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Fig. 3.— a) Spherical slice of the gas density inside the Jeans volume at � = 12 for our run with 128 cells per Jeans length. b) Velocity
streamlines on a linear color scale ranging from dark blue (0 km s�1) to light gray (5 km s�1). c) Magnetic field lines, showing a highly
tangled and twisted magnetic field structure typical of the small-scale dynamo; yellow: 0.5mG, red: 1mG. d) Four randomly chosen,
individual field lines. The green one, in particular, is extremely tangled close to the center of the Jeans volume. e) Contours of the vorticity
modulus, |⌅⇥ v|, showing elongated, filamentary structures typically seen in subsonic turbulence (e.g., Frisch 1995). f) Spherical slice of
the divergence of the velocity field, ⌅ · v; white: compression, red: expansion.
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agenda

• star formation theory 

- phenomenology

- historic remarks

- our current understanding and its limitations

• applications

- formation of molecular clouds

- the stellar mass function at birth (IMF)

NGC 3324 (Hubble, NASA/ESA)



phenomenology



Hubble Ultra-Deep FieldHubble Ultra-Deep Field



Hubble Ultra-Deep FieldHubble Ultra-Deep Field



Hubble Ultra-Deep FieldHubble Ultra-Deep Field

• star formation sets in very 
early after the big bang

• stars always form in galaxies 
and protogalaxies

• we cannot see the first 
generation of stars, but 
maybe the second one



M51 with Hubble (additional processing R. Gendler)



M51 with Hubble (additional processing R. Gendler)

• correlation between stellar  
birth and large-scale dynamics

• spiral arms

• tidal perturbation from 
neighboring galaxy



HI Maps

SFR Maps

H2 Maps

atomic  
hydrogen

molecular  
hydrogen

star  
formation

galaxies from THINGS and HERACLES survey  
(images from Frank Bigiel, ZAH/ITA)



HI Maps

SFR Maps

H2 Maps

• HI gas more extended

• H2 and SF well correlated

atomic  
hydrogen

molecular  
hydrogen

star  
formation

galaxies from THINGS and HERACLES survey  
(images from Frank Bigiel, ZAH/ITA)
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distribution of molecular 
gas in the Milky Way as 
traced by CO emission
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Orion

Orion Nebula Cluster (ESO, VLT,  
M. McCaughrean) 



Orion Nebula Cluster (ESO, VLT, M. McCaughrean) 



• stars form in molecular clouds

• stars form in clusters

• stars form on ~ dynamical time

• (protostellar) feedback is very 
important

Orion Nebula Cluster (ESO, VLT, M. McCaughrean) 



Ionizing radiation from central star Θ1C Orionis 

Trapezium stars in the center of the ONC (HST, Johnstone et al. 1998)



Ionizing radiation from central star Θ1C Orionis 

• strong feedback: UV radiation 
from Θ1C Orionis affects star 
formation on all cluster scales

Trapezium stars in the center of the ONC (HST, Johnstone et al. 1998)



Pleiades (DSS, Palomar Observatory Sky Survey)

eventually, clusters like the ONC 
(1 Myr) will evolve into clusters 
like the Pleiades (100 Myr)



theoret
ical

  

approach



decrease in spatial scale / increase in density 

• density

- density of ISM: few particles per cm3

- density of molecular cloud: few 100 particles per cm3

- density of Sun: 1.4 g /cm3

• spatial scale

- size of molecular cloud: few 10s of pc

- size of young cluster: ~ 1 pc

- size of Sun: 1.4 x 1010 cm

Andromeda (R. Gendler)

NGC 602 in LMC (Hubble)

Proplyd in Orion (Hubble)

Sun (SOHO)
Earth



decrease in spatial scale / increase in density 

• contracting force

-  only force that can do this compression 
 is GRAVITY 

• opposing forces

-  there are several processes that can oppose gravity

-  GAS PRESSURE

-  TURBULENCE

-  MAGNETIC FIELDS 

-  RADIATION PRESSURE

Andromeda (R. Gendler)

NGC 602 in LMC (Hubble)

Proplyd in Orion (Hubble)

Sun (SOHO)
Earth



decrease in spatial scale / increase in density 

• contracting force

-  only force that can do this compression 
 is GRAVITY 

• opposing forces

-  there are several processes that can oppose gravity

-  GAS PRESSURE

-  TURBULENCE

-  MAGNETIC FIELDS 

-  RADIATION PRESSURE

Andromeda (R. Gendler)

NGC 602 in LMC (Hubble)

Proplyd in Orion (Hubble)

Sun (SOHO)
Earth

Modern star formation 
theory is based on the 
complex interplay between 
all these processes.



• Jeans (1902): Interplay between  
self-gravity and thermal pressure 
- stability of homogeneous spherical 

density enhancements against  
gravitational collapse 

- dispersion relation: 

- instability when  

- minimal mass:  
  

early theoretical models

Sir James Jeans, 1877 - 1946
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• von Weizsäcker (1943, 1951)  and  
Chandrasekhar (1951): concept of 
MICROTURBULENCE 
- BASIC ASSUMPTION: separation of  

scales between dynamics and turbulence 
lturb « ldyn 

- then turbulent velocity dispersion contributes 
to effective soundspeed: 

- ! Larger effective Jeans masses ! more stability 
- BUT: (1)  turbulence depends on k: 
 
          (2) supersonic turbulence    !                       usually 

first approach to turbulence

S. Chandrasekhar,  
1910 - 1995

222
rmscc cc σ+!

)(krms
2σ

22
srms ck >>)(σ

C.F. von Weiszäcker,  
1912 - 2007



problems of early dynamical theory

• molecular clouds are highly Jeans-unstable, 
yet, they do NOT form stars at high rate  
and with high efficiency (Zuckerman & Evans 1974 conundrum) 
(the observed  global SFE in molecular clouds is ~5%)  
! something prevents large-scale collapse. 

• all throughout the early 1990’s, molecular clouds 
had been thought to be long-lived quasi-equilibrium 
entities. 

• molecular clouds are magnetized



• Mestel & Spitzer (1956): Magnetic 
fields can prevent collapse!!! 
- Critical mass for gravitational  

collapse in presence of B-field 

- Critical mass-to-flux ratio 
(Mouschovias & Spitzer 1976) 
  

- Ambipolar diffusion can initiate collapse

magnetic star formation 
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• BASIC ASSUMPTION: Stars form from  
magnetically highly subcritical cores 

• Ambipolar diffusion slowly  
increases (M/Φ): τAD ≈ 10τff 

• Once (M/Φ) > (M/Φ)crit : 
dynamical collapse of SIS 

•  Shu (1977) collapse solution 

•  dM/dt = 0.975 cs
3/G = const.  

• Was (in principle) only intended  
for isolated, low-mass stars

“standard theory” of star formation 

Frank Shu, 1943 -  

magnetic field



problems of “standard theory”

• Observed B-fields are weak, at most 
marginally critical (Crutcher 1999, Bourke et al. 
2001) 

• Magnetic fields cannot prevent decay of 
turbulence 
(Mac Low et al. 1998, Stone et al. 1998, Padoan & 
Nordlund 1999) 

• Structure of prestellar cores 
(e.g. Bacman  et al. 2000, Alves et al. 2001) 

• Strongly time varying dM/dt 
(e.g. Hendriksen et al. 1997, André et al. 2000) 

• More extended infall motions than 
predicted by the standard model 
(Williams & Myers 2000, Myers et al. 2000) 

• Most stars form as binaries 
(e.g. Lada 2006)

• As many prestellar cores as protostellar 
cores in SF regions (e.g. André et al 2002) 

• Molecular cloud clumps are chemically 
young  
(Bergin & Langer 1997, Pratap et al 1997, Aikawa 
et al 2001) 

• Stellar age distribution small (τff << τAD)  
(Ballesteros-Paredes et al. 1999, Elmegreen 2000, 
Hartmann 2001) 

• Strong theoretical criticism of the SIS as 
starting condition for gravitational 
collapse 
(e.g. Whitworth et al 1996, Nakano 1998, as 
summarized in Klessen & Mac Low 2004) 

• Standard AD-dominated theory is 
incompatible with observations  
(Crutcher et al. 2009, 2010ab, Bertram et al. 2011)

 (see e.g. Mac Low & Klessen, 2004, Rev. Mod. Phys., 76, 125-194)



• BASIC ASSUMPTION:   
  

star formation is controlled by interplay between 
supersonic turbulence and self-gravity  

• turbulence plays a dual role: 

- on large scales it provides support 

- on small scales it can trigger collapse 

• some predictions: 

- dynamical star formation timescale τff 

- high binary fraction 

- complex spatial structure of  
embedded star clusters 

- and many more . . .

gravoturbulent star formation

Mac Low & Klessen, 2004, Rev. Mod. Phys., 76, 125-194 
McKee & Ostriker, 2007, ARAA, 45, 565



•

 molecular clouds 

σrms  ≈ several km/s 
Mrms > 10 
    L  > 10 pc
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•

ηK-1

energy source & scale 
NOT known  
(supernovae, winds,  
spiral density waves?)

dissipation scale not known 
(ambipolar diffusion,   
molecular diffusion?)
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•

 massive cloud cores 

σrms  ≈ few km/s         
Mrms ≈ 5 
      L ≈ 1 pc 

•

dense  
protostellar  
cores 

σrms << 1 km/s          
Mrms ≤ 1    
     L ≈ 0.1 pc 

turbulent cascade in the ISM



• stars form from the complex interplay of self-gravity and a large number of 
competing processes (such as turbulence, magnetic fields, radiative and 
mechanical feedback, thermal pressure, cosmic rays, etc.) 

• the relative importance of these processes depends on the environment 

- prestellar cores --> thermal pressure is important 
molecular clouds --> turbulence dominates 

- massive star forming regions (NGC602): radiative feedback is important  
small clusters (Taurus): evolution maybe dominated by external turbulence   

• star formation is regulated by various feedback processes 

• star formation is closely linked to global galactic dynamics (KS relation)

current status

   (Larson’s relation: σ∝L1/2)}

Star formation is intrinsically a multi-scale and multi-physics 
problem, where it is difficult to single out individual processes. 
Simple theoretical approaches usually fail.  



Carina with HST

Star formation is intrinsically a multi-scale and multi-physics 
problem, where it is difficult to single out individual processes. 
Progress requires a comprehensive theoretical approach.



HH 901/902 in Carina with HST

Star formation is intrinsically a multi-scale and multi-physics 
problem, where it is difficult to single out individual processes. 
Progress requires a comprehensive theoretical approach.  



HH 901/902 in Carina with HST

• what regulates star formation on galactic scales? global SF relations? 

• what drives interstellar turbulence turbulence? 

• how do molecular clouds form and evolve?  
is there unaccounted (molecular) gas in galaxies?  

• what are the initial conditions for star cluster formation? 
how does cloud structure translate into cluster structure?  

• what processes determine the initial mass function (IMF) of stars? 

• how does star formation depend on metallicity? how do the first stars form? 

• star formation in extreme environments (galactic center, starburst, etc.), 
how does it differ from a more “normal” mode? 

selected open questions
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No. 1, 2009 MOLECULAR AND ATOMIC GAS IN THE LMC. II. 147

Figure 4. Histograms of the pixel-averaged H i brightness temperature where significant CO emission is detected for Type I (blue), Type II (yellow), and Type III (red)
GMCs. Histograms are shown for the whole LMC, and for three different regions—Bar, North, and Arc—which are indicated in the right panel.
(A color version of this figure is available in the online journal.)

envelopes each GMC. The associated H i is often elongated
along the GMCs and the region of intense H i emission is usu-
ally <100 pc wide. The CO emission typically extends over a
velocity range of ∼5 km s−1; beyond a few times this veloc-
ity range, the associated H i emission generally becomes much
weaker or disappears.

3.2. Physical Properties of the H i Envelope

In general, it is a complicated task to derive reliable physical
properties of the H i gas associated with a GMC because the
H i profiles are a blend of several different components along
the line of sight, making it difficult to select the H i gas that is
physically connected to a GMC. Another obstacle is that the H i
emission is spatially more extended than the CO emission and
has a less clear boundary than the CO.

For our analysis, we first selected GMCs with simple single-
peaked H i profiles from the Fukui et al. (2008) catalog. The
resulting sample consists of 123 GMCs in total. Their catalog
numbers and basic physical properties, taken from Fukui et al.
(2008), are listed in Table 2. For these GMCs, we tested
whether there was a bias in their location with respect to
the kinematic center of the galaxy, in their CO line width or
in their molecular mass. The histograms in Figure 6 indicate
that there is no particular trend for these properties of the
selected GMCs compared to GMCs in the complete catalog,
suggesting that there is no appreciable selection bias. We
applied a Kolmogorov–Smirnov test to the three histograms
and calculated maximum deviations of 0.031, 0.061, and 0.117,
respectively, for the three parameters. These values are less than
the critical deviation, 0.129, for a conventional significance level
of 0.05, confirming that there is no selection bias.

Next, we made Gaussian fits to the H i and CO profiles
toward the CO peak of each GMC. This procedure yields a

peak intensity, peak velocity, and half-power line width for each
line profile (a summary is given for each GMC type in Table 1).
Figure 7 shows the relation between the CO line width and the
difference between the CO and H i peak velocities. We find the
H i and CO peak velocities to be in good agreement, showing
only a small scatter of less than a few km s−1. Figure 8 shows
two histograms of the H i and CO line widths. We see that the
H i line width is typically 14 km s−1, roughly three times larger
than that of CO. Figure 9 shows a correlation between H i and
CO line widths. The two quantities show a positive correlation
with a correlation coefficient of 0.39. The correlation coefficient
is determined using the Spearman rank method throughout this
paper. The kinematic properties of H i and CO, as illustrated in
Figures 7 and 9, lend further support to a physical association
between the H i and CO.

In order to estimate the size of the H i envelope surrounding
each GMC, we construct an H i integrated intensity map of
each GMC. First, we find the local peak in the H i intensity cube
surrounding the CO emission, and then integrate the H i intensity
over the velocity channels corresponding to the FWHM of the
H i line profile at this peak position. Next we estimate the area,
S, where the H i integrated intensity is greater than 80% of the
value at the local H i peak. We then calculate the radius of the
H i envelope, R(H i), from its projected area, S = πR(H i)2.
The H i integrated intensity is calculated for all the pixels
with detectable CO emission; the spatial distribution of the
H i emission generally shows a peak and a reasonably defined
boundary. The 80% level was chosen after a few trials using
different levels; it is the maximum value for which a reasonable
H i size is obtained for 116 of the 123 envelopes. While 80%
seems to be rather high for such a definition of a cloud envelope,
the H i size can be unrealistically large compared to the CO
cloud size along a filamentary H i distribution if we use a lower

molecular cloud formation

Idea: 

Molecular clouds form at 
stagnation points of large-
scale convergent flows, 
mostly triggered by global 
(or external) perturbations. 
Their internal turbulence is 
driven by accretion, i.e. by 
the process of cloud 
formation

Fukui et al. (2009)

• molecular clouds grow in 
mass 

• this is inferred by looking at 
molecular clouds in different 
evolutionary phases in the 
LMC (Fukui et al. 2008, 2009)



No. 1, 2009 MOLECULAR AND ATOMIC GAS IN THE LMC. II. 147

Figure 4. Histograms of the pixel-averaged H i brightness temperature where significant CO emission is detected for Type I (blue), Type II (yellow), and Type III (red)
GMCs. Histograms are shown for the whole LMC, and for three different regions—Bar, North, and Arc—which are indicated in the right panel.
(A color version of this figure is available in the online journal.)

envelopes each GMC. The associated H i is often elongated
along the GMCs and the region of intense H i emission is usu-
ally <100 pc wide. The CO emission typically extends over a
velocity range of ∼5 km s−1; beyond a few times this veloc-
ity range, the associated H i emission generally becomes much
weaker or disappears.

3.2. Physical Properties of the H i Envelope

In general, it is a complicated task to derive reliable physical
properties of the H i gas associated with a GMC because the
H i profiles are a blend of several different components along
the line of sight, making it difficult to select the H i gas that is
physically connected to a GMC. Another obstacle is that the H i
emission is spatially more extended than the CO emission and
has a less clear boundary than the CO.

For our analysis, we first selected GMCs with simple single-
peaked H i profiles from the Fukui et al. (2008) catalog. The
resulting sample consists of 123 GMCs in total. Their catalog
numbers and basic physical properties, taken from Fukui et al.
(2008), are listed in Table 2. For these GMCs, we tested
whether there was a bias in their location with respect to
the kinematic center of the galaxy, in their CO line width or
in their molecular mass. The histograms in Figure 6 indicate
that there is no particular trend for these properties of the
selected GMCs compared to GMCs in the complete catalog,
suggesting that there is no appreciable selection bias. We
applied a Kolmogorov–Smirnov test to the three histograms
and calculated maximum deviations of 0.031, 0.061, and 0.117,
respectively, for the three parameters. These values are less than
the critical deviation, 0.129, for a conventional significance level
of 0.05, confirming that there is no selection bias.

Next, we made Gaussian fits to the H i and CO profiles
toward the CO peak of each GMC. This procedure yields a

peak intensity, peak velocity, and half-power line width for each
line profile (a summary is given for each GMC type in Table 1).
Figure 7 shows the relation between the CO line width and the
difference between the CO and H i peak velocities. We find the
H i and CO peak velocities to be in good agreement, showing
only a small scatter of less than a few km s−1. Figure 8 shows
two histograms of the H i and CO line widths. We see that the
H i line width is typically 14 km s−1, roughly three times larger
than that of CO. Figure 9 shows a correlation between H i and
CO line widths. The two quantities show a positive correlation
with a correlation coefficient of 0.39. The correlation coefficient
is determined using the Spearman rank method throughout this
paper. The kinematic properties of H i and CO, as illustrated in
Figures 7 and 9, lend further support to a physical association
between the H i and CO.

In order to estimate the size of the H i envelope surrounding
each GMC, we construct an H i integrated intensity map of
each GMC. First, we find the local peak in the H i intensity cube
surrounding the CO emission, and then integrate the H i intensity
over the velocity channels corresponding to the FWHM of the
H i line profile at this peak position. Next we estimate the area,
S, where the H i integrated intensity is greater than 80% of the
value at the local H i peak. We then calculate the radius of the
H i envelope, R(H i), from its projected area, S = πR(H i)2.
The H i integrated intensity is calculated for all the pixels
with detectable CO emission; the spatial distribution of the
H i emission generally shows a peak and a reasonably defined
boundary. The 80% level was chosen after a few trials using
different levels; it is the maximum value for which a reasonable
H i size is obtained for 116 of the 123 envelopes. While 80%
seems to be rather high for such a definition of a cloud envelope,
the H i size can be unrealistically large compared to the CO
cloud size along a filamentary H i distribution if we use a lower

zooming in ...



image from Alyssa Goodman: COMPLETE survey

position-position-velocity structure of the Perseus cloud



Federrath (2013, MNRAS, 436, 1245)

density structure resulting from different turbulent driving schemes

driving with solenoidal modes driving with compressive modes

(turbulent box of isothermal ideal gas 
resolution 4096^3 cells)



including detailed 

chemistry



- Arepo and FLASH 
- stochastic forcing    
   (Ornstein-Uhlenbeck) 
- self-gravity 
- time-dependent chemistry  
  (DVODE, standard variable- 
   coefficient ordinary differential     
   equation solver) 
- cooling & heating processes
- gives you mathematically  
  well defined boundary  
  conditions  
  --> good for statistical studies 
- gives external radiation with  
  TreeCol (a new approximative  
  scheme to calculate column  
  densities from the gravity  
  solver)

experimental set-up



chemical model 0

32 chemical species 
17 in instantaneous equilibrium: 

19 full non-equilibrium evolution 

218 reactions 
various heating and cooling processes

long series of publications by Simon Glover and collaborators, e.g. Glover & Mac Low (2007ab), Glover, Federrath, Mac Low, Klessen (2010),  
Glover & Clark (2012, 2013), Clark & Clover (2012, 2013)
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effects of chemistry
total column density

12CO column density

H2 column density

temperature

(Glover et al. 2010)



effects of chemistry
total column density

12CO column density

H2 column density

temperatureratio N(H2)/N(12CO)     

(Glover et al. 2010)



modeling molecular cloud formation

- Arepo moving mesh code (Springel 2010) 
- time dependent chemistry (Glover et al. 2007) 
  gives heating & cooling in a 2 phase medium 
- two layers of refinement with mass resolution down to  
  4 M⦿ in full Galaxy simulation 

- UV field and cosmic rays 
- TreeCol (Clark et al. 2012) 
- external spiral potential (Dobbs & Bonnell 2006) 
- no gas self-gravity, SN, or magnetic fields yet

GMC’s

(Smith et al., 2014, MNRAS, 441, 1628)



moving mesh code Arepo: 
- semi-Lagrangian 
- flexible refinement 
- fluid instabilities and no artificial clumping 
  (Agertz et al. 2007) 

- can also handle sub-sonic turbulence  
  (Bauer & Springel 2012) 

- no preferred geometry

numerical method

Springel (2010, MNRAS, 401, 791)



CO-dark gas in the Milky Way 5

Figure 2. Map of total column density of hydrogen nuclei for the highly resolved section of the disc in the Milky Way simulation. The
gas has a range of morphologies, from dense spiral arms, to filamentary spurs, to diffuse inter-arm regions.

As an example of the results we obtain from our stan-
dard grid, we show in Figure 2 a map of the total column
density in the high-resolution section of the Milky Way sim-
ulation. We see from the map that the gas exhibits very
different morphologies, ranging from dense spiral arms, to
filamentary spurs, to diffuse inter-arm regions. Each of these
regions has a different degree of shielding to the ambient ra-
diation field and consequently a different molecular hydro-
gen abundance.

Figure 3 shows the fractional abundance of molecu-
lar hydrogen relative to hydrogen in all forms as a func-
tion of column density. In this work, we define the frac-
tional abundance of H2 via the relationship fH2 ≡ nH2/n,
where nH2 is the number density of hydrogen molecules and
n ≡ 2nH2+nH+nH+ is the total number density of hydrogen
nuclei. With this definition, the maximum value of the frac-
tional abundance is fH2 = 0.5, corresponding to fully molec-

ular hydrogen. Between column densities of 1020 cm−2 and
1021 cm−2 the molecular hydrogen begins to self-shield and
its abundance rises dramatically. A similar jump in molec-
ular hydrogen abundance is seen observationally at similar
total column densities, as shown by Leroy et al. (2007) and
Wolfire et al. (2008).

Gnedin et al. (2009) presented a galactic scale model of
molecular hydrogen formation in which these observations
were used to calibrate a clumping factor, used to account
for small-scale, unresolved density fluctuations, and tuned
to ensure that the model matched observations. Our results
in Figure 3 are a good match to the observed transition
without us having to apply any calibration factors. There
is some suggestion in Figure 3 that our column densities
are slightly lower for a given value of fH2 than some of the
observational data (e.g. Savage et al. 1977). However, these
observations were taken along long sight-lines within the

total column density

(Smith et al., 2014, MNRAS, 441, 1628)
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density in the high-resolution section of the Milky Way sim-
ulation. We see from the map that the gas exhibits very
different morphologies, ranging from dense spiral arms, to
filamentary spurs, to diffuse inter-arm regions. Each of these
regions has a different degree of shielding to the ambient ra-
diation field and consequently a different molecular hydro-
gen abundance.

Figure 3 shows the fractional abundance of molecu-
lar hydrogen relative to hydrogen in all forms as a func-
tion of column density. In this work, we define the frac-
tional abundance of H2 via the relationship fH2 ≡ nH2/n,
where nH2 is the number density of hydrogen molecules and
n ≡ 2nH2+nH+nH+ is the total number density of hydrogen
nuclei. With this definition, the maximum value of the frac-
tional abundance is fH2 = 0.5, corresponding to fully molec-

ular hydrogen. Between column densities of 1020 cm−2 and
1021 cm−2 the molecular hydrogen begins to self-shield and
its abundance rises dramatically. A similar jump in molec-
ular hydrogen abundance is seen observationally at similar
total column densities, as shown by Leroy et al. (2007) and
Wolfire et al. (2008).

Gnedin et al. (2009) presented a galactic scale model of
molecular hydrogen formation in which these observations
were used to calibrate a clumping factor, used to account
for small-scale, unresolved density fluctuations, and tuned
to ensure that the model matched observations. Our results
in Figure 3 are a good match to the observed transition
without us having to apply any calibration factors. There
is some suggestion in Figure 3 that our column densities
are slightly lower for a given value of fH2 than some of the
observational data (e.g. Savage et al. 1977). However, these
observations were taken along long sight-lines within the

HI column density
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preliminary image from THOR Galactic plane survey (PI H. Beuther): continuum emission around 21 cm

next step: produce all sky maps at various positions in the model galaxy (use RADMC-3D)
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Figure 4. Map of H2 column density for the highly resolved section of the disc in the Milky Way simulation. H2 is predominantly found
in the spiral arms and in long filaments in the inter-arm regions.

galactic disc which will have higher column densities than in
our face-on disc. The observations of Gillmon et al. (2006)
along sight-lines perpendicular to the disc (shown by the
bold diamonds in Figure 3) are in good agreement with our
data. This gives us confidence that the small-scale galactic
structure is sufficiently resolved to accurately describe its
chemical makeup.

Figure 4 shows the column density of molecular hydro-
gen in the highly resolved disc segment. Molecular hydrogen
is predominantly present in the spiral arms, but there is also
molecular gas in inter-arm spurs and in the inner regions of
the disc. In the inter-arm regions molecular hydrogen is often
found in long filaments that were originally spurs connected
to the spiral arms but that were sheared off as the disc ro-
tated. Figure 5 shows the ratio of H2 to CO column densities
in the gas. There is considerable variation in the abundance
of CO. In particular, the long inter-arm filaments, which

are so apparent in Figure 4, are much less visible in CO.
This can be attributed to their narrow filamentary geome-
try being inefficient at shielding the gas from the ambient
radiation field. Due to the low abundance of CO in these
regions, the molecular gas there is likely to appear ‘dark’ in
observations of CO emission.

3.2 The relationship between CO and H2 column

densities

Although our simulations provide us with information on the
full 3D distributions of the H2 and CO abundances, in gen-
eral these are not observable quantities. For comparison with
observations, it is more useful to examine the correlation
between the H2 and CO column densities, and the column-
averaged abundance of CO relative to H2, ZCO = NCO/NH2 .

The left panel of Figure 6 shows the relation between

H2 column density
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n ≡ 2nH2+nH+nH+ is the total number density of hydrogen
nuclei. With this definition, the maximum value of the frac-
tional abundance is fH2 = 0.5, corresponding to fully molec-
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its abundance rises dramatically. A similar jump in molec-
ular hydrogen abundance is seen observationally at similar
total column densities, as shown by Leroy et al. (2007) and
Wolfire et al. (2008).

Gnedin et al. (2009) presented a galactic scale model of
molecular hydrogen formation in which these observations
were used to calibrate a clumping factor, used to account
for small-scale, unresolved density fluctuations, and tuned
to ensure that the model matched observations. Our results
in Figure 3 are a good match to the observed transition
without us having to apply any calibration factors. There
is some suggestion in Figure 3 that our column densities
are slightly lower for a given value of fH2 than some of the
observational data (e.g. Savage et al. 1977). However, these
observations were taken along long sight-lines within the
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Figure 4. Map of H2 column density for the highly resolved section of the disc in the Milky Way simulation. H2 is predominantly found
in the spiral arms and in long filaments in the inter-arm regions.
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along sight-lines perpendicular to the disc (shown by the
bold diamonds in Figure 3) are in good agreement with our
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structure is sufficiently resolved to accurately describe its
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As an example of the results we obtain from our stan-
dard grid, we show in Figure 2 a map of the total column
density in the high-resolution section of the Milky Way sim-
ulation. We see from the map that the gas exhibits very
different morphologies, ranging from dense spiral arms, to
filamentary spurs, to diffuse inter-arm regions. Each of these
regions has a different degree of shielding to the ambient ra-
diation field and consequently a different molecular hydro-
gen abundance.

Figure 3 shows the fractional abundance of molecu-
lar hydrogen relative to hydrogen in all forms as a func-
tion of column density. In this work, we define the frac-
tional abundance of H2 via the relationship fH2 ≡ nH2/n,
where nH2 is the number density of hydrogen molecules and
n ≡ 2nH2+nH+nH+ is the total number density of hydrogen
nuclei. With this definition, the maximum value of the frac-
tional abundance is fH2 = 0.5, corresponding to fully molec-

ular hydrogen. Between column densities of 1020 cm−2 and
1021 cm−2 the molecular hydrogen begins to self-shield and
its abundance rises dramatically. A similar jump in molec-
ular hydrogen abundance is seen observationally at similar
total column densities, as shown by Leroy et al. (2007) and
Wolfire et al. (2008).

Gnedin et al. (2009) presented a galactic scale model of
molecular hydrogen formation in which these observations
were used to calibrate a clumping factor, used to account
for small-scale, unresolved density fluctuations, and tuned
to ensure that the model matched observations. Our results
in Figure 3 are a good match to the observed transition
without us having to apply any calibration factors. There
is some suggestion in Figure 3 that our column densities
are slightly lower for a given value of fH2 than some of the
observational data (e.g. Savage et al. 1977). However, these
observations were taken along long sight-lines within the
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Figure 7. Morphology of the molecular gas in our Milky Way simulation. The greyscale background image shows the H2 column density
(c.f. Figure 4), while the purple points show the strength of the CO velocity-integrated intensity, WCO, estimated as described in the
text. Many of the clouds in the inter-arm region have no portions with integrated intensities above 0.1 K km s−1 and thus would appear
entirely ‘dark’ in CO observations.

can be determined. If we instead average over all of the gas
in our high-resolution region, including the CO-dark clouds,
we obtain a larger value, XCO = 3.9×1020 cm−2K−1km−1s.

3.4 Quantifying the dark gas fraction

To quantify the amount of CO-dark molecular gas in our
simulations, we define a dark gas fraction

fDG(x) =
Mx

H2

MCO
H2

+Mx
H2

, (4)

where Mx
H2

is the mass of CO-dark H2 with emission be-
low an intensity of x = WCO, and MCO

H2
is the mass of

CO-bright H2 above this threshold. Our dark gas fraction
therefore is the ratio of the CO-dark molecular gas to the

total molecular gas. This definition is equivalent to that used
in Wolfire et al. (2010), but differs from that used by some
other authors, who define the dark gas fraction relative to
the total gas mass (i.e. the sum of the atomic and molecular
masses).

Clearly, in order to compute fDG, we need to be able to
distinguish between CO-dark and CO-bright gas. However,
it is not immediately obvious how to do this: how faint does
the CO emission from a cloud of gas need to be before we
call that gas CO-dark? In our analysis, rather than adopting
an arbitrary emission threshold for distinguishing between
CO-dark and CO-bright gas, we have instead computed fDG

as a function of the choice of threshold (x). The results are
plotted in Figure 9. We see from the Figure that in practice,
the value we derive for fDG is not particularly sensitive to

CO column density
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H2 forms above column densities of 1020 cm-2 

CO columns jump after NH2 ~ 1021 cm-2

H2 fraction vs. column density N CO col. density vs. H2 col. density
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details of CO emission
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relation between CO and H2
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Filamentary molecular clouds in inter-arm regions are 
likely only the observable parts of much larger structures.

relation between CO and H2



46% molecular gas below CO column densities of 1016 cm-2 

42% has an integrated CO emission of less than 0.1 K kms-1

fDG = 0.42 Xco=2.2 × 1020 cm-2K-1km-1s

jump due to 
shielding

dark gas fraction

(Smith et al., 2014, MNRAS, 441, 1628)



dark gas fraction

Observational estimates:  

Grenier et al. (2005)           fDG = 0.33-0.5 

Planck coll. (2011)*            fDG = 0.54 

Paradis et al. (2012)* fDG = 0.62  

    (inner fDG = 0.71, outer fDG = 0.43) 

Pineda et al. (2013)             fDG= 0.3 

Roman-Duval et al.              fDG ~ 0.5  
(in prep.)   

* dust methods have large uncertainties. 

fDG = 0.42

(Smith et al., 2014, MNRAS, 441, 1628)
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pressure, CR pressure, 

• thermodynamic properties
in the star formation process  

• detailed studies require the 
physical processes 

• star formation is 
poorly understood 

• primordial star formation
star formation

Star formation is intrinsically a multi-scale and multi-physics problem. 
Many different processes need to be considered simultaneously. 



T H A N K S

Star formation is intrinsically a multi-scale and multi-physics problem. 
It has close links to very diverse fields of modern astrophysics.


