. 2010)



Trajectories of protostars in a nascent dense cluster created by gravoturbulent fragmentation  
(from Klessen & Burkert 2000, ApJS, 128, 287)

dynamics of nascent star cluster

in dense clusters protostellar interaction may be come important!



Mass accretion 
rates  vary with 
time and are 
strongly  

influenced by the 
cluster 
environment.

accretion rates in clusters

(Klessen 2001, ApJ, 550, L77; 
also Schmeja & Klessen, 
2004, A&A, 419, 405)
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ICs of star cluster formation

• key question:!

- what is the initial density profile  
of cluster forming cores? how  
does it compare low-mass cores?!

• observers answer:!

- very difficult to determine!!

‣ most high-mass cores have 
some SF inside!

‣ infra-red dark clouds (IRDCs)  
are difficult to study!

- but, new results with Herschel

IR
D

C
 near A

quila rift, studied w
ith the SM

A
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ICs of star cluster formation

• key question:!

- what is the initial density profile of cluster forming 
cores? how does it compare low-mass cores?!

• theorists answer:!

- top hat (Larson Penston)!

- Bonnor Ebert (like low-mass cores)!

- power law ρ�r -1 (logotrop)!

- power law ρ�r -3/2 (Krumholz, McKee, etc)!

- power law ρ�r -2 (Shu)!

- and many more



different density profiles

• does the density profile matter? 
.  
.  
.!

• in comparison to !

- turbulence ...!

- radiative feedback ...!

- magnetic fields ...!

- thermodynamics ...



different density profiles

• address question in simple numerical experiment!

• perform extensive parameter study!

- different profiles (top hat, BE, r-3/2, r-3)!

- different turbulence fields!

‣ different realizations!

‣ different Mach numbers !

‣ solenoidal turbulence 
dilatational turbulence  
both modes!

- no net rotation, no B-fields  
(at the moment)

Girichids, Federrath, Banerjee, Klessen (2011abc)



Girichids et al. (2011abc)



for the r-2 profile you need to crank up 
turbulence a lot to get some fragmentation!

M=3 M=6 M=12 M=18

Girichids et al. (2011abc)



ICs with flat inner density profile form  
more fragments

Girichids et al. (2011abc)

number of 
protostars



however, the real situation is very complex: 
details of the initial turbulent field matter 

Girichids et al. (2011abc)

number of 
protostars

very high Mach numbers are needed to make 
SIS fragment



different density profiles

• different density profiles lead to very different 
fragmentation behavior!

• fragmentation is strongly suppressed for very 
peaked, power-law profiles!

!

• this is good, because it may explain some of the 
theoretical controversy, we have in the field  !

• this is bad, because all current calculations are 
“wrong” in the sense that the formation process of 
the star-forming core is neglected. 

Girichids et al. (2011abc)
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IMF

distribution of stellar masses depends on 
turbulent initial conditions  
--> mass spectrum of prestellar cloud cores 
collapse and interaction of prestellar cores 
--> competitive accretion and N-body effects 
thermodynamic properties of gas 
--> balance between heating and cooling 
--> EOS (determines which cores go into collapse) 
(proto) stellar feedback terminates star formation 
ionizing radiation, bipolar outflows, winds, SN

(e.g. Larson 2003, Prog. Rep. Phys.; Mac Low & Klessen, 2004, Rev. Mod. Phys, 76, 125 - 194)
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dependency on EOS

• degree of fragmentation depends on EOS! 
• polytropic EOS: p ∝ργ 

•  γ<1: dense cluster of low-mass stars 

• γ>1: isolated high-mass stars 

•   (see Li, Klessen, & Mac Low 2003, ApJ, 592, 975; also Kawachi & Hanawa 1998, Larson 2003)



dependency on EOS

(from Li, Klessen, & Mac Low 2003, ApJ, 592, 975)

γ=0.2 γ=1.0 γ=1.2

for γ<1 fragmentation is enhanced ! cluster of low-mass stars 

for γ>1 it is suppressed ! formation of isolated massive stars
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 (1)  p ∝ ργ     !   ρ ∝ p1/ γ  
 (2)  Mjeans ∝ γ3/2 ρ(3γ-4)/2 

how does that work?

• γ<1: ! large density excursion for given pressure  
   ! 〈Mjeans〉 becomes small 

  ! number of fluctuations with M > Mjeans is large  
• γ>1: ! small density excursion for given pressure 

  ! 〈Mjeans〉 is large  
  ! only few and massive clumps exceed Mjeans



EOS in different 

environments
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Figure 1. Evolution of temperatures in prestellar cloud cores with metallicities
Z/Z⊙ = 0, 10−6, 10−5, 10−4, 10−3, 10−2, 10−1, and 1, as functions of the
number density, which is calculated by one-zone models. The dashed lines
indicate the constant Jeans masses. For those above 102 M⊙ (below 1 M⊙), the
gas is assumed to be fully atomic (molecular) in drawing those lines.
(A color version of this figure is available in the online journal.)

3. PRESTELLAR COLLAPSE

Figure 2 presents the temperature evolution at the center of
the prestellar cores as a function of the number density. The
overall evolution is quite similar to that calculated by the one-
zone model (Figure 1), justifying the one-zone treatment for
the core evolution. There are, however, small disagreements,
in particular, at high densities and for low-metallicity cases.
We defer detailed discussion on these differences to later in
Section 3.4, but here describe which thermal processes control
the temperature evolution at each metallicity. The contribution
to the cooling and heating rates by individual processes are
presented in Figure 3 for different metallicities. This should be
compared with Figure 2 of O05, where similar plots for the
one-zone models are presented. In Figure 5, the effective ratio
of specific heat at the center, γ = d lnp/d lnρ, which gives
the variation of pressure in response to the density variation,
is shown for those cases. Note that γ − 1 equals the gradient
of the curve in Figure 2 for constant molecular weight. The
effective ratio of specific heat is an important index to examine
the dynamical response of self-gravitating clouds to thermal
evolution. For example, the clouds easily fragment as long as
γ < 1, while fragmentation is strongly prohibited for γ > 1 (Li
et al. 2003). Another critical value is γ = 4/3. If γ exceeds
this value, the dynamical collapse is halted as the pressure
overcoming the gravity, and a hydrostatic object is formed.

3.1. Thermal Evolution in the Metal-free Case

In this section, we review thermal evolution of the cloud core
of a metal-free gas. We then describe the effects of metallicity
later in Section 3.2. We focus on deviations from the metal-free
case. In the case of metallicity [M/H] = −6, metallicity effects
are so small that the temperature evolution is almost identical to
the metal-free one except for a slight offset at highest densities
(!1020 cm−3).

Let us summarize here the formation processes of H2, which
play a crucial role in the thermal evolution. The evolution of H2
concentrations is presented in Figure 4, along with those in the
cases with metals. Below ∼108 cm−3, H2 is formed by the H−
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Figure 2. Evolution of temperatures at the center of cloud cores during the
prestellar collapse for various metallicities. This is calculated by one-zone
model until 104 cm−3 (dotted vertical line) and by hydrodynamical models
for the higher density. The constant Jeans masses are indicated by the dashed
lines.
(A color version of this figure is available in the online journal.)

channel:

H + e → H− + γ , (9)
H− + H → H2 + e, (10)

catalyzed by a small amount of remaining electrons. With
their recombination proceeding, the H− channel is quenched
and the amount of formed H2 saturates at ∼10−3 (Figure 4).
After this plateau, the H2 abundance begins to increase again at
∼108 cm−3 via the three-body H2 formation:

2H + H → H2 + H (11)

and
2H + H2 → H2 + H2. (12)

All the hydrogen is converted to the molecular form via this
channel by the density ∼1011 cm−3.

Next, let us see the cooling and heating processes
(Figure 3(a)). Until very high density ∼1019–1020 cm−3 is
reached, cooling and heating are always almost balanced, so
that the evolution is nearly isothermal with temperature differ-
ing only by a small factor whereas density increases by many
orders of magnitudes. The effective ratio of specific heat γ re-
mains below 4/3, but is above 1 in this period except for brief
intervals around 109 cm−3 and 1011 cm−3, where γ falls slightly
below unity (Figure 5(a)). The heating is owing to the compres-
sion, but for 109–1012 cm−3, where the H2-formation heating
associated with the three-body reaction (Equation (11) below)
dominates. For the cooling, the H2-line emission contributes
most until ∼1013 cm−3, although some lines become optically
thick at ∼1011 cm−3 and this suppresses the cooling rate grad-
ually toward a higher density. The steep decline of the H2 line-
cooling rate at 1016 cm−3 is due to the H2 collision-induced
continuum absorption. Another molecular species in the metal-
free gas, HD, is known to play an important role in cooling
if a metal-free gas is once ionized (Uehara & Inutsuka 2000;
Nagakura & Omukai 2005; Greif & Bromm 2006; Yoshida et al.
2007; McGreer & Bryan 2008). In our case, however, it only
contributes comparably to H2 at a brief period at ∼104 cm−3.

With gradual increase of temperature, the balance of chemical
equilibrium between the H2 formation (Equation (11)) and its

EOS as function of metallicity

(Omukai et al. 2005, 2010)
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Figure 1. Evolution of temperatures in prestellar cloud cores with metallicities
Z/Z⊙ = 0, 10−6, 10−5, 10−4, 10−3, 10−2, 10−1, and 1, as functions of the
number density, which is calculated by one-zone models. The dashed lines
indicate the constant Jeans masses. For those above 102 M⊙ (below 1 M⊙), the
gas is assumed to be fully atomic (molecular) in drawing those lines.
(A color version of this figure is available in the online journal.)

3. PRESTELLAR COLLAPSE

Figure 2 presents the temperature evolution at the center of
the prestellar cores as a function of the number density. The
overall evolution is quite similar to that calculated by the one-
zone model (Figure 1), justifying the one-zone treatment for
the core evolution. There are, however, small disagreements,
in particular, at high densities and for low-metallicity cases.
We defer detailed discussion on these differences to later in
Section 3.4, but here describe which thermal processes control
the temperature evolution at each metallicity. The contribution
to the cooling and heating rates by individual processes are
presented in Figure 3 for different metallicities. This should be
compared with Figure 2 of O05, where similar plots for the
one-zone models are presented. In Figure 5, the effective ratio
of specific heat at the center, γ = d lnp/d lnρ, which gives
the variation of pressure in response to the density variation,
is shown for those cases. Note that γ − 1 equals the gradient
of the curve in Figure 2 for constant molecular weight. The
effective ratio of specific heat is an important index to examine
the dynamical response of self-gravitating clouds to thermal
evolution. For example, the clouds easily fragment as long as
γ < 1, while fragmentation is strongly prohibited for γ > 1 (Li
et al. 2003). Another critical value is γ = 4/3. If γ exceeds
this value, the dynamical collapse is halted as the pressure
overcoming the gravity, and a hydrostatic object is formed.

3.1. Thermal Evolution in the Metal-free Case

In this section, we review thermal evolution of the cloud core
of a metal-free gas. We then describe the effects of metallicity
later in Section 3.2. We focus on deviations from the metal-free
case. In the case of metallicity [M/H] = −6, metallicity effects
are so small that the temperature evolution is almost identical to
the metal-free one except for a slight offset at highest densities
(!1020 cm−3).

Let us summarize here the formation processes of H2, which
play a crucial role in the thermal evolution. The evolution of H2
concentrations is presented in Figure 4, along with those in the
cases with metals. Below ∼108 cm−3, H2 is formed by the H−
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Figure 2. Evolution of temperatures at the center of cloud cores during the
prestellar collapse for various metallicities. This is calculated by one-zone
model until 104 cm−3 (dotted vertical line) and by hydrodynamical models
for the higher density. The constant Jeans masses are indicated by the dashed
lines.
(A color version of this figure is available in the online journal.)

channel:

H + e → H− + γ , (9)
H− + H → H2 + e, (10)

catalyzed by a small amount of remaining electrons. With
their recombination proceeding, the H− channel is quenched
and the amount of formed H2 saturates at ∼10−3 (Figure 4).
After this plateau, the H2 abundance begins to increase again at
∼108 cm−3 via the three-body H2 formation:

2H + H → H2 + H (11)

and
2H + H2 → H2 + H2. (12)

All the hydrogen is converted to the molecular form via this
channel by the density ∼1011 cm−3.

Next, let us see the cooling and heating processes
(Figure 3(a)). Until very high density ∼1019–1020 cm−3 is
reached, cooling and heating are always almost balanced, so
that the evolution is nearly isothermal with temperature differ-
ing only by a small factor whereas density increases by many
orders of magnitudes. The effective ratio of specific heat γ re-
mains below 4/3, but is above 1 in this period except for brief
intervals around 109 cm−3 and 1011 cm−3, where γ falls slightly
below unity (Figure 5(a)). The heating is owing to the compres-
sion, but for 109–1012 cm−3, where the H2-formation heating
associated with the three-body reaction (Equation (11) below)
dominates. For the cooling, the H2-line emission contributes
most until ∼1013 cm−3, although some lines become optically
thick at ∼1011 cm−3 and this suppresses the cooling rate grad-
ually toward a higher density. The steep decline of the H2 line-
cooling rate at 1016 cm−3 is due to the H2 collision-induced
continuum absorption. Another molecular species in the metal-
free gas, HD, is known to play an important role in cooling
if a metal-free gas is once ionized (Uehara & Inutsuka 2000;
Nagakura & Omukai 2005; Greif & Bromm 2006; Yoshida et al.
2007; McGreer & Bryan 2008). In our case, however, it only
contributes comparably to H2 at a brief period at ∼104 cm−3.

With gradual increase of temperature, the balance of chemical
equilibrium between the H2 formation (Equation (11)) and its

EOS as function of metallicity

(Omukai et al. 2005, 2010)
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Figure 1. Evolution of temperatures in prestellar cloud cores with metallicities
Z/Z⊙ = 0, 10−6, 10−5, 10−4, 10−3, 10−2, 10−1, and 1, as functions of the
number density, which is calculated by one-zone models. The dashed lines
indicate the constant Jeans masses. For those above 102 M⊙ (below 1 M⊙), the
gas is assumed to be fully atomic (molecular) in drawing those lines.
(A color version of this figure is available in the online journal.)

3. PRESTELLAR COLLAPSE

Figure 2 presents the temperature evolution at the center of
the prestellar cores as a function of the number density. The
overall evolution is quite similar to that calculated by the one-
zone model (Figure 1), justifying the one-zone treatment for
the core evolution. There are, however, small disagreements,
in particular, at high densities and for low-metallicity cases.
We defer detailed discussion on these differences to later in
Section 3.4, but here describe which thermal processes control
the temperature evolution at each metallicity. The contribution
to the cooling and heating rates by individual processes are
presented in Figure 3 for different metallicities. This should be
compared with Figure 2 of O05, where similar plots for the
one-zone models are presented. In Figure 5, the effective ratio
of specific heat at the center, γ = d lnp/d lnρ, which gives
the variation of pressure in response to the density variation,
is shown for those cases. Note that γ − 1 equals the gradient
of the curve in Figure 2 for constant molecular weight. The
effective ratio of specific heat is an important index to examine
the dynamical response of self-gravitating clouds to thermal
evolution. For example, the clouds easily fragment as long as
γ < 1, while fragmentation is strongly prohibited for γ > 1 (Li
et al. 2003). Another critical value is γ = 4/3. If γ exceeds
this value, the dynamical collapse is halted as the pressure
overcoming the gravity, and a hydrostatic object is formed.

3.1. Thermal Evolution in the Metal-free Case

In this section, we review thermal evolution of the cloud core
of a metal-free gas. We then describe the effects of metallicity
later in Section 3.2. We focus on deviations from the metal-free
case. In the case of metallicity [M/H] = −6, metallicity effects
are so small that the temperature evolution is almost identical to
the metal-free one except for a slight offset at highest densities
(!1020 cm−3).

Let us summarize here the formation processes of H2, which
play a crucial role in the thermal evolution. The evolution of H2
concentrations is presented in Figure 4, along with those in the
cases with metals. Below ∼108 cm−3, H2 is formed by the H−
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Figure 2. Evolution of temperatures at the center of cloud cores during the
prestellar collapse for various metallicities. This is calculated by one-zone
model until 104 cm−3 (dotted vertical line) and by hydrodynamical models
for the higher density. The constant Jeans masses are indicated by the dashed
lines.
(A color version of this figure is available in the online journal.)

channel:

H + e → H− + γ , (9)
H− + H → H2 + e, (10)

catalyzed by a small amount of remaining electrons. With
their recombination proceeding, the H− channel is quenched
and the amount of formed H2 saturates at ∼10−3 (Figure 4).
After this plateau, the H2 abundance begins to increase again at
∼108 cm−3 via the three-body H2 formation:

2H + H → H2 + H (11)

and
2H + H2 → H2 + H2. (12)

All the hydrogen is converted to the molecular form via this
channel by the density ∼1011 cm−3.

Next, let us see the cooling and heating processes
(Figure 3(a)). Until very high density ∼1019–1020 cm−3 is
reached, cooling and heating are always almost balanced, so
that the evolution is nearly isothermal with temperature differ-
ing only by a small factor whereas density increases by many
orders of magnitudes. The effective ratio of specific heat γ re-
mains below 4/3, but is above 1 in this period except for brief
intervals around 109 cm−3 and 1011 cm−3, where γ falls slightly
below unity (Figure 5(a)). The heating is owing to the compres-
sion, but for 109–1012 cm−3, where the H2-formation heating
associated with the three-body reaction (Equation (11) below)
dominates. For the cooling, the H2-line emission contributes
most until ∼1013 cm−3, although some lines become optically
thick at ∼1011 cm−3 and this suppresses the cooling rate grad-
ually toward a higher density. The steep decline of the H2 line-
cooling rate at 1016 cm−3 is due to the H2 collision-induced
continuum absorption. Another molecular species in the metal-
free gas, HD, is known to play an important role in cooling
if a metal-free gas is once ionized (Uehara & Inutsuka 2000;
Nagakura & Omukai 2005; Greif & Bromm 2006; Yoshida et al.
2007; McGreer & Bryan 2008). In our case, however, it only
contributes comparably to H2 at a brief period at ∼104 cm−3.

With gradual increase of temperature, the balance of chemical
equilibrium between the H2 formation (Equation (11)) and its

EOS as function of metallicity

(Omukai et al. 2005, 2010)
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Figure 1. Evolution of temperatures in prestellar cloud cores with metallicities
Z/Z⊙ = 0, 10−6, 10−5, 10−4, 10−3, 10−2, 10−1, and 1, as functions of the
number density, which is calculated by one-zone models. The dashed lines
indicate the constant Jeans masses. For those above 102 M⊙ (below 1 M⊙), the
gas is assumed to be fully atomic (molecular) in drawing those lines.
(A color version of this figure is available in the online journal.)

3. PRESTELLAR COLLAPSE

Figure 2 presents the temperature evolution at the center of
the prestellar cores as a function of the number density. The
overall evolution is quite similar to that calculated by the one-
zone model (Figure 1), justifying the one-zone treatment for
the core evolution. There are, however, small disagreements,
in particular, at high densities and for low-metallicity cases.
We defer detailed discussion on these differences to later in
Section 3.4, but here describe which thermal processes control
the temperature evolution at each metallicity. The contribution
to the cooling and heating rates by individual processes are
presented in Figure 3 for different metallicities. This should be
compared with Figure 2 of O05, where similar plots for the
one-zone models are presented. In Figure 5, the effective ratio
of specific heat at the center, γ = d lnp/d lnρ, which gives
the variation of pressure in response to the density variation,
is shown for those cases. Note that γ − 1 equals the gradient
of the curve in Figure 2 for constant molecular weight. The
effective ratio of specific heat is an important index to examine
the dynamical response of self-gravitating clouds to thermal
evolution. For example, the clouds easily fragment as long as
γ < 1, while fragmentation is strongly prohibited for γ > 1 (Li
et al. 2003). Another critical value is γ = 4/3. If γ exceeds
this value, the dynamical collapse is halted as the pressure
overcoming the gravity, and a hydrostatic object is formed.

3.1. Thermal Evolution in the Metal-free Case

In this section, we review thermal evolution of the cloud core
of a metal-free gas. We then describe the effects of metallicity
later in Section 3.2. We focus on deviations from the metal-free
case. In the case of metallicity [M/H] = −6, metallicity effects
are so small that the temperature evolution is almost identical to
the metal-free one except for a slight offset at highest densities
(!1020 cm−3).

Let us summarize here the formation processes of H2, which
play a crucial role in the thermal evolution. The evolution of H2
concentrations is presented in Figure 4, along with those in the
cases with metals. Below ∼108 cm−3, H2 is formed by the H−
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Figure 2. Evolution of temperatures at the center of cloud cores during the
prestellar collapse for various metallicities. This is calculated by one-zone
model until 104 cm−3 (dotted vertical line) and by hydrodynamical models
for the higher density. The constant Jeans masses are indicated by the dashed
lines.
(A color version of this figure is available in the online journal.)

channel:

H + e → H− + γ , (9)
H− + H → H2 + e, (10)

catalyzed by a small amount of remaining electrons. With
their recombination proceeding, the H− channel is quenched
and the amount of formed H2 saturates at ∼10−3 (Figure 4).
After this plateau, the H2 abundance begins to increase again at
∼108 cm−3 via the three-body H2 formation:

2H + H → H2 + H (11)

and
2H + H2 → H2 + H2. (12)

All the hydrogen is converted to the molecular form via this
channel by the density ∼1011 cm−3.

Next, let us see the cooling and heating processes
(Figure 3(a)). Until very high density ∼1019–1020 cm−3 is
reached, cooling and heating are always almost balanced, so
that the evolution is nearly isothermal with temperature differ-
ing only by a small factor whereas density increases by many
orders of magnitudes. The effective ratio of specific heat γ re-
mains below 4/3, but is above 1 in this period except for brief
intervals around 109 cm−3 and 1011 cm−3, where γ falls slightly
below unity (Figure 5(a)). The heating is owing to the compres-
sion, but for 109–1012 cm−3, where the H2-formation heating
associated with the three-body reaction (Equation (11) below)
dominates. For the cooling, the H2-line emission contributes
most until ∼1013 cm−3, although some lines become optically
thick at ∼1011 cm−3 and this suppresses the cooling rate grad-
ually toward a higher density. The steep decline of the H2 line-
cooling rate at 1016 cm−3 is due to the H2 collision-induced
continuum absorption. Another molecular species in the metal-
free gas, HD, is known to play an important role in cooling
if a metal-free gas is once ionized (Uehara & Inutsuka 2000;
Nagakura & Omukai 2005; Greif & Bromm 2006; Yoshida et al.
2007; McGreer & Bryan 2008). In our case, however, it only
contributes comparably to H2 at a brief period at ∼104 cm−3.

With gradual increase of temperature, the balance of chemical
equilibrium between the H2 formation (Equation (11)) and its

EOS as function of metallicity

(Omukai et al. 2005, 2010)
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(Larson 1985, Larson 2005)
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IMF in nearby molecular clouds

(Jappsen et al. 2005, A&A, 435, 611)

with ρcrit
 ≈ 2.5×105 cm-3 !

at SFE  ≈ 50%

 need appropriate 
 EOS in order to get  
 low mass IMF right

                           !
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Figure 1. Evolution of temperatures in prestellar cloud cores with metallicities
Z/Z⊙ = 0, 10−6, 10−5, 10−4, 10−3, 10−2, 10−1, and 1, as functions of the
number density, which is calculated by one-zone models. The dashed lines
indicate the constant Jeans masses. For those above 102 M⊙ (below 1 M⊙), the
gas is assumed to be fully atomic (molecular) in drawing those lines.
(A color version of this figure is available in the online journal.)

3. PRESTELLAR COLLAPSE

Figure 2 presents the temperature evolution at the center of
the prestellar cores as a function of the number density. The
overall evolution is quite similar to that calculated by the one-
zone model (Figure 1), justifying the one-zone treatment for
the core evolution. There are, however, small disagreements,
in particular, at high densities and for low-metallicity cases.
We defer detailed discussion on these differences to later in
Section 3.4, but here describe which thermal processes control
the temperature evolution at each metallicity. The contribution
to the cooling and heating rates by individual processes are
presented in Figure 3 for different metallicities. This should be
compared with Figure 2 of O05, where similar plots for the
one-zone models are presented. In Figure 5, the effective ratio
of specific heat at the center, γ = d lnp/d lnρ, which gives
the variation of pressure in response to the density variation,
is shown for those cases. Note that γ − 1 equals the gradient
of the curve in Figure 2 for constant molecular weight. The
effective ratio of specific heat is an important index to examine
the dynamical response of self-gravitating clouds to thermal
evolution. For example, the clouds easily fragment as long as
γ < 1, while fragmentation is strongly prohibited for γ > 1 (Li
et al. 2003). Another critical value is γ = 4/3. If γ exceeds
this value, the dynamical collapse is halted as the pressure
overcoming the gravity, and a hydrostatic object is formed.

3.1. Thermal Evolution in the Metal-free Case

In this section, we review thermal evolution of the cloud core
of a metal-free gas. We then describe the effects of metallicity
later in Section 3.2. We focus on deviations from the metal-free
case. In the case of metallicity [M/H] = −6, metallicity effects
are so small that the temperature evolution is almost identical to
the metal-free one except for a slight offset at highest densities
(!1020 cm−3).

Let us summarize here the formation processes of H2, which
play a crucial role in the thermal evolution. The evolution of H2
concentrations is presented in Figure 4, along with those in the
cases with metals. Below ∼108 cm−3, H2 is formed by the H−
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Figure 2. Evolution of temperatures at the center of cloud cores during the
prestellar collapse for various metallicities. This is calculated by one-zone
model until 104 cm−3 (dotted vertical line) and by hydrodynamical models
for the higher density. The constant Jeans masses are indicated by the dashed
lines.
(A color version of this figure is available in the online journal.)

channel:

H + e → H− + γ , (9)
H− + H → H2 + e, (10)

catalyzed by a small amount of remaining electrons. With
their recombination proceeding, the H− channel is quenched
and the amount of formed H2 saturates at ∼10−3 (Figure 4).
After this plateau, the H2 abundance begins to increase again at
∼108 cm−3 via the three-body H2 formation:

2H + H → H2 + H (11)

and
2H + H2 → H2 + H2. (12)

All the hydrogen is converted to the molecular form via this
channel by the density ∼1011 cm−3.

Next, let us see the cooling and heating processes
(Figure 3(a)). Until very high density ∼1019–1020 cm−3 is
reached, cooling and heating are always almost balanced, so
that the evolution is nearly isothermal with temperature differ-
ing only by a small factor whereas density increases by many
orders of magnitudes. The effective ratio of specific heat γ re-
mains below 4/3, but is above 1 in this period except for brief
intervals around 109 cm−3 and 1011 cm−3, where γ falls slightly
below unity (Figure 5(a)). The heating is owing to the compres-
sion, but for 109–1012 cm−3, where the H2-formation heating
associated with the three-body reaction (Equation (11) below)
dominates. For the cooling, the H2-line emission contributes
most until ∼1013 cm−3, although some lines become optically
thick at ∼1011 cm−3 and this suppresses the cooling rate grad-
ually toward a higher density. The steep decline of the H2 line-
cooling rate at 1016 cm−3 is due to the H2 collision-induced
continuum absorption. Another molecular species in the metal-
free gas, HD, is known to play an important role in cooling
if a metal-free gas is once ionized (Uehara & Inutsuka 2000;
Nagakura & Omukai 2005; Greif & Bromm 2006; Yoshida et al.
2007; McGreer & Bryan 2008). In our case, however, it only
contributes comparably to H2 at a brief period at ∼104 cm−3.

With gradual increase of temperature, the balance of chemical
equilibrium between the H2 formation (Equation (11)) and its

EOS as function of metallicity

(Omukai et al. 2005, 2010)
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(A color version of this figure is available in the online journal.)

3. PRESTELLAR COLLAPSE

Figure 2 presents the temperature evolution at the center of
the prestellar cores as a function of the number density. The
overall evolution is quite similar to that calculated by the one-
zone model (Figure 1), justifying the one-zone treatment for
the core evolution. There are, however, small disagreements,
in particular, at high densities and for low-metallicity cases.
We defer detailed discussion on these differences to later in
Section 3.4, but here describe which thermal processes control
the temperature evolution at each metallicity. The contribution
to the cooling and heating rates by individual processes are
presented in Figure 3 for different metallicities. This should be
compared with Figure 2 of O05, where similar plots for the
one-zone models are presented. In Figure 5, the effective ratio
of specific heat at the center, γ = d lnp/d lnρ, which gives
the variation of pressure in response to the density variation,
is shown for those cases. Note that γ − 1 equals the gradient
of the curve in Figure 2 for constant molecular weight. The
effective ratio of specific heat is an important index to examine
the dynamical response of self-gravitating clouds to thermal
evolution. For example, the clouds easily fragment as long as
γ < 1, while fragmentation is strongly prohibited for γ > 1 (Li
et al. 2003). Another critical value is γ = 4/3. If γ exceeds
this value, the dynamical collapse is halted as the pressure
overcoming the gravity, and a hydrostatic object is formed.

3.1. Thermal Evolution in the Metal-free Case

In this section, we review thermal evolution of the cloud core
of a metal-free gas. We then describe the effects of metallicity
later in Section 3.2. We focus on deviations from the metal-free
case. In the case of metallicity [M/H] = −6, metallicity effects
are so small that the temperature evolution is almost identical to
the metal-free one except for a slight offset at highest densities
(!1020 cm−3).

Let us summarize here the formation processes of H2, which
play a crucial role in the thermal evolution. The evolution of H2
concentrations is presented in Figure 4, along with those in the
cases with metals. Below ∼108 cm−3, H2 is formed by the H−
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Figure 2. Evolution of temperatures at the center of cloud cores during the
prestellar collapse for various metallicities. This is calculated by one-zone
model until 104 cm−3 (dotted vertical line) and by hydrodynamical models
for the higher density. The constant Jeans masses are indicated by the dashed
lines.
(A color version of this figure is available in the online journal.)

channel:

H + e → H− + γ , (9)
H− + H → H2 + e, (10)

catalyzed by a small amount of remaining electrons. With
their recombination proceeding, the H− channel is quenched
and the amount of formed H2 saturates at ∼10−3 (Figure 4).
After this plateau, the H2 abundance begins to increase again at
∼108 cm−3 via the three-body H2 formation:

2H + H → H2 + H (11)

and
2H + H2 → H2 + H2. (12)

All the hydrogen is converted to the molecular form via this
channel by the density ∼1011 cm−3.

Next, let us see the cooling and heating processes
(Figure 3(a)). Until very high density ∼1019–1020 cm−3 is
reached, cooling and heating are always almost balanced, so
that the evolution is nearly isothermal with temperature differ-
ing only by a small factor whereas density increases by many
orders of magnitudes. The effective ratio of specific heat γ re-
mains below 4/3, but is above 1 in this period except for brief
intervals around 109 cm−3 and 1011 cm−3, where γ falls slightly
below unity (Figure 5(a)). The heating is owing to the compres-
sion, but for 109–1012 cm−3, where the H2-formation heating
associated with the three-body reaction (Equation (11) below)
dominates. For the cooling, the H2-line emission contributes
most until ∼1013 cm−3, although some lines become optically
thick at ∼1011 cm−3 and this suppresses the cooling rate grad-
ually toward a higher density. The steep decline of the H2 line-
cooling rate at 1016 cm−3 is due to the H2 collision-induced
continuum absorption. Another molecular species in the metal-
free gas, HD, is known to play an important role in cooling
if a metal-free gas is once ionized (Uehara & Inutsuka 2000;
Nagakura & Omukai 2005; Greif & Bromm 2006; Yoshida et al.
2007; McGreer & Bryan 2008). In our case, however, it only
contributes comparably to H2 at a brief period at ∼104 cm−3.

With gradual increase of temperature, the balance of chemical
equilibrium between the H2 formation (Equation (11)) and its

(Omukai et al. 2005, 2010)
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3. PRESTELLAR COLLAPSE

Figure 2 presents the temperature evolution at the center of
the prestellar cores as a function of the number density. The
overall evolution is quite similar to that calculated by the one-
zone model (Figure 1), justifying the one-zone treatment for
the core evolution. There are, however, small disagreements,
in particular, at high densities and for low-metallicity cases.
We defer detailed discussion on these differences to later in
Section 3.4, but here describe which thermal processes control
the temperature evolution at each metallicity. The contribution
to the cooling and heating rates by individual processes are
presented in Figure 3 for different metallicities. This should be
compared with Figure 2 of O05, where similar plots for the
one-zone models are presented. In Figure 5, the effective ratio
of specific heat at the center, γ = d lnp/d lnρ, which gives
the variation of pressure in response to the density variation,
is shown for those cases. Note that γ − 1 equals the gradient
of the curve in Figure 2 for constant molecular weight. The
effective ratio of specific heat is an important index to examine
the dynamical response of self-gravitating clouds to thermal
evolution. For example, the clouds easily fragment as long as
γ < 1, while fragmentation is strongly prohibited for γ > 1 (Li
et al. 2003). Another critical value is γ = 4/3. If γ exceeds
this value, the dynamical collapse is halted as the pressure
overcoming the gravity, and a hydrostatic object is formed.

3.1. Thermal Evolution in the Metal-free Case

In this section, we review thermal evolution of the cloud core
of a metal-free gas. We then describe the effects of metallicity
later in Section 3.2. We focus on deviations from the metal-free
case. In the case of metallicity [M/H] = −6, metallicity effects
are so small that the temperature evolution is almost identical to
the metal-free one except for a slight offset at highest densities
(!1020 cm−3).

Let us summarize here the formation processes of H2, which
play a crucial role in the thermal evolution. The evolution of H2
concentrations is presented in Figure 4, along with those in the
cases with metals. Below ∼108 cm−3, H2 is formed by the H−
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Figure 2. Evolution of temperatures at the center of cloud cores during the
prestellar collapse for various metallicities. This is calculated by one-zone
model until 104 cm−3 (dotted vertical line) and by hydrodynamical models
for the higher density. The constant Jeans masses are indicated by the dashed
lines.
(A color version of this figure is available in the online journal.)

channel:

H + e → H− + γ , (9)
H− + H → H2 + e, (10)

catalyzed by a small amount of remaining electrons. With
their recombination proceeding, the H− channel is quenched
and the amount of formed H2 saturates at ∼10−3 (Figure 4).
After this plateau, the H2 abundance begins to increase again at
∼108 cm−3 via the three-body H2 formation:

2H + H → H2 + H (11)

and
2H + H2 → H2 + H2. (12)

All the hydrogen is converted to the molecular form via this
channel by the density ∼1011 cm−3.

Next, let us see the cooling and heating processes
(Figure 3(a)). Until very high density ∼1019–1020 cm−3 is
reached, cooling and heating are always almost balanced, so
that the evolution is nearly isothermal with temperature differ-
ing only by a small factor whereas density increases by many
orders of magnitudes. The effective ratio of specific heat γ re-
mains below 4/3, but is above 1 in this period except for brief
intervals around 109 cm−3 and 1011 cm−3, where γ falls slightly
below unity (Figure 5(a)). The heating is owing to the compres-
sion, but for 109–1012 cm−3, where the H2-formation heating
associated with the three-body reaction (Equation (11) below)
dominates. For the cooling, the H2-line emission contributes
most until ∼1013 cm−3, although some lines become optically
thick at ∼1011 cm−3 and this suppresses the cooling rate grad-
ually toward a higher density. The steep decline of the H2 line-
cooling rate at 1016 cm−3 is due to the H2 collision-induced
continuum absorption. Another molecular species in the metal-
free gas, HD, is known to play an important role in cooling
if a metal-free gas is once ionized (Uehara & Inutsuka 2000;
Nagakura & Omukai 2005; Greif & Bromm 2006; Yoshida et al.
2007; McGreer & Bryan 2008). In our case, however, it only
contributes comparably to H2 at a brief period at ∼104 cm−3.

With gradual increase of temperature, the balance of chemical
equilibrium between the H2 formation (Equation (11)) and its
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Caffau et al.: An extremely primordial star

the low height on the Galactic plane (Z ∼ 1.0 kpc) may suggest a
Thick Disk orbit, this can be safely ruled out. The orbit solution
indicates that the star belongs to the Halo with the maximum
height above the galactic plane Zmax = 4.8 ± 0.4 kpc, the orbital
apocenter at Rmax = 9.6 ± 0.6 kpc, and is plunging towards the
Galactic centre, with orbital pericenter Rmin = 0.9± 0.1 kpc. See
Fig. 5. Adopting the proper motion values obtained in the previ-
ous section from the positions after 1990.0 we obtain a similar
orbit with a more extreme orbital pericenter Rmin = 0.4±0.1 kpc.
An even more extreme value of 0.2 ± 0.1 kpc is obtained in the
case we adopt a null value of the proper motion.

4.5. Abundances

Very few lines are measurable in the X-Shooter spectrum. The
Mg i-b triplet is not visible. Of the IR Ca ii triplet lines, only the
one at 854.2 nm is clearly visible, but it is contaminated by a
feature produced by the sky subtraction. Some Fe i lines can be
guessed, not really measured. The only clearly detectable line is
the Ca ii-K line at 393.3 nm. Its EW of 49.2 pm is consistent with
an abundance of [Ca/H]=–3.9. But the measured radial velocity
is of –30 km s−1, comparable to the X-Shooter UBV arm resolu-
tion of 7 900, meaning that the line is contaminated by the com-
ponent from the interstellar medium (ISM). From the X-Shooter
spectrum, we can deduce that this spectrum belongs to an ex-
tremely metal-poor star and put an upper limit on the metallicity
of about –4.0 respect to the solar metallicity.

The UVES spectrum resolves the stellar and IS components
of the Ca ii-K and Ca ii-H line (see Fig. 6). The EW of the stel-
lar Ca ii-K line is of 27.7 pm, corresponding to abundance of
[Ca/H]=–4.47. We do not take this line as abundance indicator,
because it is difficoult to disentangle the stellar and IS compo-
nent.

In the UVES spectrum we can see line of iron peak elements
(Fe i, Ni i) and α-elements (Mg i, Si i, Ca i, Ca ii, Ti ii). For the
light elements, Li and C-N, we could find no evident signature
in the spectra, so that we can provide only upper-limit.

For the abundance determination we rely on line profile fit-
ting, because some lines happen to be blended (sometimes sev-
eral lines of the same element) and some lines lie on the wings of
hydrogen lines. We computed grid of synthetic spectra, with the
effective temperature and gravity of the star, varying in [Fe/H] by
0.2 dex. We fitted the Fe i features to derive the 1D-LTE [Fe/H].
To derive the abundances of the other elements, we computed
grids of synthetic spectra, with [Fe/H] fixed, by varying the
abundance [X/Fe], of the element X by 0.2 dex, and then fitted
the line profiles.

4.6. The Li abundance

A 3D-NLTE (Sbordone et al. 2010) Li abundance of 2.2 (Spite
plateau) would imply in this star an EW for the Li doublet at
670.7 nm of about 4.7 pm. Such a feature should be visible in
the observed spectra, but no sign of the line is detectable in the
range. In the X-Shooter spectrum, taking into account its S/N
and resolution, we expect, according Cayrel’s formula (Cayrel
1988), that the limit for a feature to be visible is of about 1.5 pm
(3 × σ), that would correspond to a A(Li)=1.7, close to the Li
abundance derived for the cooler component of the binary sys-
tem CS 22876-32 (González Hernández et al. 2008). From the
S/N of the UVES spectrum (160) an upper limit on the EW of
0.1 pm implies A(Li)< 1.1 at 5×σ gives or A(Li)< 0.9 at 3×σ.

Fig. 6. The range of the Ca ii H and K lines. From top to bot-
tom, the SDSS, the X-Shooter, and the UVES spectrum (solid
black), overimposed the synthetic profile with metallicity -4.5,
α-enhanced by 0.4 dex (solid green).

This implies that the star is far below the Spite plateau. This
may be linked to the fact that, at extremely low metallicities,
the Spite plateau displays a “meltdown” (Sbordone et al. 2010)
i.e. an increased scatter and a lower mean Li abundance. This
meltdown is clearly shown in the two components of the ex-
tremely metal-poor binary system CS 22876-32 ([Fe/H]=–3.6,
the primary with effective temperature 6500K, the secondary
5900K), that show a different Li content (González Hernández
et al. 2008). The primary lies on the Spite plateau, while the sec-
ondary lies below at A(Li)= 1.8. The reasons for this meltdown
are not understood, it has been suggested that a Li depletion
mechanism, whose efficiency is metallicity dependent, could ex-
plain the observations. If this were the case, the Li abundance in
SDSS J102915+172927 would result from an efficient Li deple-
tion due to a combination of extremely low metallicity and rela-
tively low temperature. If the star were a horizontal branch star
(Hansen et al. 2011) it would be normal for it to be Li depleted.
However, we have already argued that low gravities, compati-
ble with an HB status, are ruled out. A sub-giant status should
not imply a large Li depletion. The absence of Li could be ex-
plained if SDSS J102915+172927 were a “blue straggler to be”
(Ryan et al. 2002). In this case we would expect a measurable
line broadening, due to rotation. In our UVES spectra we cannot
derive any line broadening above what is due to the instrumental
resolution, which is set by the seeing. Therefore all available evi-
dence suggests that SDSS J102915+172927 is in an evolutionary
status from the Main Sequence to the sub-giant branch.
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Table 4. SDSS J102915+172927. Abundances. [X/H] from fit is given for log g f from the line-list of LP.

Element [X/H]1D N lines SH A(X)⊙
+3Dcor. +NLTE cor. + 3D cor + NLTE cor

C ≤ −3.8 ≤ −4.5 G-band 8.50
N ≤ −4.1 ≤ −5.0 NH-band 7.86
Mg i −4.71 ± 0.11 −4.68 ± 0.11 −4.52 ± 0.11 −4.49 ± 0.12 5 0.1 7.54
Si i −4.27 −4.30 −3.93 −3.96 1 0.1 7.52
Ca i −4.72 −4.82 −4.44 −4.54 1 0.1 6.33
Ca ii −4.81 ± 0.11 −4.93 ± 0.03 −5.02 ± 0.02 −5.15 ± 0.09 3 0.1 6.33
Ti ii −4.75 ± 0.18 −4.83 ± 0.16 −4.76 ± 0.18 −4.84 ± 0.16 6 1.0 4.90
Fe i −4.73 ± 0.13 −5.02 ± 0.10 −4.60 ± 0.13 −4.89 ± 0.10 43 1.0 7.52
Ni i −4.55 ± 0.14 −4.90 ± 0.11 10 6.23
Sr ii ≤ −5.10 ≤ −5.25 ≤ −4.94 ≤ −5.09 1 0.01 2.92

For Mg i, Si i, Ca i, and Fe i, which are the minority species
in the model 5811/4.0/−4.5, the main non-LTE mechanism is
the overionization caused by superthermal radiation of non-
local origin below the thresholds of the levels with Eexc = 2.2-
4.5 eV (λthr = 2240-3450Å). In the extremely metal-poor at-
mosphere, deviations of the mean intensity of ionizing ultravi-
olet radiation from the Planck function are much larger com-
pared with that for the solar metallicity model (Fig. 9) result-
ing in much stronger departures from LTE. Figure 10 shows that
all the levels of Mg i, Ca i, and Fe i and the three lowest levels
of Si i are strongly underpopulated in the line formation layers
of the 5811/4.0/−4.5 model. Here, we use the departure coef-
ficients, bi = nNLTEi /nLTEi , where nNLTEi and nLTEi are the statis-
tical equilibrium and thermal (Saha-Boltzmann) number densi-
ties, respectively. Non-LTE leads to a weakening of the Mg i,
Si i, Ca i, and Fe i lines and positive non-LTE abundance correc-
tions ∆NLTE = log εNLTE− log εLTE. We comment on the obtained
results for individual species.

The observed Mg i lines arise in the transitions 3p 3P◦ -
3d 3D (382.9-383.8 nm) and 3p 3P◦ - 4s 3S (517.2, 518.3 nm).
For each line, the upper level is depleted to a lesser extent with
regard to its LTE population than is the lower level. Therefore,
the line is weaker compared with its LTE strength not only be-
cause of the general overionization (bl < 1), but also because of
rising the line source function (S lu ≃ bu/bl Bν) above the Planck
function (Bν) in the line formation layers. Here, bu and bl are the
departure coefficients of the upper and lower levels, respectively.
All the investigated lines have similar non-LTE abundance cor-
rection at the level of +0.2 dex from the calculations with SH =
0.1 ( Table 5). As expected, the departures from LTE reduce in
case of increased H i collision rates (SH = 1).

The effect of bu/bl > 1 resulting in S lu > Bν is more promi-
nent for the only available line of silicon, Si i 390.5 nm. Its lower
level 3p 1S follows the ground state of Si i inside log τ5000 <
−1.5 due to collisional coupling, and it is strongly underpopu-
lated in the line formation layers. For the upper level 4s 1P◦, its
coupling to the high-excitation levels turns out stronger than a
coupling to the lower excitation levels, and it tends to follow the
continuum, Si ii. This explains why Si i 390.5 nm has a larger
non-LTE correction of ∆NLTE = 0.34 dex (SH = 0.1) compared to
the corresponding values for the Mg i lines and why ∆NLTE only
slightly reduces when move to SH = 1 (Table 5).

For the resonance line of Ca i at 422.6 nm, the non-LTE
mechanisms are very similar to that for the Mg i lines. Calcium
is the only element observed in SDSS J102915+172927 in two
ionization stages. Ca ii dominates the element number density
over atmospheric depths. Thus, no process seems to affect the

Ca ii ground-state population, and 4s keeps its thermodynamic
equilibrium value. The levels 3d and 4p follow the ground state
in deep layers, and their coupling is lost at the depths outside
log τ5000 < −1 where photon losses in the weakest line 849.8 nm
of the multiplet 3d − 4p start to become important. In these at-
mospheric layers, bu/bl < 1 is valid for each investigated line
of Ca ii resulting in dropping the line source function above the
Planck function and enhanced line absorption. For the resonance
line Ca ii 393.3 nm, departures from LTE occur only in the very
core and ∆NLTE amounts to −0.07 dex. Non-LTE correction is
larger in absolute value for the IR lines of multiplet 3d − 4p,
849.8, 854.2, and 866.2 because of the overpopulation of the
lower level.

In case of the Fe i lines, their weakening is mainly due to ove-
rionization. In SDSS J102915+172927, we measured only the
low-excitation Fe i lines, with Eexc = 0-1.5 eV. For each line, the
source function is quite similar to the Planck function for each
investigated line, because all the levels with Eexc = 0-4.5 eV be-
have similarly (Fig. 10). With very similar behavior of the depar-
ture coefficients for the lower levels, we calculated very similar
non-LTE corrections, as can be seen in Fig. 11. ∆NLTE varies be-
tween 0.29 and 0.36 dex in the calculations SH = 0.1. Similarly
to the Mg i lines, departures from LTE reduce significantly for
SH = 1.

Although only an upper limit was estimated for the Sr abun-
dance, we performed the non-LTE calculations for Sr ii with
[Sr/Fe] = −5.1. Non-LTE leads to weakened Sr ii 407.7 nm line,
and ∆NLTE amounts to 0.16 dex in case of pure electronic colli-
sions taken into account in SE calculations and decreases down
to 0.12 dex for SH = 1. For Ti ii, we estimated a non-LTE cor-
rection of –0.01 dex, assuming that the departures from LTE for
the investigated Ti ii lines are similar to that for the Fe ii lines of
similar excitation energy and equivalent width.

5. The ISM towards the star SDSSJ102915+172927
The interstellar feature is well modeled with one single compo-
nent model providing column density of log (Na i) = 12.11±0.01
cm−2 and log (Ca ii) = 12.02 ± 0.04 cm−2. The broadening of
the lines is of 7.3 ± 1.1 km s−1 in the Ca ii lines and of 5.2 ±
0.1 km s−1in Na i suggesting that the turbulence is the dominant
broadening factor and that the two ions do not sample precisely
the same material with the Ca ii lines tracing ionised gas not de-
tected in Na i.

The Na i column density is consistent with that observed to-
wards η Leo which at an angular distance of few degrees shows
log N(Na i)=12.08 cm−2.

9

(Caffau et al. 2011, 2012)

• new ESO large 
program to find 
more of these stars 
(120h x-shooter, 
30h UVES)  
[PI E. Caffau]

(Schneider et al. 2011,2012, Klessen et al. 2012)
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Fragmentation of star-forming clouds at very low metallicities 3

Fig. 1.—: Dependence of gas and dust temperatures on gas
density for metallicities 10−4, 10−5, and 10−6 and zero times
the solar value, calculated just before the first sink particle was
formed (see Table1). In red, we show the gas temperature,
and in blue the dust temperature. The dashed lines are lines
of constant Jeans mass.

3. ANALYSIS

3.1. Thermodynamical evolution of gas and dust
We have performed a set of four simulations for different

metallicities in order to test if dust can efficiently cool the gas
and change the fragmentation behavior. Since dust cooling is
consequence of inelastic gas-grain collisions, and these colli-
sions are more frequent for higher densities, we expect that its

cooling is more efficient at higher densities. The energy trans-
fer from gas to dust vanishes when they couple in temperature,
hence we also expect the cooling to cease when dust reaches
the gas temperature. In order to guide on the evaluation of the
effect of dust on the thermodynamic evolution of the gas and
verify these assumptions, we plot temperature and density for
the various metallicities tested in Figure 1. We compare the
evolution of the dust and gas temperatures in the simulations,
at the point of time just before the formation of the first sink
particle (see Table 1). The dust temperature (shown in blue)
varies from the CMB temperature in the low density region to
the gas temperature (shown in red) at much higher densities.

Changes in metallicity influence the the point in density
where dust cooling becomes efficient. For the Z = 10−4 Z⊙
case, dust cooling begins to be efficient at n ≈ 1011cm−3.
While for Z = 10−5 Z⊙, the density where dust cooling be-
comes efficient is delayed until n ≈ 1013cm−3. For the Z
= 10−6 Z⊙ case, dust cooling becomes important for n !
1014cm−3, preventing the gas temperature from getting higher
than 1500 K. For instance, the metal-free case reaches tem-
peratures of approximately 2000 K.

The efficiency of the cooling expressed in the temperature
drop also varies with metallicity. The gas temperature de-
creases to roughly 400 K in the 10−5 Z⊙ simulation, and 200 K
in the Z = 10−4 Z⊙ case. This temperature drop significantly
increases the number of Jeans masses present in the collaps-
ing region, making the gas unstable to fragmentation. The
dust and the gas temperatures couple for high densities, when
the compressional heating starts to dominate again over the
dust cooling. The subsequent evolution of the gas is close to
adiabatic.

When we compare our results to the calculations of Omukai
et al. (2010), we find good agreement with their 1D hydrody-
namical models, although we expected some small difference
due to effects of the turbulence and rotation (see Dopcke et al.,
2011) and also due to the use of different dust opacity models.

3.2. Heating and cooling rates.
The gas thermal evolution during the collapse takes differ-

ent paths depending on the metallicity, as expressed in the
density-temperature diagram (Figure 1). In order to explain
them, we take a closer look at the cooling and heating pro-
cesses involved.

In Figure 2 we show the main cooling and heating rates
divided into four panels for the different metallicities.

There are parts of the evolution where metallicity has no
important effect, such as for for n < 108cm−3, where PdV
heating dominates. For n > 108cm−3, H2 line cooling starts
to become important. And for densities as high as 1010cm−3,
heating and cooling processes are balanced for all cases.

The effect of the metallicity, and so the dust cooling, starts
to be seen for n ! 108cm−3. At n ≈ 8×109cm−3, for instance,
the two main coolants (dust and H2 line cooling) are compara-
ble to the two main heaters (H2 formation and PdV heating).
For all cases where dust was present, its cooling became the
most important thermal process at some point in the collapse.

These thermal processes affect the density-temperature di-
agram (Figure 1) in all cases, such as for n " 108cm−3, when
PdV heating dominates, the evolution is close to adiabatic.
When cooling and heating balance, for 108 " n/cm−3 " 1011,
the evolution is close to isothermal.

The other thermal processes play a minor role during the
collapse. For example, H2 dissociation cooling only becomes

[M/H] = -4

[M/H] = -6

[M/H] = -ininity
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Fig. 6.—: Sink particle mass function at the point when 4.7
M⊙ of gas had been accreted by the sink particles in each sim-
ulation. To resolve the fragmentation, the mass resolution is
smaller than the Jeans mass at the point in the temperature-
density diagram where dust and gas couple and the compres-
sional heating starts to dominate over the dust cooling.

creating more sparse over-densities.

3.7. Mass accretion
The mass accreted by the sink particles varied within the

different metallicities, and changed the final IMF. This dif-
ferent accretion can also influence the expected accretion lu-
minosity. We did not take this thermal process into account
during the calculations, but it is relevant to speculate if it is
comparable to the other thermal processes, and necessary to
include in future simulations.

In Figure 10 we present accretion properties for the new-
born stellar systems. The top panel shows how the total mass
in sinks evolve with time, and the comparison for different Z.
The accretion rate varies from 0.02 to 0.17 M⊙ yr−1, and it is
on average lower for the Z = 10−4 Z⊙ case. The Z = 10−4 Z⊙
case accreted mass slower than the others, taking the longest
time to accrete 4.7M⊙.

In the bottom panel of Figure 10, we show the accretion
luminosity calculated by considering that all gas was accreted

Fig. 7.—: Timescales for fragmentation (bottom panel) and
accretion (middle panel), and also their fraction (top panel)
versus enclosed gas mass (Menc) for the metallicities tested.
The values were calculated just before the first sink particle
was formed.

Fig. 8.—: Timescales for fragmentation and accretion for dif-
ferent metallicities. t f rag(⟨N/(dN/dt)⟩) indicates the aver-
age for the number of sink particles (N) divided by the time
variation of that number, or the sink particle formation rate.
tacc(⟨M/(dM/dt)⟩) is the average accretion time, which is cal-
culated by dividing the total mass in sink particles dived by
the mass accretion rate.
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smaller than the Jeans mass at the point in the temperature-
density diagram where dust and gas couple and the compres-
sional heating starts to dominate over the dust cooling.

creating more sparse over-densities.

3.7. Mass accretion
The mass accreted by the sink particles varied within the

different metallicities, and changed the final IMF. This dif-
ferent accretion can also influence the expected accretion lu-
minosity. We did not take this thermal process into account
during the calculations, but it is relevant to speculate if it is
comparable to the other thermal processes, and necessary to
include in future simulations.

In Figure 10 we present accretion properties for the new-
born stellar systems. The top panel shows how the total mass
in sinks evolve with time, and the comparison for different Z.
The accretion rate varies from 0.02 to 0.17 M⊙ yr−1, and it is
on average lower for the Z = 10−4 Z⊙ case. The Z = 10−4 Z⊙
case accreted mass slower than the others, taking the longest
time to accrete 4.7M⊙.

In the bottom panel of Figure 10, we show the accretion
luminosity calculated by considering that all gas was accreted

Fig. 7.—: Timescales for fragmentation (bottom panel) and
accretion (middle panel), and also their fraction (top panel)
versus enclosed gas mass (Menc) for the metallicities tested.
The values were calculated just before the first sink particle
was formed.

Fig. 8.—: Timescales for fragmentation and accretion for dif-
ferent metallicities. t f rag(⟨N/(dN/dt)⟩) indicates the aver-
age for the number of sink particles (N) divided by the time
variation of that number, or the sink particle formation rate.
tacc(⟨M/(dM/dt)⟩) is the average accretion time, which is cal-
culated by dividing the total mass in sink particles dived by
the mass accretion rate.

disk fragmentation mode

gravoturbulent fragmentation mode

Dopcke et al., 2012, submitted to ApJ, arXiv:1203.6842)

hints for differences 
in mass spectrum
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Figure 1. Evolution of temperatures in prestellar cloud cores with metallicities
Z/Z⊙ = 0, 10−6, 10−5, 10−4, 10−3, 10−2, 10−1, and 1, as functions of the
number density, which is calculated by one-zone models. The dashed lines
indicate the constant Jeans masses. For those above 102 M⊙ (below 1 M⊙), the
gas is assumed to be fully atomic (molecular) in drawing those lines.
(A color version of this figure is available in the online journal.)

3. PRESTELLAR COLLAPSE

Figure 2 presents the temperature evolution at the center of
the prestellar cores as a function of the number density. The
overall evolution is quite similar to that calculated by the one-
zone model (Figure 1), justifying the one-zone treatment for
the core evolution. There are, however, small disagreements,
in particular, at high densities and for low-metallicity cases.
We defer detailed discussion on these differences to later in
Section 3.4, but here describe which thermal processes control
the temperature evolution at each metallicity. The contribution
to the cooling and heating rates by individual processes are
presented in Figure 3 for different metallicities. This should be
compared with Figure 2 of O05, where similar plots for the
one-zone models are presented. In Figure 5, the effective ratio
of specific heat at the center, γ = d lnp/d lnρ, which gives
the variation of pressure in response to the density variation,
is shown for those cases. Note that γ − 1 equals the gradient
of the curve in Figure 2 for constant molecular weight. The
effective ratio of specific heat is an important index to examine
the dynamical response of self-gravitating clouds to thermal
evolution. For example, the clouds easily fragment as long as
γ < 1, while fragmentation is strongly prohibited for γ > 1 (Li
et al. 2003). Another critical value is γ = 4/3. If γ exceeds
this value, the dynamical collapse is halted as the pressure
overcoming the gravity, and a hydrostatic object is formed.

3.1. Thermal Evolution in the Metal-free Case

In this section, we review thermal evolution of the cloud core
of a metal-free gas. We then describe the effects of metallicity
later in Section 3.2. We focus on deviations from the metal-free
case. In the case of metallicity [M/H] = −6, metallicity effects
are so small that the temperature evolution is almost identical to
the metal-free one except for a slight offset at highest densities
(!1020 cm−3).

Let us summarize here the formation processes of H2, which
play a crucial role in the thermal evolution. The evolution of H2
concentrations is presented in Figure 4, along with those in the
cases with metals. Below ∼108 cm−3, H2 is formed by the H−
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Figure 2. Evolution of temperatures at the center of cloud cores during the
prestellar collapse for various metallicities. This is calculated by one-zone
model until 104 cm−3 (dotted vertical line) and by hydrodynamical models
for the higher density. The constant Jeans masses are indicated by the dashed
lines.
(A color version of this figure is available in the online journal.)

channel:

H + e → H− + γ , (9)
H− + H → H2 + e, (10)

catalyzed by a small amount of remaining electrons. With
their recombination proceeding, the H− channel is quenched
and the amount of formed H2 saturates at ∼10−3 (Figure 4).
After this plateau, the H2 abundance begins to increase again at
∼108 cm−3 via the three-body H2 formation:

2H + H → H2 + H (11)

and
2H + H2 → H2 + H2. (12)

All the hydrogen is converted to the molecular form via this
channel by the density ∼1011 cm−3.

Next, let us see the cooling and heating processes
(Figure 3(a)). Until very high density ∼1019–1020 cm−3 is
reached, cooling and heating are always almost balanced, so
that the evolution is nearly isothermal with temperature differ-
ing only by a small factor whereas density increases by many
orders of magnitudes. The effective ratio of specific heat γ re-
mains below 4/3, but is above 1 in this period except for brief
intervals around 109 cm−3 and 1011 cm−3, where γ falls slightly
below unity (Figure 5(a)). The heating is owing to the compres-
sion, but for 109–1012 cm−3, where the H2-formation heating
associated with the three-body reaction (Equation (11) below)
dominates. For the cooling, the H2-line emission contributes
most until ∼1013 cm−3, although some lines become optically
thick at ∼1011 cm−3 and this suppresses the cooling rate grad-
ually toward a higher density. The steep decline of the H2 line-
cooling rate at 1016 cm−3 is due to the H2 collision-induced
continuum absorption. Another molecular species in the metal-
free gas, HD, is known to play an important role in cooling
if a metal-free gas is once ionized (Uehara & Inutsuka 2000;
Nagakura & Omukai 2005; Greif & Bromm 2006; Yoshida et al.
2007; McGreer & Bryan 2008). In our case, however, it only
contributes comparably to H2 at a brief period at ∼104 cm−3.

With gradual increase of temperature, the balance of chemical
equilibrium between the H2 formation (Equation (11)) and its

EOS as function of metallicity

(Omukai et al. 2005, 2010)
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Figure 1. Evolution of temperatures in prestellar cloud cores with metallicities
Z/Z⊙ = 0, 10−6, 10−5, 10−4, 10−3, 10−2, 10−1, and 1, as functions of the
number density, which is calculated by one-zone models. The dashed lines
indicate the constant Jeans masses. For those above 102 M⊙ (below 1 M⊙), the
gas is assumed to be fully atomic (molecular) in drawing those lines.
(A color version of this figure is available in the online journal.)

3. PRESTELLAR COLLAPSE

Figure 2 presents the temperature evolution at the center of
the prestellar cores as a function of the number density. The
overall evolution is quite similar to that calculated by the one-
zone model (Figure 1), justifying the one-zone treatment for
the core evolution. There are, however, small disagreements,
in particular, at high densities and for low-metallicity cases.
We defer detailed discussion on these differences to later in
Section 3.4, but here describe which thermal processes control
the temperature evolution at each metallicity. The contribution
to the cooling and heating rates by individual processes are
presented in Figure 3 for different metallicities. This should be
compared with Figure 2 of O05, where similar plots for the
one-zone models are presented. In Figure 5, the effective ratio
of specific heat at the center, γ = d lnp/d lnρ, which gives
the variation of pressure in response to the density variation,
is shown for those cases. Note that γ − 1 equals the gradient
of the curve in Figure 2 for constant molecular weight. The
effective ratio of specific heat is an important index to examine
the dynamical response of self-gravitating clouds to thermal
evolution. For example, the clouds easily fragment as long as
γ < 1, while fragmentation is strongly prohibited for γ > 1 (Li
et al. 2003). Another critical value is γ = 4/3. If γ exceeds
this value, the dynamical collapse is halted as the pressure
overcoming the gravity, and a hydrostatic object is formed.

3.1. Thermal Evolution in the Metal-free Case

In this section, we review thermal evolution of the cloud core
of a metal-free gas. We then describe the effects of metallicity
later in Section 3.2. We focus on deviations from the metal-free
case. In the case of metallicity [M/H] = −6, metallicity effects
are so small that the temperature evolution is almost identical to
the metal-free one except for a slight offset at highest densities
(!1020 cm−3).

Let us summarize here the formation processes of H2, which
play a crucial role in the thermal evolution. The evolution of H2
concentrations is presented in Figure 4, along with those in the
cases with metals. Below ∼108 cm−3, H2 is formed by the H−
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Figure 2. Evolution of temperatures at the center of cloud cores during the
prestellar collapse for various metallicities. This is calculated by one-zone
model until 104 cm−3 (dotted vertical line) and by hydrodynamical models
for the higher density. The constant Jeans masses are indicated by the dashed
lines.
(A color version of this figure is available in the online journal.)

channel:

H + e → H− + γ , (9)
H− + H → H2 + e, (10)

catalyzed by a small amount of remaining electrons. With
their recombination proceeding, the H− channel is quenched
and the amount of formed H2 saturates at ∼10−3 (Figure 4).
After this plateau, the H2 abundance begins to increase again at
∼108 cm−3 via the three-body H2 formation:

2H + H → H2 + H (11)

and
2H + H2 → H2 + H2. (12)

All the hydrogen is converted to the molecular form via this
channel by the density ∼1011 cm−3.

Next, let us see the cooling and heating processes
(Figure 3(a)). Until very high density ∼1019–1020 cm−3 is
reached, cooling and heating are always almost balanced, so
that the evolution is nearly isothermal with temperature differ-
ing only by a small factor whereas density increases by many
orders of magnitudes. The effective ratio of specific heat γ re-
mains below 4/3, but is above 1 in this period except for brief
intervals around 109 cm−3 and 1011 cm−3, where γ falls slightly
below unity (Figure 5(a)). The heating is owing to the compres-
sion, but for 109–1012 cm−3, where the H2-formation heating
associated with the three-body reaction (Equation (11) below)
dominates. For the cooling, the H2-line emission contributes
most until ∼1013 cm−3, although some lines become optically
thick at ∼1011 cm−3 and this suppresses the cooling rate grad-
ually toward a higher density. The steep decline of the H2 line-
cooling rate at 1016 cm−3 is due to the H2 collision-induced
continuum absorption. Another molecular species in the metal-
free gas, HD, is known to play an important role in cooling
if a metal-free gas is once ionized (Uehara & Inutsuka 2000;
Nagakura & Omukai 2005; Greif & Bromm 2006; Yoshida et al.
2007; McGreer & Bryan 2008). In our case, however, it only
contributes comparably to H2 at a brief period at ∼104 cm−3.

With gradual increase of temperature, the balance of chemical
equilibrium between the H2 formation (Equation (11)) and its

EOS as function of metallicity

(Omukai et al. 2005, 2010)
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• most current numerical 
simulations of Pop III star 
formation predict very 
massive objects 
(e.g.  Abel et al. 2002, Yoshida et al. 2008, 

Bromm et al. 2009)!

• similar for theoretical 
models (e.g. Tan & McKee 2004)!

• there are some first hints 
of fragmentation, however 
(Turk et al. 2009, Stacy et al. 2010)

“classical” picture
(so-called ‘minihaloes’; M8, solar mass). In the standard CDM
model, the minihaloes that were the first sites for star formation
are expected to be in place at redshift z< 20–30, when the age of
the Universe was just a few hundred million years14. These systems
correspond to (3–4)s peaks in the cosmic density field, which is
statistically described as a Gaussian random field. Such high-density
peaks are expected to be strongly clustered15, and thus feedback
effects from the first stars are important in determining the fate of
the surrounding primordial gas clouds. It is very likely that only one
star can be formed within a gas cloud, because the far-ultraviolet
radiation from a single massive star is sufficient to destroy all the
H2 in the parent gas cloud16,17. In principle, a cloud that formed one
of the first stars could fragment into a binary or multiple star sys-
tem18,19, but simulations based on self-consistent cosmological initial
conditions do not show this20. Although the exact number of stars per
cloud cannot be easily determined, the number is expected to be
small, so that minihaloes will not be galaxies (see Box 1).

Primordial gas clouds undergo runaway collapse when sufficient
mass is accumulated at the centre of a minihalo. The minimummass
at the onset of collapse is determined by the Jeans mass (more pre-
cisely, the Bonnor–Ebert mass), which can be written as:

MJ<500M8
T

200

! "3=2 n

104

# ${1=2
ð1Þ

for an atomic gas with temperature T (in K) and particle number
density n (in cm23). The characteristic temperature is set by the
energy separation of the lowest-lying rotational levels of the trace
amounts of H2, and the characteristic density corresponds to the
thermalization of these levels, above which cooling becomes less
efficient12. A number of atomic andmolecular processes are involved
in the subsequent evolution of a gravitationally collapsing gas. It has
been suggested that a complex interplay between chemistry, radiative
cooling and hydrodynamics leads to fragmentation of the cloud21,
but vigorous fragmentation is not observed even in extremely high-
resolution cosmological simulations11–13,20,22. Interestingly, however,
simulations starting from non-cosmological initial conditions have
yielded multiple cloud cores19,23. It appears that a high initial degree
of spin in the gas eventually leads to the formation of a disk and its
subsequent break-up. It remains to be seen whether such conditions
occur from realistic cosmological initial conditions.

Although the mass triggering the first runaway collapse is well-
determined, it provides only a rough estimate of the mass of the star(s)
to be formed. Standard star-formation theory predicts that a tiny proto-
star forms first and subsequently grows by accreting the surrounding gas
to become a massive star. Indeed, the highest-resolution simulations of
first-star formation verify that this also occurs cosmologically20 (Fig. 1).
However, the ultimatemass of the star is determinedbothby themass of
the cloud out of which it forms and by a number of feedback processes
that occur during the evolution of the protostar. In numerical simula-
tions, the finalmass of a population III star is usually estimated from the
density distribution and velocity field of the surrounding gas when the
first protostellar fragment forms, but thismaywell be inaccurate even in
the absence of protostellar feedback. Whereas protostellar feedback
effects are well studied in the context of the formation of contemporary
stars24, they differ in several important respects in primordial stars25.

First, primordial gas does not contain dust grains. As a result,
radiative forces on the gas are much weaker. Second, it is generally
assumed that magnetic fields are not important in primordial gas
because, unless exotic mechanisms are invoked, the amplitudes of
magnetic fields generated in the early Universe are so small that they
never become dynamically significant in primordial star-forming
gas26. Magnetic fields have at least two important effects in contem-
porary star formation: they reduce the angular momentum of the gas
outofwhich stars form, and theydrive powerful outflows that disperse
a significant fraction of the parent cloud. It is likely that the pre-stellar
gas has more angular momentum in the primordial case, and this is
borne out by cosmological simulations. Third, primordial stars are

much hotter than contemporary stars of the same mass, resulting in
significantly greater ionizing luminosities27.

State-of-the-art numerical simulations of the formation of the first
(population III.1) stars represent a computational tour de force, in
which the collapse is followed from cosmological (comoving mega-
parsec) scales down to protostellar (sub-astronomical-unit) scales,
revealing the entire formationprocess of a protostar.However, further
growth of the protostar cannot be followed accurately without imple-
menting additional radiative physics. For now, inferring the sub-
sequent evolution of the protostar requires approximate analytic
calculations. By generalizing a theory for contemporary massive-star
formation28, it is possible to approximately reproduce the initial con-
ditions found in the simulations and to then predict the growth of the
accretion disk around the star29. Several feedback effects determine the
final mass of a first star25: photodissociation of H2 in the accreting gas
reduces the cooling rate, but does not stop accretion. Lyman-a radi-
ation pressure can reverse the infall in the polar regions when the
protostar grows to 20–30 M8, but cannot significantly reduce the
accretion rate. The expansion of the H II region produced by the large
flux of ionizing radiation can significantly reduce the accretion rate
when the protostar reaches 50–100M8, but accretion can continue in
the equatorial plane. Finally, photoevaporation-drivenmass loss from
the disk30 stops the accretion and fixes themass of the star (see Fig. 2).
The finalmass depends on the entropy and angularmomentumof the
pre-stellar gas; for reasonable conditions, themass spans 60–300M8.

A variety of physical processes can affect and possibly substantially
alter thepicture outlined above.Magnetic fields generated through the
magneto-rotational instability may become important in the proto-
stellar disk31, although their strength is uncertain, and may play an
important role in the accretion phase18. Cosmic rays and other
external ionization sources, if they existed in the early Universe, could
significantly affect the evolution of primordial gas32. A partially
ionized gas cools more efficiently because the abundant electrons
promoteH2 formation. Such a gas cools to slightly lower temperatures
than a neutral gas can, accentuating the fractionation of D into HD so
that cooling by HD molecules becomes important33–36.

300 pc 5 pc

10 AU

a  Cosmological halo b  Star-forming cloud

c  Fully molecular partd  New-born protostar

25 R .

Figure 1 | Projected gas distribution around a primordial protostar. Shown
is the gas density (colour-coded so that red denotes highest density) of a
single object on different spatial scales. a, The large-scale gas distribution
around the cosmological minihalo; b, a self-gravitating, star-forming cloud;
c, the central part of the fully molecular core; and d, the final protostar.
Reproduced by permission of the AAAS (from ref. 20).

REVIEWS NATUREjVol 459j7 May 2009

50
 Macmillan Publishers Limited. All rights reserved©2009

(Yoshida et al. 2008, Science, 321, 669) 

N 
O

 T
   

I N
   

A 
C 

T 
U 

A 
L 

  T
 A

 L
 K

 



N 
O

 T
   

I N
   

A 
C 

T 
U 

A 
L 

  T
 A

 L
 K

 
detailed look at accretion disk around first star

6 Dopcke et al.

Fig. 3.—: Number density maps for a slice through the high
density region for Z = 10−4 Z⊙ (top), 10−5 Z⊙, 10−6 Z⊙, and
0 (bottom). The image shows a sequence of zooms in the
density structure in the gas immediately before the formation
of the first protostar.

Fig. 4.—: Enclosed gas mass divided by Bonnor-Ebert mass
versus radius for different metallicities. The values were cal-
culated at the time just before the first sink was formed and the
center is taken to be the position of the densest SPH particle.

more flat mass distribution.
Now we can compare the predicted values before sink for-

mation started, with the final accretion and fragmentation
timescales. Figure 8 shows the timescales for fragmentation
and accretion for different metallicities on the end of the cal-
culations. The mean fragmentation time, and the mean accre-
tion time explain the difference in the sink particle mass distri-
bution in Figure 6. For Z ≤ 10−5 Z⊙, the fragmentation time is
always higher than the accretion time, indicating that the sink
particles will accrete faster than they can be generated, result-
ing in a more flat mass distribution. When the fragmentation
time is higher than the accretion time (for Z = 10−4 Z⊙), the
gas rather fragments, than moves to the center and is accreted.
As a consequence, more mass goes into the low-mass objects,
when compared to the high-mass ones. This behavior agrees
well with the predictions from before fragmentation started,
shown in Figure 7.

3.6. Radial mass distribution
Another property of the star-forming cloud that we ob-

served to vary in our calculations is the mass spacial distri-
bution. The dependence of the enclosed gas and sink mass on
the distance from the sinks center of mass, for the different
Z, is show in Figure 9. The Z = 0 case has almost all the
sink particle mass in r < 8AU. The gas density for this case is
also higher in this region, when compared to the other metal-
licities, showing that the gas and sink particles mass density
follow each other. In the Z = 0 simulation, there is ∼80% of
the mass in sinks within 8 AU from the center of mass. And
for the other cases, this happens for radius ∼ 30AU. For ra-
dius bigger than 150 AU, the gas becomes the most massive
component, for all Z.

This more concentrated gas and sink mass towards the cen-
ter happens probably because for the Z = 0 case, the gas had
higher temperatures in the central region. And so there was
less influence by turbulent and rotational motions, which were

4 Greif et al.

Fig. 2.— Density, velocity, pressure, and temperature of the
shocked gas after 1 Myr. Black dots represent the test simulation,
while the grey (green) lines show the dimensionalized ST solu-
tion. Apart from deviations caused by higher-order shocks and
kernel smoothing, the simulation reproduces the analytic profiles
relatively well.

(DM and gas). We initialize the simulation at z = 100
deep in the linear regime, and for this purpose adopt
a concordance Λ cold dark matter (ΛCDM) cosmology
with the following parameters: matter density Ωm =
1−ΩΛ = 0.3, baryon density Ωb = 0.04, Hubble param-
eter h = H0/

°
100 km s−1 Mpc−1

¢
= 0.7, spectral index

ns = 1.0, and a top-hat fluctuation power σ8 = 0.9 (e.g.,
Spergel et al. 2003). Initial density and velocity pertur-
bations are imprinted according to a Gaussian random
field, and grow proportional to the scale factor until the
onset of nonlinearity. At this point the detailed chemi-
cal evolution of the gas becomes crucial, and we apply
the same chemical network as in Johnson et al. (2007) to
track the abundances of H, H+, H−, H2, H+

2 , He, He+,
He++, and e−, as well as the five deuterium species D,
D+, D−, HD and HD−. All relevant cooling mechanisms
in the temperature range 10−108 K are implemented, in-
cluding H and He resonance processes, bremsstrahlung,
inverse Compton, and molecular cooling for H2 and HD.
Metal cooling does not become important for the entire
lifetime of the SN remnant, yet we postpone a more de-
tailed discussion of this issue to §5. We do not take into
account the emission of radiation by the post-shock gas,
which acts to create a thin layer of fully ionized material
ahead of the shock and suppresses molecule formation
(e.g., Shull & McKee 1979; Shapiro & Kang 1987; Kang
& Shapiro 1992), since (a) the SN remnant expands into
an H ii region, and (b) we find that molecule formation
becomes important only at late times, when the post-
shock gas has cooled to 104 K (see §3.4).

With these ingredients, the first star forms in a halo of
Mvir � 5 × 105 M⊙ and rvir � 100 pc at z � 20 in the
canonical fashion (e.g., Bromm et al. 1999, 2002; Abel et
al. 2002). We determine its location by identifying the
first particle that reaches a density of nH = 104 cm−3. At
this point the gas ‘loiters’ around a temperature of 200 K
and typically attains a Jeans mass of a few 103 M⊙ before

Fig. 3.— The hydrogen number density averaged along the line
of sight in a slice of 10/h kpc (comoving) around the first star,
forming in a halo of total mass Mvir � 5 × 105 M⊙ at z � 20.
Evidently, the host halo is part of a larger conglomeration of less
massive minihalos, and subject to the typical bottom-up evolution
of structure formation.

further collapsing (e.g., Bromm et al. 2002; Glover 2005).
For simplicity, we assume that such a clump forms a sin-
gle star, and find that its location is reasonably well re-
solved by the minimum resolution mass, Mres � 500 M⊙.
In Figure 3, we show the hydrogen number density in the
x-y and y-z plane, centered on the formation site of the
first star. Evidently, the host halo is part of a larger
overdensity that will collapse in the near future and lead
to multiple merger events. This behavior is characteris-
tic of bottom-up structure formation, and our simulation
therefore reflects a cosmological environment typical for
these redshifts.

2.4.2. H ii Region

The treatment of the H ii region around the star
is crucial for the early and late time behavior of the
SN remnant. The photoevaporation of the host mini-
halo greatly reduces the central density and extends the
energy-conserving ST phase, whereas after an intermedi-
ate stage the enhanced pressure in the H ii region leads to
an earlier transition to the final, momentum-conserving
phase. Additionally, the shock fulfills the stalling crite-
rion, i.e. ṙsh = cs, where cs is the sound speed of the
photoheated IGM, much earlier in the H ii region com-
pared to previously unheated gas. We have found that
neglecting the presence of the H ii region around the star,
extending well into the IGM, leads to a final shock radius
a factor of 2 larger, which demonstrates its importance
for the long-term evolution of the SN remnant.

To determine the size and structure of the H ii region,
we proceed analogously to Johnson et al. (2007). In de-
tail, we initially photoheat and photoionize a spherically
symmetric region surrounding the star up to a maximum
distance of 200 pc, where we find a neighbouring mini-
halo. We determine the necessary heating and ionization
rates by using the properties of a 200 M⊙ Pop III star

(Greif et al., 2007, ApJ, 670, 1)

successive zoom-in calculation from 
cosmological initial conditions (using 
SPH and new grid-code AREPO)

(Greif et al. 2011, ApJ, 737, 75, Greif et al. 2012, MNRAS, 424, 399,  
Dopcke et al. 2012, ApJ submitted, arXiv1203.6842)

http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2012arXiv1203.6842D&db_key=PRE&link_type=ABSTRACT&high=4f93fddf6806535
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Fig. 3.—: Number density maps for a slice through the high
density region for Z = 10−4 Z⊙ (top), 10−5 Z⊙, 10−6 Z⊙, and
0 (bottom). The image shows a sequence of zooms in the
density structure in the gas immediately before the formation
of the first protostar.

Fig. 4.—: Enclosed gas mass divided by Bonnor-Ebert mass
versus radius for different metallicities. The values were cal-
culated at the time just before the first sink was formed and the
center is taken to be the position of the densest SPH particle.

more flat mass distribution.
Now we can compare the predicted values before sink for-

mation started, with the final accretion and fragmentation
timescales. Figure 8 shows the timescales for fragmentation
and accretion for different metallicities on the end of the cal-
culations. The mean fragmentation time, and the mean accre-
tion time explain the difference in the sink particle mass distri-
bution in Figure 6. For Z ≤ 10−5 Z⊙, the fragmentation time is
always higher than the accretion time, indicating that the sink
particles will accrete faster than they can be generated, result-
ing in a more flat mass distribution. When the fragmentation
time is higher than the accretion time (for Z = 10−4 Z⊙), the
gas rather fragments, than moves to the center and is accreted.
As a consequence, more mass goes into the low-mass objects,
when compared to the high-mass ones. This behavior agrees
well with the predictions from before fragmentation started,
shown in Figure 7.

3.6. Radial mass distribution
Another property of the star-forming cloud that we ob-

served to vary in our calculations is the mass spacial distri-
bution. The dependence of the enclosed gas and sink mass on
the distance from the sinks center of mass, for the different
Z, is show in Figure 9. The Z = 0 case has almost all the
sink particle mass in r < 8AU. The gas density for this case is
also higher in this region, when compared to the other metal-
licities, showing that the gas and sink particles mass density
follow each other. In the Z = 0 simulation, there is ∼80% of
the mass in sinks within 8 AU from the center of mass. And
for the other cases, this happens for radius ∼ 30AU. For ra-
dius bigger than 150 AU, the gas becomes the most massive
component, for all Z.

This more concentrated gas and sink mass towards the cen-
ter happens probably because for the Z = 0 case, the gas had
higher temperatures in the central region. And so there was
less influence by turbulent and rotational motions, which were

successive zoom-in calculation from 
cosmological initial conditions (using 
SPH and new grid-code AREPO)

what is the time 
evolution of 
accretion disk 
around first star 
to form?

(Greif et al. 2011, ApJ, 737, 75, Greif et al. 2012, MNRAS, 424, 399,  
Dopcke et al. 2012, ApJ submitted, arXiv1203.6842)

http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2012arXiv1203.6842D&db_key=PRE&link_type=ABSTRACT&high=4f93fddf6806535
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(Clark et al. 2011b, Science, 331, 1040)

Figure 1: Density evolution in a 120 AU region around the first protostar, showing the build-up
of the protostellar disk and its eventual fragmentation. We also see ‘wakes’ in the low-density
regions, produced by the previous passage of the spiral arms.
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detailed look at accretion disk
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important disk parameters

Figure 2: Radial profiles of the disk’s physical properties, centered on the first protostellar core
to form. The quantities are mass-weighted and taken from a slice through the midplane of the
disk. In the lower right-hand plot we show the radial distribution of the disk’s Toomre parameter,
Q = cs�/⇥G�, where cs is the sound speed and � is the epicyclic frequency. Beause our disk
is Keplerian, we adopted the standard simplification, and replaced � with the orbital frequency.
The molecular fraction is defined as the number density of hydrogen molecules (nH2), divided
by the number density of hydrogen nuclei (n), such that fully molecular gas has a value of 0.5
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Figure 2: Radial profiles of the disk’s physical properties, centered on the first protostellar core
to form. The quantities are mass-weighted and taken from a slice through the midplane of the
disk. In the lower right-hand plot we show the radial distribution of the disk’s Toomre parameter,
Q = cs�/⇥G�, where cs is the sound speed and � is the epicyclic frequency. Beause our disk
is Keplerian, we adopted the standard simplification, and replaced � with the orbital frequency.
The molecular fraction is defined as the number density of hydrogen molecules (nH2), divided
by the number density of hydrogen nuclei (n), such that fully molecular gas has a value of 0.5
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Toomre Q:

instability for Q<1
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(Greif et al. 2012, MNRAS, 424, 399)

Most recent calculations:  
fully sink-less simulations, following the disk build-up over ~10 years 
(resolving the protostars - first cores - down to 105 km ~ 0.01 R⦿)

density temperature
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expected mass spectrum
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(Greif et al. 2011, ApJ, 737, 75, also Dopcke et al. 2012 ApJ submitted, arXiv1203.6842)

we see “flat”  
mass spectrum

http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2012arXiv1203.6842D&db_key=PRE&link_type=ABSTRACT&high=4f93fddf6806535


expected mass spectrum

• expected IMF is flat and covers a wide range of masses!
• implications!

- because slope > -2, most mass is in massive objects  
as predicted by most previous calculations!

- most high-mass Pop III stars should be in binary systems  
--> source of high-redshift gamma-ray bursts!

- because of ejection, some low-mass objects (< 0.8 M⦿)  
might have survived until today and could potentially be  
found in the Milky Way!

• consistent with abundance patterns found  
in second generation stars
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Figure 4. Mass abundance of He, O, Si, and Fe in Z = 0 (top) and 10−4 Z⊙ (bottom) 25 M⊙ stars after the end of RT-driven mixing. The snapshots are of the simulation
at 3.1 × 104 s, 6.3 × 104 s, and 2.7 × 104 s for z25B, z25D, and z25G, and 1.4 × 104 s, 5.3 × 104 s, and 1.2 × 105 s for models u25B, u25D, and u25G, respectively.
Red Z = 0 stars again show much more mixing than blue Z = 10−4 Z⊙ stars, although it is not as extreme as in the 15 M⊙ models, in which the difference in outer
radius between the z- and u-series progenitors was greater. Mixing again rises with explosion energy, which is 0.6, 1.2, 2.4 Bethe from left to right across the panels.
Spurious jetting is also visible along the y- and x-axes in the u-series models. Like the 15 M⊙ stars shown in Figure 3, both mixing and the amplitudes of the RT
instabilities clearly increase with explosion energy at both metallicities.

more mixing in the internal layers than higher-mass models.
The z-series SNe have far more mixing than u-series SNe. SNe
with higher explosion energies exhibit more mixing and less
fallback than SNe with lower explosion energies. In particular,
the B series SNe with subnormal explosion energies, 0.6 Bethe
instead of the canonical 1.2 Bethe, eject almost no iron with the
exception of model z15B.

The z-series models all show more mixing than their u-series
counterparts. The 25 M⊙ models show the most mixing of the
models in the u-series, while the 40 M⊙ u-series runs show the
smallest degree of mixing. All the 40 M⊙ models experience a
great deal of fallback, but the u-series models show the most
because they are more compact. The higher explosion energy
models exhibit less fallback.

4.3.5. Comparison with Kepler Estimations of Mixing

The large one-dimensional surveys of SNe derive final esti-
mates of elemental yields by artificially mixing the layers of
the SN after explosive nucleosynthesis is complete. Surveys
employing the KEPLER code estimate mixing by passing a run-

ning boxcar average of width (in mass coordinate) W through
the star, where W is 10% the mass of the helium core. That is,
the abundances at points that fell within a bin of width W were
averaged together and set to this average, the bin was moved for-
ward by one point, and the process repeated, moving outward
through the star. This is done four times, artificially mixing the
mass shells. In Figure 7, we compare KEPLER estimations of
mixing with our two-dimensional CASTRO results. In our two-
dimensional CASTRO simulations, we find that some elemental
shells are more mixed than others. The RT instability typically
forms at the He–H or O–He boundary and advances inward.
This results in the helium and oxygen layers being more mixed
than in KEPLER and the iron, and sometimes silicon, layers being
less mixed than the KEPLER estimations for the z-series models.
Our compact U-series models show less mixing in all elements
than in KEPLER.

4.3.6. Numerical Artifacts and Model Limitations

Numerical artifacts arising from the mesh geometry are most
prominent in the higher explosion energy, u-series models,

The metallicities of extremely metal-
poor stars in the halo are consistent 
with the yields of core-collapse 
supernovae, i.e. progenitor stars with 20 
- 40 M⦿!
(e.g. Tominaga et al. 2007, Izutani et al. 2009, Joggerst et al. 
2009, 2010)

Fig. 6.—Comparison between the [X/Fe] trends of observed stars (crosses: the previous studies [e.g., Gratton & Sneden 1991; Sneden et al. 1991; Edvardsson et al.
1993; McWilliam et al. 1995a, 1995b; Ryan et al. 1996;McWilliam 1997; Carretta et al. 2000; Primas et al. 2000; Gratton et al. 2003; Bensby et al. 2003]; open circles: CA04;
open squares: HO04) and those of individual starsmodels ( filled circles: normal SNe; filled triangles: HNewith caseA; filled rhombus: HNewith case B) and IMF integration
( filled squares). The parameters are shown in Table 1.

Fig. 7.—Same as Fig. 3, but for MMS ¼ 25 M", E51 ¼ 5.

Fig. 8.—Comparison between the abundance pattern of the C-rich EMP star
(circles with error bars: CS 29498#043; Aoki et al. 2004) and the theoretical
faint SN yields (solid line: 25F). The mixing-fallback parameters are determined
so as to reproduce the abundance pattern of CS 29498#043.

(Joggerst et al. 2009, 2010)

(Tom
inaga et al. 2007)
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primordial star formation

• just like in present-day SF, we expect !
- turbulence!
- thermodynamics!
- feedback!
- magnetic fields !

to influence first star formation.!
• masses of first stars still uncertain (surprises from new 

generation of high-resolution calculations that go beyond first collapse)!

• disks unstable: first stars should be binaries or part of small 
clusters!

• effects of feedback less important than in present-day SF  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questions

• is claim of Pop III stars with M ~ 0.5 M☉ really justified?!

- stellar collisions!

- magnetic fields!

- radiative feedback!

• how would we find them? !

- spectral features!

• where should we look?!

• what about magnetic fields?
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