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Fig. 3.— a) Spherical slice of the gas density inside the Jeans volume at � = 12 for our run with 128 cells per Jeans length. b) Velocity
streamlines on a linear color scale ranging from dark blue (0 km s�1) to light gray (5 km s�1). c) Magnetic field lines, showing a highly
tangled and twisted magnetic field structure typical of the small-scale dynamo; yellow: 0.5mG, red: 1mG. d) Four randomly chosen,
individual field lines. The green one, in particular, is extremely tangled close to the center of the Jeans volume. e) Contours of the vorticity
modulus, |⌅⇥ v|, showing elongated, filamentary structures typically seen in subsonic turbulence (e.g., Frisch 1995). f) Spherical slice of
the divergence of the velocity field, ⌅ · v; white: compression, red: expansion.
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Plato's allegory of the cave* 

* The Republic 
  (514a-520a) Laszlo Szücs, image from criticalthinking-mc205.wikispaces.com
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Laszlo Szücs, image from criticalthinking-mc205.wikispaces.com
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astronomer

Plato's allegory of the cave*  ↔ Astronomical observations

* The Republic 
  (514a-520a) Laszlo Szücs, image from criticalthinking-mc205.wikispaces.com
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Plato's allegory of the cave*  ↔ Astronomical observations
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* The Republic 
  (514a-520a) Laszlo Szücs, image from criticalthinking-mc205.wikispaces.com
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Plato's allegory of the cave*  ↔ Astronomical observations
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Intensity [erg 
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ster-1]

Brightness 
temperature 
[K]

I(12CO)

I(13CO)

Assumptions I.
I(12CO) is optically thick

Along a line of sight uniform Tex and 
same for 12CO and 13CO

J=1-0

115.271 GHz

110.201 GHz

I(13CO) is optically thin

LTE

Assumptions II.
Uniform N(12CO)/N(13CO) ~ 60 *

N(H2)/N(12CO) ratio ~ 6.6×103 **

*  Langer & Penzias (1990)
** Pineda et al.  (2009)

Column density 
            [cm-2]

12CO/13CO ratio in GMC simulations 7

τ13(v) = −ln

[
1− T 13

B

5.3

{
exp

(
5.3
Tex

− 1

)−1

− 0.16

}−1]

(4)

Tex = 5.5 ln

(
1 +

5.5
TB,peak + 0.82

)−1

(5)

4.1 Derived column density estimates

4.2 Morphology

5 SUMMARY

REFERENCES

Audouze, J., Lequeux, J., & Vigroux, L., 1975, A&A, 43,
71

Bate, M. R., Bonnell, I. A., & Price, N. M., 1995, MNRAS,
277, 362

Bolatto, A. D., Wolfire, M., Leroy, A. K., 2013, ??
Black, J. H., 1994, ASP Conf. Ser. 58, in The First Sym-
posium on the Infrared Cirrus and Diffuse Interstellar
Clouds, eds. R. M. Cutri & W. B. Latter, (San Fran-
cisco:ASP), 355

Clark, P. C., Glover, S. C. O., Klessen, R. S., 2012, MN-
RAS, 420, 745

Draine, B. T., 1978, ApJS, 36, 595
Draine, B. T.,& Bertoldi, F., 1996, ApJ, 468, 269
van Dishoek, E. F., Black, J. H., 1988, ApJ, 334, 771
Feldmann, R., Gnedin, N. Y., Kravtsov, A. V., 2012, ApJ,
747, 124

Geiss, J., 1988, Reviews in Modern Astronomy 1, ed. G.
Klare (Heidelberg: Springer-Verlag), pp. 1-27

Goto, M., Usuda, T., Takato, N., Hayashi, M., Sakamoto,
S., Gaessler, W., Hayano, Y., et al., 2003, ApJ, 598, 1038

Glover, S. C. O., & Mac Low, M.-M. 2007, ApJ, 659, 1317
Glover, S. C. O., Federrath, C., Mac Low, M.-M., &
Klessen, R. S., 2010, MNRAS, 404, 2

Glover, S. C. O., Clark, P. C., 2012, MNRAS, 421, 9
Glover, S. C. O., Clark, P. C., 2012, MNRAS, 421, 116
Goldsmith, P. F., Heyer, M., Narayanan, G., Snell, R., Li,
D., Brunt, C., 2008, ApJ, 680, 428

Habing, H. J., 1968, Bull. Astron. Inst. Netherlands, 19,
421

Langer, W. D., 1976, ApJ, 212, 39
Langer, W. D., Penzias, A. A., 1990, ApJ, 357, 477
Larson, R. B., 1981, MNRAS, 194, 809
Lee, H.-H., Herbst, E., Pineau des Forets, G., Roueff, E.,
& Le Bourlot, J. 1996, A&A, 311, 690

Mitchell, G. F., & Maillard, J.-P., 1993, ApJ, 404, L79
Molina et al. in prep.
Nelson R. P., Langer, W. D, 1999, ApJ, 524, 923
Ossenkopf, V., 1997, New Astronomy, 2, 65
Pineda, J. E., Caselli, P., Goodman, A. A., 2008, ApJ, 679,
481

Pineda, J. L., Goldsmith, P. F., Chapman, N., Snell, R. L.,
Li, D., Cambrésy, L., Brunt, C., 2010, ApJ, 721, 686

Schier, F.L., van der Tak, F.F.S., van Dishoeck, E.F.,
Black, J.H., 2005, A&A 432, 369-379

Scoville, N., Klienmann, S. G., Hall, D. N. B., & Ridgway,
S. T., 1983, ApJ, 275, 201

Sembach, K. R., Howk, J. C., Ryans, R. S. I., & Keenan,
F. P., 2000, ApJ, 528, 310

Shetty, R., Glover, S. C., Dullemond, C. P., Klessen, R. S.,
2011, MNRAS, 412, 1686

Shetty, R., Glover, S. C., Dullemond, C. P., Ostriker, E.
C., Harris, A. I., Klessen, R. S., 2011, MNRAS, 415, 3253

Springel, V., 2005, MNRAS, 364, 1105
Wannier, P. G., Penzias, A. A., Linke, R. A., Wilson, R.
W., 1975, ApJ, 204, 26

Watson, W. D., Anicich, V. G., Huntress, W. T., 1976,
ApJ, 205, 165

Wilson, T. L., 1999, Rep. Prog. Phys., 62, 143
Wilson, T. L., Rohlfs, K., Httemeister, S., 2009, in Tools
of Radio Astronomy, Springer

Yang, B., Stancil, P.C., Balakrishnan, N., Forrey, R. C.,
2010, ApJ, 718, 1062

c⃝ 0000 RAS, MNRAS 000, 000–000
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Figure 4. CO isotopic column density ratio as the function of the 12CO

3.1 Fitting formula

4 EMISSION MAPS

To compare the real column densities of our simulated clouds
to the ones that we would derive from observations, we
performed line radiative transfer calculations. We calcu-
lated the emission in ±6 kms−1 velocity range around the
J = 1 → 0 transition of 12CO (λ0 = 2600.76µm) and 13CO
(λ0 = 2720.41µm) molecules. Then we used standard analy-
sis methods and assumptions (e.g. Chapter 15.4.1 in Wilson
2009) to derive column densities.

In the interstellar medium, the assumption of molecule
energy levels are populated according the thermal distri-
bution (i.e. local thermodynamic equilibrium (LTE)), is of-
ten invalid. To account for non-LTE conditions we used the
Large Velocity Gradient (LVG) approximation, described in
detail in Ossenkopf (1997); Shetty et al. (2011a). The non-
thermal excitation/deexitation is mainly driven by collisions
with other molecules or atoms. As the most abundant par-
ticle in the dense ISM, the hydrogen molecule is the most
probable collisional partner for CO molecules. We account
for the two spin isomers of the hydrogen molecule: using
the mixture of ortho- (75%) and para-hydrogen (25%). The
collisional rates are adopted from the Leiden Atomic and
Molecular Database2 (Schier et al. 2005; Yang et al. 2010).
In addition to the LVG approximation, in which the escape
probability of a photon emitted by a given transition de-
pends on the velocity gradient of the neighbouring cells, we
also consider the escape probability of photons due to the
finite size of the cloud. For the later the smallest column den-
sity that a given cell ”sees” must be given. Here we adopt
the constant length scale of 5pc (roughly the radius of the
cloud) trough to whole domain and calculate the column
density based on this length and the local number density.
This approach results in underestimated escape probabilities
in the high density regions of the cloud.

For the radiative transport calculations we used the
RADMC3D code. The input parameters of the calcula-
tion are the number density of the modelled species (12CO
or 13CO), the number density of the collisional partners

2 http://home.strw.leidenuniv.nl/˜moldata/

(ortho- and para-hydrogen molecules), the gas temperature,
resolved and unresolved (micro-turbulent) velocity of the
gas, and the line data (energy levels, statistical weights,
Einstein A-coefficients and collisional rate coefficients). The
SpH data of number densities, gas velocity and tempera-
ture were interpolated to a regular grid of (512 pixel)3 as
described in section 2 and used as the input. The micro-
turbulent velocities were set uniformly according Larson’s
law by vmt = 1.1 × 105 × (0.032 [pc])0.38 [cms−1] (Larson
1981), where 0.032 pc is the linear size of a pixel. The line
data was adopted from Yang et al. (2010). The two dimen-
sional intensity maps were calculated with the velocity res-
olution of 0.09 kms−s.

The outputs of the radiative transfer calculation are
the point–point–velocity intensity map and optical depths
at each considered wavelengths for both isotopic species. To
calculate the column densities from these synthetic emis-
sion maps we follow Wilson (2009) and adopt the following
assumptions:

• all CO molecules along a line of sight has a uniform
excitation temperature in the J = 1 → 0.

• the excitation temperature is the same for 12CO and
13CO

• LTE applies and the level populations follow the Boltz-
mann distribution

• the 12CO J = 1 → 0 line is completely optically thick
(τ12CO > 1)

• the 13CO J = 1 → 0 line is completely optically thin
(τ13CO << 1)

• the 12CO and 13CO lines are emitted from the same
partial of gas

These assumptions although shown to be invalid in some
situations (Molina et al. 2013) are still standards when in-
terpreting observational data (see e.g. Goldsmith et al. 2008;
Pineda et al. 2008).

N(13CO) = 3.0× 1014
Tex

∫
τ13(v)dv

1− exp(−5.3/Tex)
(3)

c⃝ 0000 RAS, MNRAS 000, 000–000

Example: from CO emission to total column density

Laszlo Szücs et al., MNRAS, 445, 4055)
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HI Maps

SFR Maps

H2 Maps

• HI gas more extended

• H2 and SF well correlated

atomic  
hydrogen

molecular  
hydrogen

star  
formation

galaxies from THINGS and HERACLES survey  
(images from Frank Bigiel, ZAH/ITA)



• standard model: roughly linear relation between H

• standard model: roughly constant depletion time:  few x 10

• super linear relation between total gas and SFR

Bigiel et al. (2008, AJ, 136, 2846)

No. 6, 2008 THE SF LAW IN NEARBY GALAXIES ON SUB-KPC SCALES 2869

Figure 15. ΣSFR vs. Σgas from this paper in colored contours (compare the middle-right panel of Figure 8) and for individual galaxies from other analyses (see Figure 14).
The diagonal dotted lines and all other plot parameters are the same as in Figure 4. Overplotted as black dots are data from measurements in individual apertures
in M51 (Kennicutt et al. 2007). Data points from radial profiles from M51 (Schuster et al. 2007), NGC 4736, and NGC 5055 (Wong & Blitz 2002) and from
NGC 6946 (Crosthwaite & Turner 2007) are shown as black filled circles. Furthermore, we show disk-averaged measurements from 61 normal spiral galaxies (filled
gray stars) and 36 starburst galaxies (triangles) from K98. The black filled diamonds show global measurements from 20 low surface brightness galaxies (Wyder
et al. 2008). Data from other authors were adjusted to match our assumptions on the underlying IMF, CO line ratio, CO-to-H2 conversion factor and galaxy inclinations
where applicable. One finds good qualitative agreement between our data and the measurements from other studies despite a variety of applied SFR tracers. This
combined data distribution is indicative of three distinctly different regimes (indicated by the vertical lines) for the SF law (see discussion in the text).

Σgas. The fit of K98 depends on the contrast between normal
spirals, ΣH2 ≈ 20 M⊙ pc−2, and high surface density starbursts,
ΣH2 ≈ 1000 M⊙ pc−2. A power-law index N ≈ 1.5 relating
SFR to CO emission has been well established in starbursts at
low and high redshifts by a number of authors (e.g., Gao &
Solomon 2004; Riechers et al. 2007). There may be reasons
to expect different values of N in starburst environments and
in our data. Starburst galaxies have average surface densities
far in excess of a Galactic GMC (e.g., Gao & Solomon 2004;
Rosolowsky & Blitz 2005). We have no such regions in our
own sample, instead we make our measurements in the regime
where ΣH2 = 3–50 M⊙ pc−2. In starbursts, the changes in
molecular surface density must reflect real changes in the
physical conditions being observed.

In our data, ΣH2 is likely to be a measure of the filling factor
of GMCs rather than real variations in surface density. On the
one hand, for our resolution (750 pc) and sensitivity (ΣH2 =
3 M⊙ pc−2) the minimum mass we can detect along a line of
sight is ∼1.5 × 106M⊙. Most of the mass in Galactic GMCs
is in clouds with MH2 ≈ 5 × 105–106 M⊙ (e.g., Blitz 1993).
Consequently, wherever we detect H2 we expect at least a few
GMCs in our beam. On the other hand, most of our data have
ΣH2 ! 50 M⊙ pc−2. The typical surface density of a Galactic
GMC is 170 M⊙ pc−2 (Solomon et al. 1987). These surface
densities are much lower than those observed in starbursts and

are consistent with Galactic GMCs filling ! 1/3 of the beam.
If GMC properties are the same in all spirals in our sample,
then for this range of surface densities we expect a power-law
index of N = 1 as ΣH2 just represents the beam-filling fraction
of GMCs. Averaging over at least a few clouds may wash out
cloud–cloud variations in the SFE. A test of this interpretation is
to measure GMC properties in a wide sample of spirals. We note
that Local Group spirals display similar scaling relations and
cloud mass distribution functions so that it is hard to distinguish
GMCs in M 31 or M 33 from those in the Milky Way (e.g., Blitz
et al. 2007; Bolatto et al. 2008). If this holds for all spirals, then
we may indeed expect N = 1 whenever GMCs represent the
dominant mode of star formation. The next generation of mm-
arrays should soon be able to measure GMC properties beyond
the Local Group and shed light on this topic. In that sense,
our measurement of N = 1.0 ± 0.2 represents a prediction
that GMC properties are more or less universal in nearby spiral
galaxies.

For our results to be consistent with those from starbursts,
the slope must steepen near ΣH2 ≈ 200 M⊙ pc−2. This might
be expected on both observational and physical grounds. CO is
optically thick at the surfaces of molecular clouds. Therefore,
as the filling fraction of such clouds for a given telescope
beam approaches unity, CO will become an increasingly poor
measure of the true ΣH2 because of the optical thickness of

2100 R. Genzel et al.

Fig. 3 (and also Fig. 2) we did not attempt to assign individual errors
(unlike K98a), since in our opinion essentially all uncertainties are
systematic in nature and apply to all data equally. This slope is in
very good agreement with the spatially resolved relation for nearby
spirals in Bigiel et al. (2008, green/orange/red-shaded region in the
left-hand panel of Fig. 3). The new data do not indicate a signifi-
cant steepening of the slope at surface densities of >102 M⊙ pc−2,
neither at z ∼ 0 nor at z ≥ 1. Within the limited statistics of the
currently available data, we do not find a break in the slope near
102 M⊙ pc−2, as proposed by Krumholz et al. (2009). The slope of
1.33 found by Krumholz et al. (2009) in the high-density limit is
marginally larger. A steeper slope in this regime (1.28 to 1.4) was
suggested earlier by the K98a starburst sample, but that analysis
included some mergers (see below) and the combined scatter of
both data sets suggests a 1σ uncertainty of ∼0.15, which makes the
difference in slope of 0.1–0.23 only marginally significant.

Low- and high-z SFGs overlap completely, again with the obvious
exception of EGS12012083 and BX389. The data in Fig. 3 suggest
that the KS relation in normal SFGs does not vary with redshift, in
agreement with the conclusions of Bouché et al. (2007) and Daddi
et al. (2010a,b).

In the right-hand panel of Fig. 3, we analyse the data with the
‘Elmegreen–Silk’ relation (see also K98a), which relates SFR sur-
face density to the ratio of gas surface density and global galaxy
dynamical time-scale. There is a reasonably good correlation as well
with a slope of slightly less than unity (0.84 ± 0.09). The scatter in
this relation (0.44 dex) is larger than in the surface density relation,
which may in part be attributable to the larger total uncertainties
in "molgas/τdyn, which we estimate to be ±0.32 dex (74 per cent).

Here and elsewhere, we computed the dynamical time-scale from
the ratio of the radius to the circular velocity vc. For the z > 1 SFGs
and SMGs we took R = R1/2 and applied a pressure correction to
the inclination-corrected rotation velocity vrot, vc = (v2

rot + 2σ 2)1/2,
where σ is the local 1D-velocity dispersion in the galaxy. This
relation is applicable to rotation-dominated, as well as pressure-
dominated galaxies. The slope we find is close to that of K98a,
who find a slope between 0.9 and 1. High-z SFGs have somewhat
higher "star formation than low-z galaxies (by 0.71 ± 0.21 dex) but the
difference is probably only marginally significant. A fit with unity
slope yields a star formation efficiency per dynamical time of 0.019
(±0.008). This is in agreement with 0.01, the value found by K98a
when corrected to a Chabrier IMF.

4.2 KS relation for luminous mergers

Fig. 4 summarizes our analysis of the luminous mergers at both low
and high z. The left-hand panel shows the case of applying the best
single common conversion factor determined from the observations
(αmerger ∼ 1, Section 2.6), such that mergers and SFGs now have
conversion factors that differ by a factor of 3.2. The slope of the
merger relation (1.1 ± 0.2) is consistent with that of the SFGs
(1.17). Again low- and high-z mergers lie plausibly on the same
relation. Independent of whether the merger slope is fit or forced to
be the same as that of the SFGs, the difference in SFR at a given
gas surface density between the two branches is ∼1.0 (±0.2) dex
(see also Bothwell et al. 2010).

As we have argued in Section 2.6, a Galactic conversion factor for
all luminous low- and high-z mergers is almost certainly excluded
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Figure 4. Molecular Kennicutt–Schmidt surface density relation for luminous z ∼ 0 and z ∼ 1–3.5 mergers (z ∼ 0 LIRGs/ULIRGs: magenta squares, z ≥ 1
SMGs: red squares). The left-hand panel shows their location in the KS plane along with the SFGs (at all z, open grey circles) from Fig. 3 if the a priori best
conversion factors for SFGs (α = αG) and mergers (α = αG/3.2) are chosen. The right-hand panel shows the same plot for the choice of a universal conversion
factor of α = αG for all galaxies in the data base. This was the choice in the K98a paper but leads to a significant overestimate of gas fractions in almost all
major mergers. The fits assign equal weight to all data points and uncertainties in brackets are 3σ formal fit errors. The crosses in the lower right denote the
typical total (statistical + systematic) 1σ uncertainty.
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• QUIZ: do you see a universal 

• ANSWER:  - probably not  
                 - in addition, the relation often is sublinear

Shetty et al. (2014, MNRAS, 437, L61, see also Shetty, Kelly, Bigiel, 2013, MNRAS, 430, 288)

0.5

1.0

1.5

2.0

2.5

NGC 628

lo
g(
Σ

SF
R
) (

M
o 

G
yr

−1
 p

c−
2 )

NGC 772 NGC 3147 NGC 3198 NGC 3949 NGC 4254 NGC 4273

1.5 2.0 2.5 3.0

0.5

1.0

1.5

2.0

2.5

NGC 4654

log(Σmol) (Mo pc−2)

lo
g(
Σ

SF
R
) (

M
o 

G
yr

−1
 p

c−
2 )

1.5 2.0 2.5 3.0

NGC 5371

log(Σmol) (Mo pc−2)
1.5 2.0 2.5 3.0

NGC 5713

log(Σmol) (Mo pc−2)
1.5 2.0 2.5 3.0

NGC 6951

log(Σmol) (Mo pc−2)
1.5 2.0 2.5 3.0

NGC 3593

log(Σmol) (Mo pc−2)
1.5 2.0 2.5 3.0

NGC 4536

log(Σmol) (Mo pc−2)
1.5 2.0 2.5 3.0

All Galaxies

log(Σmol) (Mo pc−2)

all galaxies

data from STING survey (Rahman et al. 2011, 2012)

log Σ (M⦿/pc2) 

   
lo

g 
SF

R
 d

en
si

ty
   

 1.5   2.0  2.5     



A non-universal molecular KS relationship 7

+

0.60 0.70 0.80 0.90

−3.1

−3.0

−2.9

−2.8

−2.7

Test Galaxy A1

In
te

rc
ep

t A

+ +

0.7 0.9 1.1

−3.6

−3.5

−3.4

−3.3

−3.2

−3.1 Test Galaxy A2

+

+

0.7 0.9 1.1

−3.30

−3.25

−3.20

−3.15

−3.10

−3.05

−3.00 Test Galaxy A3

+

+

0.6 0.8 1.0

−3.2

−3.1

−3.0

−2.9

−2.8

Test Galaxy A4

+

+

0.6 0.8 1.0

−3.2

−3.1

−3.0

−2.9

−2.8 Test Galaxy A5

In
te

rc
ep

t A

Slope N

+

+

0.7 0.9 1.1

−3.4

−3.3

−3.2

−3.1

−3.0 Test Galaxy A6

Slope N

+ +

0.7 0.9 1.1

−3.00

−2.95

−2.90

−2.85

−2.80

−2.75

−2.70

−2.65 Test Galaxy A7

Slope N

+
+

Slope N
0.7 0.9 1.1

−3.3

−3.2

−3.1

−3.0

−2.9

−2.8 Group A

+

Figure 1. Slope and intercept of test galaxies in Group A. Black cross shows the true values. Red and orange squares show the
OLS(ΣSFR|Σmol) and OLS(Σmol|ΣSFR) results, with their 1σ uncertainties, respectively. The gray circles indicate the estimate provided
by the median of hierarchical Bayesian posterior result, and the contours mark the 1σ deviation. The filled blue squares mark the bisector
estimates. The last panel on the bottom row shows the group parameters and fit estimates.

For the OLS(Σmol|ΣSFR), the fit slope is the inverse of the
desired quantity in Equation 2, so that:

NΣmol|ΣSFR
=

Var(Σ̂SFR)

Cov(Σ̂mol, Σ̂SFR)
(30)

The bisector slope NBis is a weighted mean of the
OLS(ΣSFR|Σmol) and OLS(Σmol|ΣSFR) slopes.

NBis = (NΣmol|ΣSFR
+NΣSFR|Σmol

)−1 (31)

×

[

NΣSFR|Σmol
NΣmol|ΣSFR

− 1 +

√

(1 +N2
ΣSFR|Σmol

)(1 +N2
Σmol|ΣSFR

)

]

Equations 29 - 31 illustrate what we stated earlier: that
the three different slope estimates are just three different
statistics (or summaries) derived from the same joint dis-
tribution. Choosing one estimate over the other does not
imply that one quantity “causes” the other, as is sometimes

claimed to be implied by the terminology of “independent”
and “dependent” variables. However, the different slope esti-
mates do differ in interpretation. The OLS(ΣSFR|Σmol) slope
describes how the mean value of ΣSFR varies with Σmol while
the OLS(Σmol|ΣSFR) slope describes how the mean value of
Σmol changes with ΣSFR. Thus, both OLS slopes are easily
interpretable. In contrast, the bisector slope is a weighted
average of the two OLS slope, and it is not clear how this
should be interpreted.

The OLS slopes are therefore strongly dependent on
the statistical properties of Σ̂SFR and Σ̂mol. For the syn-
thetic data of both groups, Var(Σ̂mol) = 0.39, pooling all
data from each galaxy together. For Group A, Var(Σ̂SFR) =
0.33, and Cov(Σ̂mol, Σ̂SFR) = 0.32. In Group B, Var(Σ̂SFR)
= 0.41, and Cov(Σ̂mol, Σ̂SFR) = 0.36. The covariances and
Var(Σ̂SFR) of the two groups are similar, as the adopted
slopes only differ by ≈ 10%. More importantly, the covari-
ance is < 1. As the covariance occurs in the denominator
of the OLS(Σmol|ΣSFR) slope, but in the numerator of the

c⃝ 2012 RAS, MNRAS 000, 1–17

Shetty et al. (2013, MNRAS, 430, 288)

Hierarchical Bayesian 
models give more reliable 
estimates of the slope and 
the intercept of a power-law 
fit compared to least-
square fits (or bisector fits).

true value

Bayesian fit  
(with 1 sigma area)

NSFR vs. Ngas

Ngas vs. NSFR 

bisector fit



Hierarchical Bayesian model for STING galaxies indicate varying depleting 
times. 

Shetty et al. (2014, MNRAS, 437, L61)
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Figure 2. Depletion time τCO
dep

and surface density of STING Galaxies. Points indicate the directly measured values. Solid line is the

median of the Bayesian estimate, and thin lines mark the 2σ interval. The red dashed line indicates τCO
dep

=2 Gyr. The efficiency per free

fall time (ϵCO
ff

) is marked on the right ordinate.

As with the KS relationship itself in Figure 1, there is
no single τCO

dep that holds for all galaxies. Further, for those

galaxies with a strongly sub-linear relationship, τCO
dep clearly

increases with increasing gas surface density.
For instance, for NGC 772 where the median N=0.51,

the median τCO
dep varies from <

∼ 5 Gyr at Σmol=50 M⊙ pc−2,

to >
∼ 9 Gyr at Σmol=200 M⊙ pc−2. Altogether, a constant

value of τCO
dep=2 Gyr can be ruled out for all Σmol! 50 M⊙

pc−2. Notice that for some galaxies favoring a linear KS
relationship, such as NGC 3593, the hierarchical Bayesian
fit provides results consistent with previous investigations,
τCO
dep≈2±1 Gyr. However, taken together the data do not

favor a constant τCO
dep for all galaxies in the sample.

5 DISCUSSION & SUMMARY

We have applied a hierarchical Bayesian fitting method to
the STING sample of nearby galaxies for estimating the KS
parameters. Our main results are as follows:

1) The KS parameters vary from galaxy to galaxy. The
median slope estimate ranges from as low as 0.43 (NGC
3147) to as high as 1.0 (NGC 3593). The range in slopes
of the STING sample is consistent with that found from
the SKB13 analysis of the Bigiel et al. (2008) HERACLES
sample.

2) For eight out of the fifteen galaxies, at 95% confidence
the KS slope is sub-linear. The posterior predicts that 11 to
15 galaxies have sub-linear slopes. Additionally, the mean
value of the KS slope is also sub-linear, with the median of
the PDF falling at 0.73. A linear slope for the population is
excluded at the 2σ level.

3) A sub-linear KS relationship is indicative of an in-
creasing τCO

dep at higher Σmol. As the KS slope is not constant,

the value of τCO
dep at a given Σmol also varies depending on

the galaxy. For instance, for Σmol=100 M⊙ pc−2, τCO
dep varies

from <
∼ 1 to >

∼ 9 Gyr. Equivalently, the star formation effi-

ciency per free-fall time decreases with increasing CO lumi-
nosity.

These results stand in contrast with the idea of a con-
stant τCO

dep≈2 Gyr. There are two primary reasons for the
discrepancies. As we discussed in SKB13, by pooling all
data together intrinsic variations between galaxies may be
veiled, with the outcome dependent on those galaxies with
the tightest KS relationship, and with the largest number of
datapoints. Second, the bisector is a statistical measure that
is difficult to interpret, because a slope of unity can result
from different scenarios, including those without any correla-
tion between the predictor and response (see also Isobe et al.
1990).

The significant variation in the KS parameters between
galaxies indicates that ΣSFR depends on other physical prop-
erties besides just Σmol. For instance, the relative effects of
the gas fractions, magnetic fields, metallicity, and/or stel-
lar mass may have stronger influence on the ΣSFR than
Σmol. In fact, Shi et al. (2011) demonstrate a tighter cor-
relation between ΣSFR with the stellar mass, compared to
Σmol. Leroy et al. (2013) also find strong evidence that the
KS relationship varies between galaxies as well as between
the galactic centers and outer disk regions. Their analysis
indicates that the diverse gas depletion times relates to the
variation in the dust-to-gas ratio. Taken these results to-
gether, ΣSFR may need to be assessed in the context of other
physical properties besides just Σmol.

We employed the common assumptions of constant con-
version factors. Accordingly, the result of a mean sub-linear
KS relationship may simply suggest that on average, CO is
not a direct tracer of star formation activity (compare, e.g.
Gao & Solomon 2004). One possible interpretation is that
CO is abundant away from star forming cores. Similarly,
the increasing τCO

dep with Σmol may be due to the presence
of excited CO in the diffuse or non-star-forming ISM (e.g.
Liszt et al. 2010). For instance, towards the centers of galax-
ies the ISM conditions may be conducive for CO formation,
as the higher overall ambient densities may lead to effective

c⃝ 2013 RAS, MNRAS 000, 1–5

all galaxies

data from STING survey (Rahman et al. 2011, 2012)
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Figure 2. Depletion time τCO
dep

and surface density of STING Galaxies. Points indicate the directly measured values. Solid line is the

median of the Bayesian estimate, and thin lines mark the 2σ interval. The red dashed line indicates τCO
dep

=2 Gyr. The efficiency per free

fall time (ϵCO
ff

) is marked on the right ordinate.

As with the KS relationship itself in Figure 1, there is
no single τCO

dep that holds for all galaxies. Further, for those

galaxies with a strongly sub-linear relationship, τCO
dep clearly

increases with increasing gas surface density.
For instance, for NGC 772 where the median N=0.51,

the median τCO
dep varies from <

∼ 5 Gyr at Σmol=50 M⊙ pc−2,

to >
∼ 9 Gyr at Σmol=200 M⊙ pc−2. Altogether, a constant

value of τCO
dep=2 Gyr can be ruled out for all Σmol! 50 M⊙

pc−2. Notice that for some galaxies favoring a linear KS
relationship, such as NGC 3593, the hierarchical Bayesian
fit provides results consistent with previous investigations,
τCO
dep≈2±1 Gyr. However, taken together the data do not

favor a constant τCO
dep for all galaxies in the sample.

5 DISCUSSION & SUMMARY

We have applied a hierarchical Bayesian fitting method to
the STING sample of nearby galaxies for estimating the KS
parameters. Our main results are as follows:

1) The KS parameters vary from galaxy to galaxy. The
median slope estimate ranges from as low as 0.43 (NGC
3147) to as high as 1.0 (NGC 3593). The range in slopes
of the STING sample is consistent with that found from
the SKB13 analysis of the Bigiel et al. (2008) HERACLES
sample.

2) For eight out of the fifteen galaxies, at 95% confidence
the KS slope is sub-linear. The posterior predicts that 11 to
15 galaxies have sub-linear slopes. Additionally, the mean
value of the KS slope is also sub-linear, with the median of
the PDF falling at 0.73. A linear slope for the population is
excluded at the 2σ level.

3) A sub-linear KS relationship is indicative of an in-
creasing τCO

dep at higher Σmol. As the KS slope is not constant,

the value of τCO
dep at a given Σmol also varies depending on

the galaxy. For instance, for Σmol=100 M⊙ pc−2, τCO
dep varies

from <
∼ 1 to >

∼ 9 Gyr. Equivalently, the star formation effi-

ciency per free-fall time decreases with increasing CO lumi-
nosity.

These results stand in contrast with the idea of a con-
stant τCO

dep≈2 Gyr. There are two primary reasons for the
discrepancies. As we discussed in SKB13, by pooling all
data together intrinsic variations between galaxies may be
veiled, with the outcome dependent on those galaxies with
the tightest KS relationship, and with the largest number of
datapoints. Second, the bisector is a statistical measure that
is difficult to interpret, because a slope of unity can result
from different scenarios, including those without any correla-
tion between the predictor and response (see also Isobe et al.
1990).

The significant variation in the KS parameters between
galaxies indicates that ΣSFR depends on other physical prop-
erties besides just Σmol. For instance, the relative effects of
the gas fractions, magnetic fields, metallicity, and/or stel-
lar mass may have stronger influence on the ΣSFR than
Σmol. In fact, Shi et al. (2011) demonstrate a tighter cor-
relation between ΣSFR with the stellar mass, compared to
Σmol. Leroy et al. (2013) also find strong evidence that the
KS relationship varies between galaxies as well as between
the galactic centers and outer disk regions. Their analysis
indicates that the diverse gas depletion times relates to the
variation in the dust-to-gas ratio. Taken these results to-
gether, ΣSFR may need to be assessed in the context of other
physical properties besides just Σmol.

We employed the common assumptions of constant con-
version factors. Accordingly, the result of a mean sub-linear
KS relationship may simply suggest that on average, CO is
not a direct tracer of star formation activity (compare, e.g.
Gao & Solomon 2004). One possible interpretation is that
CO is abundant away from star forming cores. Similarly,
the increasing τCO

dep with Σmol may be due to the presence
of excited CO in the diffuse or non-star-forming ISM (e.g.
Liszt et al. 2010). For instance, towards the centers of galax-
ies the ISM conditions may be conducive for CO formation,
as the higher overall ambient densities may lead to effective
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all galaxies

• maybe strong shear in dense arms (example M51, Meidt et al. 2013)...

• maybe non-star forming H
densities (recall H
[see part 1 on December 19, 2014]

Shetty et al. (2013, MNRAS, 437, L61, see also Shetty, Kelly, Bigiel, 2013, MNRAS, 430, 288)

physical origin of this behavior?

data from STING survey (Rahman et al. 2011, 2012)
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• maybe strong shear in dense arms (example M51, Meidt et al. 2013)...

• maybe non-star forming H
densities (recall H
[see part 1 on December 19, 2014]

physical origin of this behavior?

Sm
ith et al. (2014, M

N
RAS, 441, 1628)



• maybe a large fraction of H
dense clouds, but in a diffuse state!  

in addition:

Shetty et al. (2014, MNRAS, 422, 2208)
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Fig. 5.— Maps from GRS

Fig. 6.— Maps from Mark, l=142

Roman-Duval et al. (2015, in prep.)

• comparison of 
tracing all the gas (including the more diffuse component)

12CO

13CO

12CO  
diffuse

12CO  
dense

Galactic Ring Survey (GRS)
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stellar mass fuction
stars seem to follow a universal  
mass function at birth --> IMF

(Kroupa 2002) Orion, NGC 3603, 30 Doradus  
(Zinnecker & Yorke 2007)



stellar mass fuction
BUT: maybe variations 
with galaxy type 
(bottom heavy in the 
centers of large ellipticals)

4 M. Cappellari et al.

Figure 1. The Virial Plane and it projections. The top two panels show the two main projections of the VP in the (MJAM,σe) and (MJAM, Rmax
e ) coordinates.

Overlaid are lines of constant σe = 50, 100, 200, 300, 400, 500 km s−1 (dashed blue), constant Rmax
e = 0.1, 1, 10, 100 kpc (dot-dashed red) and constant

Σe = 108, 109, 1010, 1011 M⊙ kpc−2 (dotted black) predicted by the virial relation. The observed (MJAM, σe, Rmax
e ) points follow the relation so closely

that the coordinates provide a unique mapping on these diagram and one can reliably infer all characteristics of the galaxies from any individual projection. In
each panel the galaxies are coloured according to the (LOESS smoothed) log(M/L)JAM, as shown in the colour bar at the bottom. Moreover in all panels the
thick red line shows the ZOE relation given by equation (3), again projected according to the virial relationMJAM = 5.0 × σ2

eR
max
e /G. While the top two

panels contain different observable quantities, the bottom two panels merely apply a coordinate transformation to the quantities in the top two panels, to show
the effective phase space density feff ≡ 1/(σRe

2) and effective mass surface density Σe ≡ MJAM/(2πRe
2). Two galaxies stand out for being significantly

above the ZOE in the (MJAM,σe) and (MJAM,Σe) projections. The top one is NGC 5845 and the bottom one is NGC 4342.

3 PROJECTIONS OF THE VIRIAL PLANE

3.1 TotalM/L variations

We have shown in Paper XIX that the existence of the FP is almost
entirely due, with good accuracy, to a virial equilibrium condition
combined with a smooth variation in M/L. Once this is clarified,
the edge-on projection of the Virial Plane becomes uninteresting
from the point of view of the study of galaxy formation, as it merely
states an equilibrium condition satisfied by galaxies and it does not
encode any memory of the formation process itself. This is in agree-
ment with previous findings with simulations (Nipoti et al. 2003;
Boylan-Kolchin et al. 2006). All information provided by scaling
relations on galaxy formation is now encoded in the non edge-on
projections of the Virial Plane, and first of all in the distribution
ofM/L on that plane. In Paper XIX we also confirmed thatM/L
correlates remarkably tightly with σe (Cappellari et al. 2006). This
is especially true (i) for slow rotators, (ii) for galaxies in clusters
and (iii) at the high-end of the σe range. Here we look at the entire

Virial Plane and try to clarify the reason for these and other galaxy
correlations.

In a classic paper Bender et al. (1992) studied the distribution
of hot stellar systems in a three-dimensional space, they called κ
space, defined in such a way that one of the axes was empirically de-
fined to lie nearly orthogonal to the plane. This made it easy to look
at both the edge-on and face-on versions of the plane. In this paper,
thanks to the availability of state-of-the-art integral-field kinemat-
ics and the construction of detailed dynamical models, we can use
mass as one of the three variables (MJAM,σe, Re). We have shown
that in these variables the plane is extremely thin and follows the
scalar virial equationMJAM = 5.0 × σ2

eR
max
e /G within our tight

errors. This implies that any projection of the plane contains the
same amount of information, except for a change of coordinates.
Instead of looking at the plane precisely face-on, we decided to con-
struct special projections that correspond to physically-meaningful
and easy-to-interpret quantities.

c⃝ 2012 RAS, MNRAS 000, 1–25

(Cappellari et al. 2012, Nature, 484, 485, Cappellari et al. 2012ab, MNRAS, submitted,  
also van Dokkum & Conroy 2010, Nature, 468, 940,  Wegner et al. 2012, AJ, 144, 78, and others)

from JAM (Jeans anisotropic multi 
Gaussian expansion) modeling

inferred excess of low-mass stars 
compared to Kroupa IMF

   



stellar masses
• distribution of stellar masses depends on

- turbulent initial conditions  
--> mass spectrum of prestellar cloud cores

- collapse and interaction of prestellar cores 
--> accretion and N-body effects

- thermodynamic properties of gas 
--> balance between heating and cooling 
--> EOS (determines which cores go into collapse)

- (proto) stellar feedback terminates star formation 
ionizing radiation, bipolar outflows, winds, SN

(Kroupa 2002)
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image from Alyssa Goodman: COMPLETE survey



Schmidt et al. (2009, A&A, 494, 127)



example: model of Orion cloud
„model“ of Orion cloud: 
15.000.000 SPH particles, 
104 Msun in 10 pc, mass resolution 
0,02 Msun, forms ~2.500 
„stars“ (sink particles) 

isothermal EOS, top bound, bottom 
unbound 

has clustered as well as distributed 
„star“ formation 

efficiency varies from 1% to 20% 

develops full IMF  
(distribution of sink particle masses)

(Bonnell, Smith, Clark, & Bate 2010, MNRAS, 410, 2339)



(Spitzer: Megeath et al.)

example: model of Orion cloud

Bonnell et al. 2010

„model“ of Orion cloud: 
15.000.000 SPH particles, 
104 Msun in 10 pc, mass resolution 
0,02 Msun, forms ~2.500 
„stars“ (sink particles) 

MASSIVE STARS 

- form early in high-density  
  gas clumps (cluster center) 

- high accretion rates,    
  maintained for a long time 

LOW-MASS STARS 

- form later as gas falls into  
  potential well 
- high relative velocities 

- little subsequent accretion



Trajectories of protostars in a nascent dense cluster created by gravoturbulent fragmentation  
(from Klessen & Burkert 2000, ApJS, 128, 287)

dynamics of nascent star cluster

in dense clusters protostellar interaction may be come important!



Mass accretion 
rates  vary with 
time and are 
strongly  

influenced by the 
cluster 
environment.

accretion rates in clusters

(Klessen 2001, ApJ, 550, L77; 
also Schmeja & Klessen, 
2004, A&A, 419, 405)
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ICs of star cluster formation

• key question:

- what is the initial density profile  
of cluster forming cores? how  
does it compare low-mass cores?

• observers answer:

- very difficult to determine!

‣ most high-mass cores have 
some SF inside

‣ infra-red dark clouds (IRDCs)  
are difficult to study

- but, new results with Herschel

IR
D

C
 near A

quila rift, studied w
ith the SM

A
: J. Sw

ift &
 E. C

hurchw
ell



• key question:

- what is the initial density profile of cluster forming 
cores? how does it compare low-mass cores?

• theorists answer:

- top hat (Larson Penston)

- Bonnor Ebert (like low-mass cores)

- power law ρ∝r -1 (logotrop)

- power law ρ∝r -3/2 (Krumholz, McKee, etc)

- power law ρ∝r -2 (Shu)

- and many more

ICs of star cluster formation



different density profiles

• does the density profile matter? 
.  
.  
.

• in comparison to 

- turbulence ...

- radiative feedback ...

- magnetic fields ...

- thermodynamics ...



different density profiles

• address question in simple numerical experiment

• perform extensive parameter study

- different profiles (top hat, BE, r-3/2, r-3)

- different turbulence fields

‣ different realizations

‣ different Mach numbers 

‣ solenoidal turbulence 
dilatational turbulence  
both modes

- no net rotation, no B-fields  
(at the moment)

Girichids, Federrath, Banerjee, Klessen (2011abc)



Girichids et al. (2011abc)



Girichids et al. (2011abc)

number of 
protostarsICs with flat inner density profile on 

average form more fragments



Girichids et al. (2011abc)

number of 
protostarsICs with flat inner density profile on 

average form more fragments

however, the real situation is very complex: 
details of the initial turbulent field matter 



• distribution of stellar masses depends on

- turbulent initial conditions  
--> mass spectrum of prestellar cloud cores

- collapse and interaction of prestellar cores 
--> accretion and N-body effects

- thermodynamic properties of gas 
--> balance between heating and cooling 
--> EOS (determines which cores go into collapse)

- (proto) stellar feedback terminates star formation 
ionizing radiation, bipolar outflows, winds, SN, etc.

(Kroupa 2002)

stellar mass fuction



• distribution of stellar masses depends on

- turbulent initial conditions  
--> mass spectrum of prestellar cloud cores

- collapse and interaction of prestellar cores 
--> accretion and N-body effects

- thermodynamic properties of gas 
--> balance between heating and cooling 
--> EOS (determines which cores go into collapse)

- (proto) stellar feedback terminates star formation 
ionizing radiation, bipolar outflows, winds, SN, etc.

application to early star formation

(Kroupa 2002)

stellar mass fuction



thermodynamics & fragmentation

degree of fragmentation depends on EOS! 

polytropic EOS: p ∝ργ
γ<1: dense cluster of low-mass stars
γ>1: isolated high-mass stars
(see Li et al. 2003; also Kawachi & Hanawa 1998, Larson 2003)



dependency on EOS

(from Li, Klessen, & Mac Low 2003, ApJ, 592, 975)

γ=0.2 γ=1.0 γ=1.2

for γ<1 fragmentation is enhanced ! cluster of low-mass stars
for γ>1 it is suppressed ! isolated massive stars



   (1)  p ∝ ργ     !   ρ ∝ p1/ γ  

 (2)  Mjeans ∝ γ3/2 ρ(3γ-4)/2 

how does that work?

• γ<1: ! large density excursion for given pressure  
      ! 〈Mjeans〉 becomes small

  ! number of fluctuations with M > Mjeans is large  

• γ>1:  ! small density excursion for given pressure
  ! 〈Mjeans〉 is large  
  ! only few and massive clumps exceed Mjeans
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Figure 1. Evolution of temperatures in prestellar cloud cores with metallicities
Z/Z⊙ = 0, 10−6, 10−5, 10−4, 10−3, 10−2, 10−1, and 1, as functions of the
number density, which is calculated by one-zone models. The dashed lines
indicate the constant Jeans masses. For those above 102 M⊙ (below 1 M⊙), the
gas is assumed to be fully atomic (molecular) in drawing those lines.
(A color version of this figure is available in the online journal.)

3. PRESTELLAR COLLAPSE

Figure 2 presents the temperature evolution at the center of
the prestellar cores as a function of the number density. The
overall evolution is quite similar to that calculated by the one-
zone model (Figure 1), justifying the one-zone treatment for
the core evolution. There are, however, small disagreements,
in particular, at high densities and for low-metallicity cases.
We defer detailed discussion on these differences to later in
Section 3.4, but here describe which thermal processes control
the temperature evolution at each metallicity. The contribution
to the cooling and heating rates by individual processes are
presented in Figure 3 for different metallicities. This should be
compared with Figure 2 of O05, where similar plots for the
one-zone models are presented. In Figure 5, the effective ratio
of specific heat at the center, γ = d lnp/d lnρ, which gives
the variation of pressure in response to the density variation,
is shown for those cases. Note that γ − 1 equals the gradient
of the curve in Figure 2 for constant molecular weight. The
effective ratio of specific heat is an important index to examine
the dynamical response of self-gravitating clouds to thermal
evolution. For example, the clouds easily fragment as long as
γ < 1, while fragmentation is strongly prohibited for γ > 1 (Li
et al. 2003). Another critical value is γ = 4/3. If γ exceeds
this value, the dynamical collapse is halted as the pressure
overcoming the gravity, and a hydrostatic object is formed.

3.1. Thermal Evolution in the Metal-free Case

In this section, we review thermal evolution of the cloud core
of a metal-free gas. We then describe the effects of metallicity
later in Section 3.2. We focus on deviations from the metal-free
case. In the case of metallicity [M/H] = −6, metallicity effects
are so small that the temperature evolution is almost identical to
the metal-free one except for a slight offset at highest densities
(!1020 cm−3).

Let us summarize here the formation processes of H2, which
play a crucial role in the thermal evolution. The evolution of H2
concentrations is presented in Figure 4, along with those in the
cases with metals. Below ∼108 cm−3, H2 is formed by the H−
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Figure 2. Evolution of temperatures at the center of cloud cores during the
prestellar collapse for various metallicities. This is calculated by one-zone
model until 104 cm−3 (dotted vertical line) and by hydrodynamical models
for the higher density. The constant Jeans masses are indicated by the dashed
lines.
(A color version of this figure is available in the online journal.)

channel:

H + e → H− + γ , (9)
H− + H → H2 + e, (10)

catalyzed by a small amount of remaining electrons. With
their recombination proceeding, the H− channel is quenched
and the amount of formed H2 saturates at ∼10−3 (Figure 4).
After this plateau, the H2 abundance begins to increase again at
∼108 cm−3 via the three-body H2 formation:

2H + H → H2 + H (11)

and
2H + H2 → H2 + H2. (12)

All the hydrogen is converted to the molecular form via this
channel by the density ∼1011 cm−3.

Next, let us see the cooling and heating processes
(Figure 3(a)). Until very high density ∼1019–1020 cm−3 is
reached, cooling and heating are always almost balanced, so
that the evolution is nearly isothermal with temperature differ-
ing only by a small factor whereas density increases by many
orders of magnitudes. The effective ratio of specific heat γ re-
mains below 4/3, but is above 1 in this period except for brief
intervals around 109 cm−3 and 1011 cm−3, where γ falls slightly
below unity (Figure 5(a)). The heating is owing to the compres-
sion, but for 109–1012 cm−3, where the H2-formation heating
associated with the three-body reaction (Equation (11) below)
dominates. For the cooling, the H2-line emission contributes
most until ∼1013 cm−3, although some lines become optically
thick at ∼1011 cm−3 and this suppresses the cooling rate grad-
ually toward a higher density. The steep decline of the H2 line-
cooling rate at 1016 cm−3 is due to the H2 collision-induced
continuum absorption. Another molecular species in the metal-
free gas, HD, is known to play an important role in cooling
if a metal-free gas is once ionized (Uehara & Inutsuka 2000;
Nagakura & Omukai 2005; Greif & Bromm 2006; Yoshida et al.
2007; McGreer & Bryan 2008). In our case, however, it only
contributes comparably to H2 at a brief period at ∼104 cm−3.

With gradual increase of temperature, the balance of chemical
equilibrium between the H2 formation (Equation (11)) and its

EOS as function of metallicity

(Omukai et al. 2005, 2010)
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3. PRESTELLAR COLLAPSE

Figure 2 presents the temperature evolution at the center of
the prestellar cores as a function of the number density. The
overall evolution is quite similar to that calculated by the one-
zone model (Figure 1), justifying the one-zone treatment for
the core evolution. There are, however, small disagreements,
in particular, at high densities and for low-metallicity cases.
We defer detailed discussion on these differences to later in
Section 3.4, but here describe which thermal processes control
the temperature evolution at each metallicity. The contribution
to the cooling and heating rates by individual processes are
presented in Figure 3 for different metallicities. This should be
compared with Figure 2 of O05, where similar plots for the
one-zone models are presented. In Figure 5, the effective ratio
of specific heat at the center, γ = d lnp/d lnρ, which gives
the variation of pressure in response to the density variation,
is shown for those cases. Note that γ − 1 equals the gradient
of the curve in Figure 2 for constant molecular weight. The
effective ratio of specific heat is an important index to examine
the dynamical response of self-gravitating clouds to thermal
evolution. For example, the clouds easily fragment as long as
γ < 1, while fragmentation is strongly prohibited for γ > 1 (Li
et al. 2003). Another critical value is γ = 4/3. If γ exceeds
this value, the dynamical collapse is halted as the pressure
overcoming the gravity, and a hydrostatic object is formed.

3.1. Thermal Evolution in the Metal-free Case

In this section, we review thermal evolution of the cloud core
of a metal-free gas. We then describe the effects of metallicity
later in Section 3.2. We focus on deviations from the metal-free
case. In the case of metallicity [M/H] = −6, metallicity effects
are so small that the temperature evolution is almost identical to
the metal-free one except for a slight offset at highest densities
(!1020 cm−3).

Let us summarize here the formation processes of H2, which
play a crucial role in the thermal evolution. The evolution of H2
concentrations is presented in Figure 4, along with those in the
cases with metals. Below ∼108 cm−3, H2 is formed by the H−
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Figure 2. Evolution of temperatures at the center of cloud cores during the
prestellar collapse for various metallicities. This is calculated by one-zone
model until 104 cm−3 (dotted vertical line) and by hydrodynamical models
for the higher density. The constant Jeans masses are indicated by the dashed
lines.
(A color version of this figure is available in the online journal.)

channel:

H + e → H− + γ , (9)
H− + H → H2 + e, (10)

catalyzed by a small amount of remaining electrons. With
their recombination proceeding, the H− channel is quenched
and the amount of formed H2 saturates at ∼10−3 (Figure 4).
After this plateau, the H2 abundance begins to increase again at
∼108 cm−3 via the three-body H2 formation:

2H + H → H2 + H (11)

and
2H + H2 → H2 + H2. (12)

All the hydrogen is converted to the molecular form via this
channel by the density ∼1011 cm−3.

Next, let us see the cooling and heating processes
(Figure 3(a)). Until very high density ∼1019–1020 cm−3 is
reached, cooling and heating are always almost balanced, so
that the evolution is nearly isothermal with temperature differ-
ing only by a small factor whereas density increases by many
orders of magnitudes. The effective ratio of specific heat γ re-
mains below 4/3, but is above 1 in this period except for brief
intervals around 109 cm−3 and 1011 cm−3, where γ falls slightly
below unity (Figure 5(a)). The heating is owing to the compres-
sion, but for 109–1012 cm−3, where the H2-formation heating
associated with the three-body reaction (Equation (11) below)
dominates. For the cooling, the H2-line emission contributes
most until ∼1013 cm−3, although some lines become optically
thick at ∼1011 cm−3 and this suppresses the cooling rate grad-
ually toward a higher density. The steep decline of the H2 line-
cooling rate at 1016 cm−3 is due to the H2 collision-induced
continuum absorption. Another molecular species in the metal-
free gas, HD, is known to play an important role in cooling
if a metal-free gas is once ionized (Uehara & Inutsuka 2000;
Nagakura & Omukai 2005; Greif & Bromm 2006; Yoshida et al.
2007; McGreer & Bryan 2008). In our case, however, it only
contributes comparably to H2 at a brief period at ∼104 cm−3.

With gradual increase of temperature, the balance of chemical
equilibrium between the H2 formation (Equation (11)) and its

EOS as function of metallicity

(Omukai et al. 2005, 2010)
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3. PRESTELLAR COLLAPSE

Figure 2 presents the temperature evolution at the center of
the prestellar cores as a function of the number density. The
overall evolution is quite similar to that calculated by the one-
zone model (Figure 1), justifying the one-zone treatment for
the core evolution. There are, however, small disagreements,
in particular, at high densities and for low-metallicity cases.
We defer detailed discussion on these differences to later in
Section 3.4, but here describe which thermal processes control
the temperature evolution at each metallicity. The contribution
to the cooling and heating rates by individual processes are
presented in Figure 3 for different metallicities. This should be
compared with Figure 2 of O05, where similar plots for the
one-zone models are presented. In Figure 5, the effective ratio
of specific heat at the center, γ = d lnp/d lnρ, which gives
the variation of pressure in response to the density variation,
is shown for those cases. Note that γ − 1 equals the gradient
of the curve in Figure 2 for constant molecular weight. The
effective ratio of specific heat is an important index to examine
the dynamical response of self-gravitating clouds to thermal
evolution. For example, the clouds easily fragment as long as
γ < 1, while fragmentation is strongly prohibited for γ > 1 (Li
et al. 2003). Another critical value is γ = 4/3. If γ exceeds
this value, the dynamical collapse is halted as the pressure
overcoming the gravity, and a hydrostatic object is formed.

3.1. Thermal Evolution in the Metal-free Case

In this section, we review thermal evolution of the cloud core
of a metal-free gas. We then describe the effects of metallicity
later in Section 3.2. We focus on deviations from the metal-free
case. In the case of metallicity [M/H] = −6, metallicity effects
are so small that the temperature evolution is almost identical to
the metal-free one except for a slight offset at highest densities
(!1020 cm−3).

Let us summarize here the formation processes of H2, which
play a crucial role in the thermal evolution. The evolution of H2
concentrations is presented in Figure 4, along with those in the
cases with metals. Below ∼108 cm−3, H2 is formed by the H−
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Figure 2. Evolution of temperatures at the center of cloud cores during the
prestellar collapse for various metallicities. This is calculated by one-zone
model until 104 cm−3 (dotted vertical line) and by hydrodynamical models
for the higher density. The constant Jeans masses are indicated by the dashed
lines.
(A color version of this figure is available in the online journal.)

channel:

H + e → H− + γ , (9)
H− + H → H2 + e, (10)

catalyzed by a small amount of remaining electrons. With
their recombination proceeding, the H− channel is quenched
and the amount of formed H2 saturates at ∼10−3 (Figure 4).
After this plateau, the H2 abundance begins to increase again at
∼108 cm−3 via the three-body H2 formation:

2H + H → H2 + H (11)

and
2H + H2 → H2 + H2. (12)

All the hydrogen is converted to the molecular form via this
channel by the density ∼1011 cm−3.

Next, let us see the cooling and heating processes
(Figure 3(a)). Until very high density ∼1019–1020 cm−3 is
reached, cooling and heating are always almost balanced, so
that the evolution is nearly isothermal with temperature differ-
ing only by a small factor whereas density increases by many
orders of magnitudes. The effective ratio of specific heat γ re-
mains below 4/3, but is above 1 in this period except for brief
intervals around 109 cm−3 and 1011 cm−3, where γ falls slightly
below unity (Figure 5(a)). The heating is owing to the compres-
sion, but for 109–1012 cm−3, where the H2-formation heating
associated with the three-body reaction (Equation (11) below)
dominates. For the cooling, the H2-line emission contributes
most until ∼1013 cm−3, although some lines become optically
thick at ∼1011 cm−3 and this suppresses the cooling rate grad-
ually toward a higher density. The steep decline of the H2 line-
cooling rate at 1016 cm−3 is due to the H2 collision-induced
continuum absorption. Another molecular species in the metal-
free gas, HD, is known to play an important role in cooling
if a metal-free gas is once ionized (Uehara & Inutsuka 2000;
Nagakura & Omukai 2005; Greif & Bromm 2006; Yoshida et al.
2007; McGreer & Bryan 2008). In our case, however, it only
contributes comparably to H2 at a brief period at ∼104 cm−3.

With gradual increase of temperature, the balance of chemical
equilibrium between the H2 formation (Equation (11)) and its

EOS as function of metallicity

(Omukai et al. 2005, 2010)
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3. PRESTELLAR COLLAPSE

Figure 2 presents the temperature evolution at the center of
the prestellar cores as a function of the number density. The
overall evolution is quite similar to that calculated by the one-
zone model (Figure 1), justifying the one-zone treatment for
the core evolution. There are, however, small disagreements,
in particular, at high densities and for low-metallicity cases.
We defer detailed discussion on these differences to later in
Section 3.4, but here describe which thermal processes control
the temperature evolution at each metallicity. The contribution
to the cooling and heating rates by individual processes are
presented in Figure 3 for different metallicities. This should be
compared with Figure 2 of O05, where similar plots for the
one-zone models are presented. In Figure 5, the effective ratio
of specific heat at the center, γ = d lnp/d lnρ, which gives
the variation of pressure in response to the density variation,
is shown for those cases. Note that γ − 1 equals the gradient
of the curve in Figure 2 for constant molecular weight. The
effective ratio of specific heat is an important index to examine
the dynamical response of self-gravitating clouds to thermal
evolution. For example, the clouds easily fragment as long as
γ < 1, while fragmentation is strongly prohibited for γ > 1 (Li
et al. 2003). Another critical value is γ = 4/3. If γ exceeds
this value, the dynamical collapse is halted as the pressure
overcoming the gravity, and a hydrostatic object is formed.

3.1. Thermal Evolution in the Metal-free Case

In this section, we review thermal evolution of the cloud core
of a metal-free gas. We then describe the effects of metallicity
later in Section 3.2. We focus on deviations from the metal-free
case. In the case of metallicity [M/H] = −6, metallicity effects
are so small that the temperature evolution is almost identical to
the metal-free one except for a slight offset at highest densities
(!1020 cm−3).

Let us summarize here the formation processes of H2, which
play a crucial role in the thermal evolution. The evolution of H2
concentrations is presented in Figure 4, along with those in the
cases with metals. Below ∼108 cm−3, H2 is formed by the H−
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Figure 2. Evolution of temperatures at the center of cloud cores during the
prestellar collapse for various metallicities. This is calculated by one-zone
model until 104 cm−3 (dotted vertical line) and by hydrodynamical models
for the higher density. The constant Jeans masses are indicated by the dashed
lines.
(A color version of this figure is available in the online journal.)

channel:

H + e → H− + γ , (9)
H− + H → H2 + e, (10)

catalyzed by a small amount of remaining electrons. With
their recombination proceeding, the H− channel is quenched
and the amount of formed H2 saturates at ∼10−3 (Figure 4).
After this plateau, the H2 abundance begins to increase again at
∼108 cm−3 via the three-body H2 formation:

2H + H → H2 + H (11)

and
2H + H2 → H2 + H2. (12)

All the hydrogen is converted to the molecular form via this
channel by the density ∼1011 cm−3.

Next, let us see the cooling and heating processes
(Figure 3(a)). Until very high density ∼1019–1020 cm−3 is
reached, cooling and heating are always almost balanced, so
that the evolution is nearly isothermal with temperature differ-
ing only by a small factor whereas density increases by many
orders of magnitudes. The effective ratio of specific heat γ re-
mains below 4/3, but is above 1 in this period except for brief
intervals around 109 cm−3 and 1011 cm−3, where γ falls slightly
below unity (Figure 5(a)). The heating is owing to the compres-
sion, but for 109–1012 cm−3, where the H2-formation heating
associated with the three-body reaction (Equation (11) below)
dominates. For the cooling, the H2-line emission contributes
most until ∼1013 cm−3, although some lines become optically
thick at ∼1011 cm−3 and this suppresses the cooling rate grad-
ually toward a higher density. The steep decline of the H2 line-
cooling rate at 1016 cm−3 is due to the H2 collision-induced
continuum absorption. Another molecular species in the metal-
free gas, HD, is known to play an important role in cooling
if a metal-free gas is once ionized (Uehara & Inutsuka 2000;
Nagakura & Omukai 2005; Greif & Bromm 2006; Yoshida et al.
2007; McGreer & Bryan 2008). In our case, however, it only
contributes comparably to H2 at a brief period at ∼104 cm−3.

With gradual increase of temperature, the balance of chemical
equilibrium between the H2 formation (Equation (11)) and its

EOS as function of metallicity

(Omukai et al. 2005, 2010)
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3. PRESTELLAR COLLAPSE

Figure 2 presents the temperature evolution at the center of
the prestellar cores as a function of the number density. The
overall evolution is quite similar to that calculated by the one-
zone model (Figure 1), justifying the one-zone treatment for
the core evolution. There are, however, small disagreements,
in particular, at high densities and for low-metallicity cases.
We defer detailed discussion on these differences to later in
Section 3.4, but here describe which thermal processes control
the temperature evolution at each metallicity. The contribution
to the cooling and heating rates by individual processes are
presented in Figure 3 for different metallicities. This should be
compared with Figure 2 of O05, where similar plots for the
one-zone models are presented. In Figure 5, the effective ratio
of specific heat at the center, γ = d lnp/d lnρ, which gives
the variation of pressure in response to the density variation,
is shown for those cases. Note that γ − 1 equals the gradient
of the curve in Figure 2 for constant molecular weight. The
effective ratio of specific heat is an important index to examine
the dynamical response of self-gravitating clouds to thermal
evolution. For example, the clouds easily fragment as long as
γ < 1, while fragmentation is strongly prohibited for γ > 1 (Li
et al. 2003). Another critical value is γ = 4/3. If γ exceeds
this value, the dynamical collapse is halted as the pressure
overcoming the gravity, and a hydrostatic object is formed.

3.1. Thermal Evolution in the Metal-free Case

In this section, we review thermal evolution of the cloud core
of a metal-free gas. We then describe the effects of metallicity
later in Section 3.2. We focus on deviations from the metal-free
case. In the case of metallicity [M/H] = −6, metallicity effects
are so small that the temperature evolution is almost identical to
the metal-free one except for a slight offset at highest densities
(!1020 cm−3).

Let us summarize here the formation processes of H2, which
play a crucial role in the thermal evolution. The evolution of H2
concentrations is presented in Figure 4, along with those in the
cases with metals. Below ∼108 cm−3, H2 is formed by the H−
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Figure 2. Evolution of temperatures at the center of cloud cores during the
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channel:

H + e → H− + γ , (9)
H− + H → H2 + e, (10)

catalyzed by a small amount of remaining electrons. With
their recombination proceeding, the H− channel is quenched
and the amount of formed H2 saturates at ∼10−3 (Figure 4).
After this plateau, the H2 abundance begins to increase again at
∼108 cm−3 via the three-body H2 formation:

2H + H → H2 + H (11)

and
2H + H2 → H2 + H2. (12)

All the hydrogen is converted to the molecular form via this
channel by the density ∼1011 cm−3.

Next, let us see the cooling and heating processes
(Figure 3(a)). Until very high density ∼1019–1020 cm−3 is
reached, cooling and heating are always almost balanced, so
that the evolution is nearly isothermal with temperature differ-
ing only by a small factor whereas density increases by many
orders of magnitudes. The effective ratio of specific heat γ re-
mains below 4/3, but is above 1 in this period except for brief
intervals around 109 cm−3 and 1011 cm−3, where γ falls slightly
below unity (Figure 5(a)). The heating is owing to the compres-
sion, but for 109–1012 cm−3, where the H2-formation heating
associated with the three-body reaction (Equation (11) below)
dominates. For the cooling, the H2-line emission contributes
most until ∼1013 cm−3, although some lines become optically
thick at ∼1011 cm−3 and this suppresses the cooling rate grad-
ually toward a higher density. The steep decline of the H2 line-
cooling rate at 1016 cm−3 is due to the H2 collision-induced
continuum absorption. Another molecular species in the metal-
free gas, HD, is known to play an important role in cooling
if a metal-free gas is once ionized (Uehara & Inutsuka 2000;
Nagakura & Omukai 2005; Greif & Bromm 2006; Yoshida et al.
2007; McGreer & Bryan 2008). In our case, however, it only
contributes comparably to H2 at a brief period at ∼104 cm−3.

With gradual increase of temperature, the balance of chemical
equilibrium between the H2 formation (Equation (11)) and its

EOS as function of metallicity

(Omukai et al. 2005, 2010)
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3. PRESTELLAR COLLAPSE

Figure 2 presents the temperature evolution at the center of
the prestellar cores as a function of the number density. The
overall evolution is quite similar to that calculated by the one-
zone model (Figure 1), justifying the one-zone treatment for
the core evolution. There are, however, small disagreements,
in particular, at high densities and for low-metallicity cases.
We defer detailed discussion on these differences to later in
Section 3.4, but here describe which thermal processes control
the temperature evolution at each metallicity. The contribution
to the cooling and heating rates by individual processes are
presented in Figure 3 for different metallicities. This should be
compared with Figure 2 of O05, where similar plots for the
one-zone models are presented. In Figure 5, the effective ratio
of specific heat at the center, γ = d lnp/d lnρ, which gives
the variation of pressure in response to the density variation,
is shown for those cases. Note that γ − 1 equals the gradient
of the curve in Figure 2 for constant molecular weight. The
effective ratio of specific heat is an important index to examine
the dynamical response of self-gravitating clouds to thermal
evolution. For example, the clouds easily fragment as long as
γ < 1, while fragmentation is strongly prohibited for γ > 1 (Li
et al. 2003). Another critical value is γ = 4/3. If γ exceeds
this value, the dynamical collapse is halted as the pressure
overcoming the gravity, and a hydrostatic object is formed.

3.1. Thermal Evolution in the Metal-free Case

In this section, we review thermal evolution of the cloud core
of a metal-free gas. We then describe the effects of metallicity
later in Section 3.2. We focus on deviations from the metal-free
case. In the case of metallicity [M/H] = −6, metallicity effects
are so small that the temperature evolution is almost identical to
the metal-free one except for a slight offset at highest densities
(!1020 cm−3).

Let us summarize here the formation processes of H2, which
play a crucial role in the thermal evolution. The evolution of H2
concentrations is presented in Figure 4, along with those in the
cases with metals. Below ∼108 cm−3, H2 is formed by the H−
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Figure 2. Evolution of temperatures at the center of cloud cores during the
prestellar collapse for various metallicities. This is calculated by one-zone
model until 104 cm−3 (dotted vertical line) and by hydrodynamical models
for the higher density. The constant Jeans masses are indicated by the dashed
lines.
(A color version of this figure is available in the online journal.)

channel:

H + e → H− + γ , (9)
H− + H → H2 + e, (10)

catalyzed by a small amount of remaining electrons. With
their recombination proceeding, the H− channel is quenched
and the amount of formed H2 saturates at ∼10−3 (Figure 4).
After this plateau, the H2 abundance begins to increase again at
∼108 cm−3 via the three-body H2 formation:

2H + H → H2 + H (11)

and
2H + H2 → H2 + H2. (12)

All the hydrogen is converted to the molecular form via this
channel by the density ∼1011 cm−3.

Next, let us see the cooling and heating processes
(Figure 3(a)). Until very high density ∼1019–1020 cm−3 is
reached, cooling and heating are always almost balanced, so
that the evolution is nearly isothermal with temperature differ-
ing only by a small factor whereas density increases by many
orders of magnitudes. The effective ratio of specific heat γ re-
mains below 4/3, but is above 1 in this period except for brief
intervals around 109 cm−3 and 1011 cm−3, where γ falls slightly
below unity (Figure 5(a)). The heating is owing to the compres-
sion, but for 109–1012 cm−3, where the H2-formation heating
associated with the three-body reaction (Equation (11) below)
dominates. For the cooling, the H2-line emission contributes
most until ∼1013 cm−3, although some lines become optically
thick at ∼1011 cm−3 and this suppresses the cooling rate grad-
ually toward a higher density. The steep decline of the H2 line-
cooling rate at 1016 cm−3 is due to the H2 collision-induced
continuum absorption. Another molecular species in the metal-
free gas, HD, is known to play an important role in cooling
if a metal-free gas is once ionized (Uehara & Inutsuka 2000;
Nagakura & Omukai 2005; Greif & Bromm 2006; Yoshida et al.
2007; McGreer & Bryan 2008). In our case, however, it only
contributes comparably to H2 at a brief period at ∼104 cm−3.

With gradual increase of temperature, the balance of chemical
equilibrium between the H2 formation (Equation (11)) and its

(Omukai et al. 2005, 2010)
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3. PRESTELLAR COLLAPSE

Figure 2 presents the temperature evolution at the center of
the prestellar cores as a function of the number density. The
overall evolution is quite similar to that calculated by the one-
zone model (Figure 1), justifying the one-zone treatment for
the core evolution. There are, however, small disagreements,
in particular, at high densities and for low-metallicity cases.
We defer detailed discussion on these differences to later in
Section 3.4, but here describe which thermal processes control
the temperature evolution at each metallicity. The contribution
to the cooling and heating rates by individual processes are
presented in Figure 3 for different metallicities. This should be
compared with Figure 2 of O05, where similar plots for the
one-zone models are presented. In Figure 5, the effective ratio
of specific heat at the center, γ = d lnp/d lnρ, which gives
the variation of pressure in response to the density variation,
is shown for those cases. Note that γ − 1 equals the gradient
of the curve in Figure 2 for constant molecular weight. The
effective ratio of specific heat is an important index to examine
the dynamical response of self-gravitating clouds to thermal
evolution. For example, the clouds easily fragment as long as
γ < 1, while fragmentation is strongly prohibited for γ > 1 (Li
et al. 2003). Another critical value is γ = 4/3. If γ exceeds
this value, the dynamical collapse is halted as the pressure
overcoming the gravity, and a hydrostatic object is formed.

3.1. Thermal Evolution in the Metal-free Case

In this section, we review thermal evolution of the cloud core
of a metal-free gas. We then describe the effects of metallicity
later in Section 3.2. We focus on deviations from the metal-free
case. In the case of metallicity [M/H] = −6, metallicity effects
are so small that the temperature evolution is almost identical to
the metal-free one except for a slight offset at highest densities
(!1020 cm−3).

Let us summarize here the formation processes of H2, which
play a crucial role in the thermal evolution. The evolution of H2
concentrations is presented in Figure 4, along with those in the
cases with metals. Below ∼108 cm−3, H2 is formed by the H−
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lines.
(A color version of this figure is available in the online journal.)

channel:

H + e → H− + γ , (9)
H− + H → H2 + e, (10)

catalyzed by a small amount of remaining electrons. With
their recombination proceeding, the H− channel is quenched
and the amount of formed H2 saturates at ∼10−3 (Figure 4).
After this plateau, the H2 abundance begins to increase again at
∼108 cm−3 via the three-body H2 formation:

2H + H → H2 + H (11)

and
2H + H2 → H2 + H2. (12)

All the hydrogen is converted to the molecular form via this
channel by the density ∼1011 cm−3.

Next, let us see the cooling and heating processes
(Figure 3(a)). Until very high density ∼1019–1020 cm−3 is
reached, cooling and heating are always almost balanced, so
that the evolution is nearly isothermal with temperature differ-
ing only by a small factor whereas density increases by many
orders of magnitudes. The effective ratio of specific heat γ re-
mains below 4/3, but is above 1 in this period except for brief
intervals around 109 cm−3 and 1011 cm−3, where γ falls slightly
below unity (Figure 5(a)). The heating is owing to the compres-
sion, but for 109–1012 cm−3, where the H2-formation heating
associated with the three-body reaction (Equation (11) below)
dominates. For the cooling, the H2-line emission contributes
most until ∼1013 cm−3, although some lines become optically
thick at ∼1011 cm−3 and this suppresses the cooling rate grad-
ually toward a higher density. The steep decline of the H2 line-
cooling rate at 1016 cm−3 is due to the H2 collision-induced
continuum absorption. Another molecular species in the metal-
free gas, HD, is known to play an important role in cooling
if a metal-free gas is once ionized (Uehara & Inutsuka 2000;
Nagakura & Omukai 2005; Greif & Bromm 2006; Yoshida et al.
2007; McGreer & Bryan 2008). In our case, however, it only
contributes comparably to H2 at a brief period at ∼104 cm−3.

With gradual increase of temperature, the balance of chemical
equilibrium between the H2 formation (Equation (11)) and its
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transition: Pop III to Pop II.5
SDSS J1029151+172927 
• is first ultra metal-poor star with Z 

~ 10-4.5 Zsun for all metals seen (Fe, 
C, N, etc.)  
[see Caffau et al. 2011]

• this is in regime, where metal-lines 
cannot provide cooling 
[e.g. Schneider et al. 2011, 2012, Klessen et al. 2012]
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the low height on the Galactic plane (Z ∼ 1.0 kpc) may suggest a
Thick Disk orbit, this can be safely ruled out. The orbit solution
indicates that the star belongs to the Halo with the maximum
height above the galactic plane Zmax = 4.8 ± 0.4 kpc, the orbital
apocenter at Rmax = 9.6 ± 0.6 kpc, and is plunging towards the
Galactic centre, with orbital pericenter Rmin = 0.9± 0.1 kpc. See
Fig. 5. Adopting the proper motion values obtained in the previ-
ous section from the positions after 1990.0 we obtain a similar
orbit with a more extreme orbital pericenter Rmin = 0.4±0.1 kpc.
An even more extreme value of 0.2 ± 0.1 kpc is obtained in the
case we adopt a null value of the proper motion.

4.5. Abundances

Very few lines are measurable in the X-Shooter spectrum. The
Mg i-b triplet is not visible. Of the IR Ca ii triplet lines, only the
one at 854.2 nm is clearly visible, but it is contaminated by a
feature produced by the sky subtraction. Some Fe i lines can be
guessed, not really measured. The only clearly detectable line is
the Ca ii-K line at 393.3 nm. Its EW of 49.2 pm is consistent with
an abundance of [Ca/H]=–3.9. But the measured radial velocity
is of –30 km s−1, comparable to the X-Shooter UBV arm resolu-
tion of 7 900, meaning that the line is contaminated by the com-
ponent from the interstellar medium (ISM). From the X-Shooter
spectrum, we can deduce that this spectrum belongs to an ex-
tremely metal-poor star and put an upper limit on the metallicity
of about –4.0 respect to the solar metallicity.

The UVES spectrum resolves the stellar and IS components
of the Ca ii-K and Ca ii-H line (see Fig. 6). The EW of the stel-
lar Ca ii-K line is of 27.7 pm, corresponding to abundance of
[Ca/H]=–4.47. We do not take this line as abundance indicator,
because it is difficoult to disentangle the stellar and IS compo-
nent.

In the UVES spectrum we can see line of iron peak elements
(Fe i, Ni i) and α-elements (Mg i, Si i, Ca i, Ca ii, Ti ii). For the
light elements, Li and C-N, we could find no evident signature
in the spectra, so that we can provide only upper-limit.

For the abundance determination we rely on line profile fit-
ting, because some lines happen to be blended (sometimes sev-
eral lines of the same element) and some lines lie on the wings of
hydrogen lines. We computed grid of synthetic spectra, with the
effective temperature and gravity of the star, varying in [Fe/H] by
0.2 dex. We fitted the Fe i features to derive the 1D-LTE [Fe/H].
To derive the abundances of the other elements, we computed
grids of synthetic spectra, with [Fe/H] fixed, by varying the
abundance [X/Fe], of the element X by 0.2 dex, and then fitted
the line profiles.

4.6. The Li abundance

A 3D-NLTE (Sbordone et al. 2010) Li abundance of 2.2 (Spite
plateau) would imply in this star an EW for the Li doublet at
670.7 nm of about 4.7 pm. Such a feature should be visible in
the observed spectra, but no sign of the line is detectable in the
range. In the X-Shooter spectrum, taking into account its S/N
and resolution, we expect, according Cayrel’s formula (Cayrel
1988), that the limit for a feature to be visible is of about 1.5 pm
(3 × σ), that would correspond to a A(Li)=1.7, close to the Li
abundance derived for the cooler component of the binary sys-
tem CS 22876-32 (González Hernández et al. 2008). From the
S/N of the UVES spectrum (160) an upper limit on the EW of
0.1 pm implies A(Li)< 1.1 at 5×σ gives or A(Li)< 0.9 at 3×σ.

Fig. 6. The range of the Ca ii H and K lines. From top to bot-
tom, the SDSS, the X-Shooter, and the UVES spectrum (solid
black), overimposed the synthetic profile with metallicity -4.5,
α-enhanced by 0.4 dex (solid green).

This implies that the star is far below the Spite plateau. This
may be linked to the fact that, at extremely low metallicities,
the Spite plateau displays a “meltdown” (Sbordone et al. 2010)
i.e. an increased scatter and a lower mean Li abundance. This
meltdown is clearly shown in the two components of the ex-
tremely metal-poor binary system CS 22876-32 ([Fe/H]=–3.6,
the primary with effective temperature 6500K, the secondary
5900K), that show a different Li content (González Hernández
et al. 2008). The primary lies on the Spite plateau, while the sec-
ondary lies below at A(Li)= 1.8. The reasons for this meltdown
are not understood, it has been suggested that a Li depletion
mechanism, whose efficiency is metallicity dependent, could ex-
plain the observations. If this were the case, the Li abundance in
SDSS J102915+172927 would result from an efficient Li deple-
tion due to a combination of extremely low metallicity and rela-
tively low temperature. If the star were a horizontal branch star
(Hansen et al. 2011) it would be normal for it to be Li depleted.
However, we have already argued that low gravities, compati-
ble with an HB status, are ruled out. A sub-giant status should
not imply a large Li depletion. The absence of Li could be ex-
plained if SDSS J102915+172927 were a “blue straggler to be”
(Ryan et al. 2002). In this case we would expect a measurable
line broadening, due to rotation. In our UVES spectra we cannot
derive any line broadening above what is due to the instrumental
resolution, which is set by the seeing. Therefore all available evi-
dence suggests that SDSS J102915+172927 is in an evolutionary
status from the Main Sequence to the sub-giant branch.
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Table 4. SDSS J102915+172927. Abundances. [X/H] from fit is given for log g f from the line-list of LP.

Element [X/H]1D N lines SH A(X)⊙
+3Dcor. +NLTE cor. + 3D cor + NLTE cor

C ≤ −3.8 ≤ −4.5 G-band 8.50
N ≤ −4.1 ≤ −5.0 NH-band 7.86
Mg i −4.71 ± 0.11 −4.68 ± 0.11 −4.52 ± 0.11 −4.49 ± 0.12 5 0.1 7.54
Si i −4.27 −4.30 −3.93 −3.96 1 0.1 7.52
Ca i −4.72 −4.82 −4.44 −4.54 1 0.1 6.33
Ca ii −4.81 ± 0.11 −4.93 ± 0.03 −5.02 ± 0.02 −5.15 ± 0.09 3 0.1 6.33
Ti ii −4.75 ± 0.18 −4.83 ± 0.16 −4.76 ± 0.18 −4.84 ± 0.16 6 1.0 4.90
Fe i −4.73 ± 0.13 −5.02 ± 0.10 −4.60 ± 0.13 −4.89 ± 0.10 43 1.0 7.52
Ni i −4.55 ± 0.14 −4.90 ± 0.11 10 6.23
Sr ii ≤ −5.10 ≤ −5.25 ≤ −4.94 ≤ −5.09 1 0.01 2.92

For Mg i, Si i, Ca i, and Fe i, which are the minority species
in the model 5811/4.0/−4.5, the main non-LTE mechanism is
the overionization caused by superthermal radiation of non-
local origin below the thresholds of the levels with Eexc = 2.2-
4.5 eV (λthr = 2240-3450Å). In the extremely metal-poor at-
mosphere, deviations of the mean intensity of ionizing ultravi-
olet radiation from the Planck function are much larger com-
pared with that for the solar metallicity model (Fig. 9) result-
ing in much stronger departures from LTE. Figure 10 shows that
all the levels of Mg i, Ca i, and Fe i and the three lowest levels
of Si i are strongly underpopulated in the line formation layers
of the 5811/4.0/−4.5 model. Here, we use the departure coef-
ficients, bi = nNLTEi /nLTEi , where nNLTEi and nLTEi are the statis-
tical equilibrium and thermal (Saha-Boltzmann) number densi-
ties, respectively. Non-LTE leads to a weakening of the Mg i,
Si i, Ca i, and Fe i lines and positive non-LTE abundance correc-
tions ∆NLTE = log εNLTE− log εLTE. We comment on the obtained
results for individual species.

The observed Mg i lines arise in the transitions 3p 3P◦ -
3d 3D (382.9-383.8 nm) and 3p 3P◦ - 4s 3S (517.2, 518.3 nm).
For each line, the upper level is depleted to a lesser extent with
regard to its LTE population than is the lower level. Therefore,
the line is weaker compared with its LTE strength not only be-
cause of the general overionization (bl < 1), but also because of
rising the line source function (S lu ≃ bu/bl Bν) above the Planck
function (Bν) in the line formation layers. Here, bu and bl are the
departure coefficients of the upper and lower levels, respectively.
All the investigated lines have similar non-LTE abundance cor-
rection at the level of +0.2 dex from the calculations with SH =
0.1 ( Table 5). As expected, the departures from LTE reduce in
case of increased H i collision rates (SH = 1).

The effect of bu/bl > 1 resulting in S lu > Bν is more promi-
nent for the only available line of silicon, Si i 390.5 nm. Its lower
level 3p 1S follows the ground state of Si i inside log τ5000 <
−1.5 due to collisional coupling, and it is strongly underpopu-
lated in the line formation layers. For the upper level 4s 1P◦, its
coupling to the high-excitation levels turns out stronger than a
coupling to the lower excitation levels, and it tends to follow the
continuum, Si ii. This explains why Si i 390.5 nm has a larger
non-LTE correction of ∆NLTE = 0.34 dex (SH = 0.1) compared to
the corresponding values for the Mg i lines and why ∆NLTE only
slightly reduces when move to SH = 1 (Table 5).

For the resonance line of Ca i at 422.6 nm, the non-LTE
mechanisms are very similar to that for the Mg i lines. Calcium
is the only element observed in SDSS J102915+172927 in two
ionization stages. Ca ii dominates the element number density
over atmospheric depths. Thus, no process seems to affect the

Ca ii ground-state population, and 4s keeps its thermodynamic
equilibrium value. The levels 3d and 4p follow the ground state
in deep layers, and their coupling is lost at the depths outside
log τ5000 < −1 where photon losses in the weakest line 849.8 nm
of the multiplet 3d − 4p start to become important. In these at-
mospheric layers, bu/bl < 1 is valid for each investigated line
of Ca ii resulting in dropping the line source function above the
Planck function and enhanced line absorption. For the resonance
line Ca ii 393.3 nm, departures from LTE occur only in the very
core and ∆NLTE amounts to −0.07 dex. Non-LTE correction is
larger in absolute value for the IR lines of multiplet 3d − 4p,
849.8, 854.2, and 866.2 because of the overpopulation of the
lower level.

In case of the Fe i lines, their weakening is mainly due to ove-
rionization. In SDSS J102915+172927, we measured only the
low-excitation Fe i lines, with Eexc = 0-1.5 eV. For each line, the
source function is quite similar to the Planck function for each
investigated line, because all the levels with Eexc = 0-4.5 eV be-
have similarly (Fig. 10). With very similar behavior of the depar-
ture coefficients for the lower levels, we calculated very similar
non-LTE corrections, as can be seen in Fig. 11. ∆NLTE varies be-
tween 0.29 and 0.36 dex in the calculations SH = 0.1. Similarly
to the Mg i lines, departures from LTE reduce significantly for
SH = 1.

Although only an upper limit was estimated for the Sr abun-
dance, we performed the non-LTE calculations for Sr ii with
[Sr/Fe] = −5.1. Non-LTE leads to weakened Sr ii 407.7 nm line,
and ∆NLTE amounts to 0.16 dex in case of pure electronic colli-
sions taken into account in SE calculations and decreases down
to 0.12 dex for SH = 1. For Ti ii, we estimated a non-LTE cor-
rection of –0.01 dex, assuming that the departures from LTE for
the investigated Ti ii lines are similar to that for the Fe ii lines of
similar excitation energy and equivalent width.

5. The ISM towards the star SDSSJ102915+172927
The interstellar feature is well modeled with one single compo-
nent model providing column density of log (Na i) = 12.11±0.01
cm−2 and log (Ca ii) = 12.02 ± 0.04 cm−2. The broadening of
the lines is of 7.3 ± 1.1 km s−1 in the Ca ii lines and of 5.2 ±
0.1 km s−1in Na i suggesting that the turbulence is the dominant
broadening factor and that the two ions do not sample precisely
the same material with the Ca ii lines tracing ionised gas not de-
tected in Na i.

The Na i column density is consistent with that observed to-
wards η Leo which at an angular distance of few degrees shows
log N(Na i)=12.08 cm−2.
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Fig. 3.—: Number density maps for a slice through the high
density region for Z = 10−4 Z⊙ (top), 10−5 Z⊙, 10−6 Z⊙, and
0 (bottom). The image shows a sequence of zooms in the
density structure in the gas immediately before the formation
of the first protostar.

Fig. 4.—: Enclosed gas mass divided by Bonnor-Ebert mass
versus radius for different metallicities. The values were cal-
culated at the time just before the first sink was formed and the
center is taken to be the position of the densest SPH particle.

more flat mass distribution.
Now we can compare the predicted values before sink for-

mation started, with the final accretion and fragmentation
timescales. Figure 8 shows the timescales for fragmentation
and accretion for different metallicities on the end of the cal-
culations. The mean fragmentation time, and the mean accre-
tion time explain the difference in the sink particle mass distri-
bution in Figure 6. For Z ≤ 10−5 Z⊙, the fragmentation time is
always higher than the accretion time, indicating that the sink
particles will accrete faster than they can be generated, result-
ing in a more flat mass distribution. When the fragmentation
time is higher than the accretion time (for Z = 10−4 Z⊙), the
gas rather fragments, than moves to the center and is accreted.
As a consequence, more mass goes into the low-mass objects,
when compared to the high-mass ones. This behavior agrees
well with the predictions from before fragmentation started,
shown in Figure 7.

3.6. Radial mass distribution
Another property of the star-forming cloud that we ob-

served to vary in our calculations is the mass spacial distri-
bution. The dependence of the enclosed gas and sink mass on
the distance from the sinks center of mass, for the different
Z, is show in Figure 9. The Z = 0 case has almost all the
sink particle mass in r < 8AU. The gas density for this case is
also higher in this region, when compared to the other metal-
licities, showing that the gas and sink particles mass density
follow each other. In the Z = 0 simulation, there is ∼80% of
the mass in sinks within 8 AU from the center of mass. And
for the other cases, this happens for radius ∼ 30AU. For ra-
dius bigger than 150 AU, the gas becomes the most massive
component, for all Z.

This more concentrated gas and sink mass towards the cen-
ter happens probably because for the Z = 0 case, the gas had
higher temperatures in the central region. And so there was
less influence by turbulent and rotational motions, which were

4 Greif et al.

Fig. 2.— Density, velocity, pressure, and temperature of the
shocked gas after 1 Myr. Black dots represent the test simulation,
while the grey (green) lines show the dimensionalized ST solu-
tion. Apart from deviations caused by higher-order shocks and
kernel smoothing, the simulation reproduces the analytic profiles
relatively well.

(DM and gas). We initialize the simulation at z = 100
deep in the linear regime, and for this purpose adopt
a concordance Λ cold dark matter (ΛCDM) cosmology
with the following parameters: matter density Ωm =
1−ΩΛ = 0.3, baryon density Ωb = 0.04, Hubble param-
eter h = H0/

°
100 km s−1 Mpc−1

¢
= 0.7, spectral index

ns = 1.0, and a top-hat fluctuation power σ8 = 0.9 (e.g.,
Spergel et al. 2003). Initial density and velocity pertur-
bations are imprinted according to a Gaussian random
field, and grow proportional to the scale factor until the
onset of nonlinearity. At this point the detailed chemi-
cal evolution of the gas becomes crucial, and we apply
the same chemical network as in Johnson et al. (2007) to
track the abundances of H, H+, H−, H2, H+

2 , He, He+,
He++, and e−, as well as the five deuterium species D,
D+, D−, HD and HD−. All relevant cooling mechanisms
in the temperature range 10−108 K are implemented, in-
cluding H and He resonance processes, bremsstrahlung,
inverse Compton, and molecular cooling for H2 and HD.
Metal cooling does not become important for the entire
lifetime of the SN remnant, yet we postpone a more de-
tailed discussion of this issue to §5. We do not take into
account the emission of radiation by the post-shock gas,
which acts to create a thin layer of fully ionized material
ahead of the shock and suppresses molecule formation
(e.g., Shull & McKee 1979; Shapiro & Kang 1987; Kang
& Shapiro 1992), since (a) the SN remnant expands into
an H ii region, and (b) we find that molecule formation
becomes important only at late times, when the post-
shock gas has cooled to 104 K (see §3.4).

With these ingredients, the first star forms in a halo of
Mvir � 5 × 105 M⊙ and rvir � 100 pc at z � 20 in the
canonical fashion (e.g., Bromm et al. 1999, 2002; Abel et
al. 2002). We determine its location by identifying the
first particle that reaches a density of nH = 104 cm−3. At
this point the gas ‘loiters’ around a temperature of 200 K
and typically attains a Jeans mass of a few 103 M⊙ before

Fig. 3.— The hydrogen number density averaged along the line
of sight in a slice of 10/h kpc (comoving) around the first star,
forming in a halo of total mass Mvir � 5 × 105 M⊙ at z � 20.
Evidently, the host halo is part of a larger conglomeration of less
massive minihalos, and subject to the typical bottom-up evolution
of structure formation.

further collapsing (e.g., Bromm et al. 2002; Glover 2005).
For simplicity, we assume that such a clump forms a sin-
gle star, and find that its location is reasonably well re-
solved by the minimum resolution mass, Mres � 500 M⊙.
In Figure 3, we show the hydrogen number density in the
x-y and y-z plane, centered on the formation site of the
first star. Evidently, the host halo is part of a larger
overdensity that will collapse in the near future and lead
to multiple merger events. This behavior is characteris-
tic of bottom-up structure formation, and our simulation
therefore reflects a cosmological environment typical for
these redshifts.

2.4.2. H ii Region

The treatment of the H ii region around the star
is crucial for the early and late time behavior of the
SN remnant. The photoevaporation of the host mini-
halo greatly reduces the central density and extends the
energy-conserving ST phase, whereas after an intermedi-
ate stage the enhanced pressure in the H ii region leads to
an earlier transition to the final, momentum-conserving
phase. Additionally, the shock fulfills the stalling crite-
rion, i.e. ṙsh = cs, where cs is the sound speed of the
photoheated IGM, much earlier in the H ii region com-
pared to previously unheated gas. We have found that
neglecting the presence of the H ii region around the star,
extending well into the IGM, leads to a final shock radius
a factor of 2 larger, which demonstrates its importance
for the long-term evolution of the SN remnant.

To determine the size and structure of the H ii region,
we proceed analogously to Johnson et al. (2007). In de-
tail, we initially photoheat and photoionize a spherically
symmetric region surrounding the star up to a maximum
distance of 200 pc, where we find a neighbouring mini-
halo. We determine the necessary heating and ionization
rates by using the properties of a 200 M⊙ Pop III star

(Greif et al., 2007, ApJ, 670, 1)

successive zoom-in calculation from 
cosmological initial conditions (using 
SPH and new grid-code AREPO)

(Greif et al. 2011, ApJ, 737, 75, Greif et al. 2012, MNRAS, 424, 399,  
Dopcke et al. 2013, ApJ, 776, 103)
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Fig. 1.—: Dependence of gas and dust temperatures on gas
density for metallicities 10−4, 10−5, and 10−6 and zero times
the solar value, calculated just before the first sink particle was
formed (see Table1). In red, we show the gas temperature,
and in blue the dust temperature. The dashed lines are lines
of constant Jeans mass.

3. ANALYSIS

3.1. Thermodynamical evolution of gas and dust
We have performed a set of four simulations for different

metallicities in order to test if dust can efficiently cool the gas
and change the fragmentation behavior. Since dust cooling is
consequence of inelastic gas-grain collisions, and these colli-
sions are more frequent for higher densities, we expect that its

cooling is more efficient at higher densities. The energy trans-
fer from gas to dust vanishes when they couple in temperature,
hence we also expect the cooling to cease when dust reaches
the gas temperature. In order to guide on the evaluation of the
effect of dust on the thermodynamic evolution of the gas and
verify these assumptions, we plot temperature and density for
the various metallicities tested in Figure 1. We compare the
evolution of the dust and gas temperatures in the simulations,
at the point of time just before the formation of the first sink
particle (see Table 1). The dust temperature (shown in blue)
varies from the CMB temperature in the low density region to
the gas temperature (shown in red) at much higher densities.

Changes in metallicity influence the the point in density
where dust cooling becomes efficient. For the Z = 10−4 Z⊙
case, dust cooling begins to be efficient at n ≈ 1011cm−3.
While for Z = 10−5 Z⊙, the density where dust cooling be-
comes efficient is delayed until n ≈ 1013cm−3. For the Z
= 10−6 Z⊙ case, dust cooling becomes important for n !
1014cm−3, preventing the gas temperature from getting higher
than 1500 K. For instance, the metal-free case reaches tem-
peratures of approximately 2000 K.

The efficiency of the cooling expressed in the temperature
drop also varies with metallicity. The gas temperature de-
creases to roughly 400 K in the 10−5 Z⊙ simulation, and 200 K
in the Z = 10−4 Z⊙ case. This temperature drop significantly
increases the number of Jeans masses present in the collaps-
ing region, making the gas unstable to fragmentation. The
dust and the gas temperatures couple for high densities, when
the compressional heating starts to dominate again over the
dust cooling. The subsequent evolution of the gas is close to
adiabatic.

When we compare our results to the calculations of Omukai
et al. (2010), we find good agreement with their 1D hydrody-
namical models, although we expected some small difference
due to effects of the turbulence and rotation (see Dopcke et al.,
2011) and also due to the use of different dust opacity models.

3.2. Heating and cooling rates.
The gas thermal evolution during the collapse takes differ-

ent paths depending on the metallicity, as expressed in the
density-temperature diagram (Figure 1). In order to explain
them, we take a closer look at the cooling and heating pro-
cesses involved.

In Figure 2 we show the main cooling and heating rates
divided into four panels for the different metallicities.

There are parts of the evolution where metallicity has no
important effect, such as for for n < 108cm−3, where PdV
heating dominates. For n > 108cm−3, H2 line cooling starts
to become important. And for densities as high as 1010cm−3,
heating and cooling processes are balanced for all cases.

The effect of the metallicity, and so the dust cooling, starts
to be seen for n ! 108cm−3. At n ≈ 8×109cm−3, for instance,
the two main coolants (dust and H2 line cooling) are compara-
ble to the two main heaters (H2 formation and PdV heating).
For all cases where dust was present, its cooling became the
most important thermal process at some point in the collapse.

These thermal processes affect the density-temperature di-
agram (Figure 1) in all cases, such as for n " 108cm−3, when
PdV heating dominates, the evolution is close to adiabatic.
When cooling and heating balance, for 108 " n/cm−3 " 1011,
the evolution is close to isothermal.

The other thermal processes play a minor role during the
collapse. For example, H2 dissociation cooling only becomes
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Fig. 6.—: Sink particle mass function at the point when 4.7
M⊙ of gas had been accreted by the sink particles in each sim-
ulation. To resolve the fragmentation, the mass resolution is
smaller than the Jeans mass at the point in the temperature-
density diagram where dust and gas couple and the compres-
sional heating starts to dominate over the dust cooling.

creating more sparse over-densities.

3.7. Mass accretion
The mass accreted by the sink particles varied within the

different metallicities, and changed the final IMF. This dif-
ferent accretion can also influence the expected accretion lu-
minosity. We did not take this thermal process into account
during the calculations, but it is relevant to speculate if it is
comparable to the other thermal processes, and necessary to
include in future simulations.

In Figure 10 we present accretion properties for the new-
born stellar systems. The top panel shows how the total mass
in sinks evolve with time, and the comparison for different Z.
The accretion rate varies from 0.02 to 0.17 M⊙ yr−1, and it is
on average lower for the Z = 10−4 Z⊙ case. The Z = 10−4 Z⊙
case accreted mass slower than the others, taking the longest
time to accrete 4.7M⊙.

In the bottom panel of Figure 10, we show the accretion
luminosity calculated by considering that all gas was accreted

Fig. 7.—: Timescales for fragmentation (bottom panel) and
accretion (middle panel), and also their fraction (top panel)
versus enclosed gas mass (Menc) for the metallicities tested.
The values were calculated just before the first sink particle
was formed.

Fig. 8.—: Timescales for fragmentation and accretion for dif-
ferent metallicities. t f rag(⟨N/(dN/dt)⟩) indicates the aver-
age for the number of sink particles (N) divided by the time
variation of that number, or the sink particle formation rate.
tacc(⟨M/(dM/dt)⟩) is the average accretion time, which is cal-
culated by dividing the total mass in sink particles dived by
the mass accretion rate.
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was formed.
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the mass accretion rate.

disk fragmentation mode

gravoturbulent fragmentation mode

Dopcke et al. 2013, ApJ, 776, 103

hints for differences 
in mass spectrum
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Figure 1. Evolution of temperatures in prestellar cloud cores with metallicities
Z/Z⊙ = 0, 10−6, 10−5, 10−4, 10−3, 10−2, 10−1, and 1, as functions of the
number density, which is calculated by one-zone models. The dashed lines
indicate the constant Jeans masses. For those above 102 M⊙ (below 1 M⊙), the
gas is assumed to be fully atomic (molecular) in drawing those lines.
(A color version of this figure is available in the online journal.)

3. PRESTELLAR COLLAPSE

Figure 2 presents the temperature evolution at the center of
the prestellar cores as a function of the number density. The
overall evolution is quite similar to that calculated by the one-
zone model (Figure 1), justifying the one-zone treatment for
the core evolution. There are, however, small disagreements,
in particular, at high densities and for low-metallicity cases.
We defer detailed discussion on these differences to later in
Section 3.4, but here describe which thermal processes control
the temperature evolution at each metallicity. The contribution
to the cooling and heating rates by individual processes are
presented in Figure 3 for different metallicities. This should be
compared with Figure 2 of O05, where similar plots for the
one-zone models are presented. In Figure 5, the effective ratio
of specific heat at the center, γ = d lnp/d lnρ, which gives
the variation of pressure in response to the density variation,
is shown for those cases. Note that γ − 1 equals the gradient
of the curve in Figure 2 for constant molecular weight. The
effective ratio of specific heat is an important index to examine
the dynamical response of self-gravitating clouds to thermal
evolution. For example, the clouds easily fragment as long as
γ < 1, while fragmentation is strongly prohibited for γ > 1 (Li
et al. 2003). Another critical value is γ = 4/3. If γ exceeds
this value, the dynamical collapse is halted as the pressure
overcoming the gravity, and a hydrostatic object is formed.

3.1. Thermal Evolution in the Metal-free Case

In this section, we review thermal evolution of the cloud core
of a metal-free gas. We then describe the effects of metallicity
later in Section 3.2. We focus on deviations from the metal-free
case. In the case of metallicity [M/H] = −6, metallicity effects
are so small that the temperature evolution is almost identical to
the metal-free one except for a slight offset at highest densities
(!1020 cm−3).

Let us summarize here the formation processes of H2, which
play a crucial role in the thermal evolution. The evolution of H2
concentrations is presented in Figure 4, along with those in the
cases with metals. Below ∼108 cm−3, H2 is formed by the H−
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Figure 2. Evolution of temperatures at the center of cloud cores during the
prestellar collapse for various metallicities. This is calculated by one-zone
model until 104 cm−3 (dotted vertical line) and by hydrodynamical models
for the higher density. The constant Jeans masses are indicated by the dashed
lines.
(A color version of this figure is available in the online journal.)

channel:

H + e → H− + γ , (9)
H− + H → H2 + e, (10)

catalyzed by a small amount of remaining electrons. With
their recombination proceeding, the H− channel is quenched
and the amount of formed H2 saturates at ∼10−3 (Figure 4).
After this plateau, the H2 abundance begins to increase again at
∼108 cm−3 via the three-body H2 formation:

2H + H → H2 + H (11)

and
2H + H2 → H2 + H2. (12)

All the hydrogen is converted to the molecular form via this
channel by the density ∼1011 cm−3.

Next, let us see the cooling and heating processes
(Figure 3(a)). Until very high density ∼1019–1020 cm−3 is
reached, cooling and heating are always almost balanced, so
that the evolution is nearly isothermal with temperature differ-
ing only by a small factor whereas density increases by many
orders of magnitudes. The effective ratio of specific heat γ re-
mains below 4/3, but is above 1 in this period except for brief
intervals around 109 cm−3 and 1011 cm−3, where γ falls slightly
below unity (Figure 5(a)). The heating is owing to the compres-
sion, but for 109–1012 cm−3, where the H2-formation heating
associated with the three-body reaction (Equation (11) below)
dominates. For the cooling, the H2-line emission contributes
most until ∼1013 cm−3, although some lines become optically
thick at ∼1011 cm−3 and this suppresses the cooling rate grad-
ually toward a higher density. The steep decline of the H2 line-
cooling rate at 1016 cm−3 is due to the H2 collision-induced
continuum absorption. Another molecular species in the metal-
free gas, HD, is known to play an important role in cooling
if a metal-free gas is once ionized (Uehara & Inutsuka 2000;
Nagakura & Omukai 2005; Greif & Bromm 2006; Yoshida et al.
2007; McGreer & Bryan 2008). In our case, however, it only
contributes comparably to H2 at a brief period at ∼104 cm−3.

With gradual increase of temperature, the balance of chemical
equilibrium between the H2 formation (Equation (11)) and its

EOS as function of metallicity

(Omukai et al. 2005, 2010)

102Msun 1 Msun 10-2Msun

τ	
  =	
  1
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Figure 1. Evolution of temperatures in prestellar cloud cores with metallicities
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indicate the constant Jeans masses. For those above 102 M⊙ (below 1 M⊙), the
gas is assumed to be fully atomic (molecular) in drawing those lines.
(A color version of this figure is available in the online journal.)

3. PRESTELLAR COLLAPSE

Figure 2 presents the temperature evolution at the center of
the prestellar cores as a function of the number density. The
overall evolution is quite similar to that calculated by the one-
zone model (Figure 1), justifying the one-zone treatment for
the core evolution. There are, however, small disagreements,
in particular, at high densities and for low-metallicity cases.
We defer detailed discussion on these differences to later in
Section 3.4, but here describe which thermal processes control
the temperature evolution at each metallicity. The contribution
to the cooling and heating rates by individual processes are
presented in Figure 3 for different metallicities. This should be
compared with Figure 2 of O05, where similar plots for the
one-zone models are presented. In Figure 5, the effective ratio
of specific heat at the center, γ = d lnp/d lnρ, which gives
the variation of pressure in response to the density variation,
is shown for those cases. Note that γ − 1 equals the gradient
of the curve in Figure 2 for constant molecular weight. The
effective ratio of specific heat is an important index to examine
the dynamical response of self-gravitating clouds to thermal
evolution. For example, the clouds easily fragment as long as
γ < 1, while fragmentation is strongly prohibited for γ > 1 (Li
et al. 2003). Another critical value is γ = 4/3. If γ exceeds
this value, the dynamical collapse is halted as the pressure
overcoming the gravity, and a hydrostatic object is formed.

3.1. Thermal Evolution in the Metal-free Case

In this section, we review thermal evolution of the cloud core
of a metal-free gas. We then describe the effects of metallicity
later in Section 3.2. We focus on deviations from the metal-free
case. In the case of metallicity [M/H] = −6, metallicity effects
are so small that the temperature evolution is almost identical to
the metal-free one except for a slight offset at highest densities
(!1020 cm−3).

Let us summarize here the formation processes of H2, which
play a crucial role in the thermal evolution. The evolution of H2
concentrations is presented in Figure 4, along with those in the
cases with metals. Below ∼108 cm−3, H2 is formed by the H−
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channel:

H + e → H− + γ , (9)
H− + H → H2 + e, (10)

catalyzed by a small amount of remaining electrons. With
their recombination proceeding, the H− channel is quenched
and the amount of formed H2 saturates at ∼10−3 (Figure 4).
After this plateau, the H2 abundance begins to increase again at
∼108 cm−3 via the three-body H2 formation:

2H + H → H2 + H (11)

and
2H + H2 → H2 + H2. (12)

All the hydrogen is converted to the molecular form via this
channel by the density ∼1011 cm−3.

Next, let us see the cooling and heating processes
(Figure 3(a)). Until very high density ∼1019–1020 cm−3 is
reached, cooling and heating are always almost balanced, so
that the evolution is nearly isothermal with temperature differ-
ing only by a small factor whereas density increases by many
orders of magnitudes. The effective ratio of specific heat γ re-
mains below 4/3, but is above 1 in this period except for brief
intervals around 109 cm−3 and 1011 cm−3, where γ falls slightly
below unity (Figure 5(a)). The heating is owing to the compres-
sion, but for 109–1012 cm−3, where the H2-formation heating
associated with the three-body reaction (Equation (11) below)
dominates. For the cooling, the H2-line emission contributes
most until ∼1013 cm−3, although some lines become optically
thick at ∼1011 cm−3 and this suppresses the cooling rate grad-
ually toward a higher density. The steep decline of the H2 line-
cooling rate at 1016 cm−3 is due to the H2 collision-induced
continuum absorption. Another molecular species in the metal-
free gas, HD, is known to play an important role in cooling
if a metal-free gas is once ionized (Uehara & Inutsuka 2000;
Nagakura & Omukai 2005; Greif & Bromm 2006; Yoshida et al.
2007; McGreer & Bryan 2008). In our case, however, it only
contributes comparably to H2 at a brief period at ∼104 cm−3.

With gradual increase of temperature, the balance of chemical
equilibrium between the H2 formation (Equation (11)) and its

EOS as function of metallicity

(Omukai et al. 2005, 2010)
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Z = 0• slope of EOS in the density range 5 
cm-3 ≤ n ≤ 16 cm-3 is γ≈1.06.

• with non-zero angular momentum, 
disk forms.

• disk is unstable against frag- 
mentation at high density



(Clark et al. 2011b, Science, 331, 1040)

Figure 1: Density evolution in a 120 AU region around the first protostar, showing the build-up
of the protostellar disk and its eventual fragmentation. We also see ‘wakes’ in the low-density
regions, produced by the previous passage of the spiral arms.

3

detailed look at accretion disk



important disk parameters

Figure 2: Radial profiles of the disk’s physical properties, centered on the first protostellar core
to form. The quantities are mass-weighted and taken from a slice through the midplane of the
disk. In the lower right-hand plot we show the radial distribution of the disk’s Toomre parameter,
Q = cs�/⇥G�, where cs is the sound speed and � is the epicyclic frequency. Beause our disk
is Keplerian, we adopted the standard simplification, and replaced � with the orbital frequency.
The molecular fraction is defined as the number density of hydrogen molecules (nH2), divided
by the number density of hydrogen nuclei (n), such that fully molecular gas has a value of 0.5
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Q = cs�/⇥G�, where cs is the sound speed and � is the epicyclic frequency. Beause our disk
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by the number density of hydrogen nuclei (n), such that fully molecular gas has a value of 0.5
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Toomre Q:

instability for Q<1



(Greif et al., 2012, MNRAS, 424, 399)

Most recent calculations:  
fully sink-less simulations, following the disk build-up over ~10 years 
(resolving the protostars - first cores - down to 105 km ~ 0.01 R⦿)

density temperature



Greif et al. 2011, ApJ, 737, 75, Clark et al. 2011b, Science, 331, 1040, Smith et al. 2011, MNRAS, 414, 3633, Dopcke et al., 2013, ApJ, 766, 103  



expected mass spectrum

• expected IMF is flat and covers a wide range of masses
• implications

- because slope > -2, most mass is in massive objects  
as predicted by most previous calculations

- most high-mass Pop III stars should be in binary systems  
--> source of high-redshift gamma-ray bursts

- because of ejection, some low-mass objects (< 0.8 M⦿)  
might have survived until today and could potentially be  
found in the Milky Way

• consistent with abundance patterns found  
in second generation stars
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Figure 4. Mass abundance of He, O, Si, and Fe in Z = 0 (top) and 10−4 Z⊙ (bottom) 25 M⊙ stars after the end of RT-driven mixing. The snapshots are of the simulation
at 3.1 × 104 s, 6.3 × 104 s, and 2.7 × 104 s for z25B, z25D, and z25G, and 1.4 × 104 s, 5.3 × 104 s, and 1.2 × 105 s for models u25B, u25D, and u25G, respectively.
Red Z = 0 stars again show much more mixing than blue Z = 10−4 Z⊙ stars, although it is not as extreme as in the 15 M⊙ models, in which the difference in outer
radius between the z- and u-series progenitors was greater. Mixing again rises with explosion energy, which is 0.6, 1.2, 2.4 Bethe from left to right across the panels.
Spurious jetting is also visible along the y- and x-axes in the u-series models. Like the 15 M⊙ stars shown in Figure 3, both mixing and the amplitudes of the RT
instabilities clearly increase with explosion energy at both metallicities.

more mixing in the internal layers than higher-mass models.
The z-series SNe have far more mixing than u-series SNe. SNe
with higher explosion energies exhibit more mixing and less
fallback than SNe with lower explosion energies. In particular,
the B series SNe with subnormal explosion energies, 0.6 Bethe
instead of the canonical 1.2 Bethe, eject almost no iron with the
exception of model z15B.

The z-series models all show more mixing than their u-series
counterparts. The 25 M⊙ models show the most mixing of the
models in the u-series, while the 40 M⊙ u-series runs show the
smallest degree of mixing. All the 40 M⊙ models experience a
great deal of fallback, but the u-series models show the most
because they are more compact. The higher explosion energy
models exhibit less fallback.

4.3.5. Comparison with Kepler Estimations of Mixing

The large one-dimensional surveys of SNe derive final esti-
mates of elemental yields by artificially mixing the layers of
the SN after explosive nucleosynthesis is complete. Surveys
employing the KEPLER code estimate mixing by passing a run-

ning boxcar average of width (in mass coordinate) W through
the star, where W is 10% the mass of the helium core. That is,
the abundances at points that fell within a bin of width W were
averaged together and set to this average, the bin was moved for-
ward by one point, and the process repeated, moving outward
through the star. This is done four times, artificially mixing the
mass shells. In Figure 7, we compare KEPLER estimations of
mixing with our two-dimensional CASTRO results. In our two-
dimensional CASTRO simulations, we find that some elemental
shells are more mixed than others. The RT instability typically
forms at the He–H or O–He boundary and advances inward.
This results in the helium and oxygen layers being more mixed
than in KEPLER and the iron, and sometimes silicon, layers being
less mixed than the KEPLER estimations for the z-series models.
Our compact U-series models show less mixing in all elements
than in KEPLER.

4.3.6. Numerical Artifacts and Model Limitations

Numerical artifacts arising from the mesh geometry are most
prominent in the higher explosion energy, u-series models,

The metallicities of extremely metal-poor 
stars in the halo are consistent with the 
yields of core-collapse supernovae, i.e. 
progenitor stars with 20 - 40 M⦿
 
(e.g. Tominaga et al. 2007, Izutani et al. 2009, Joggerst et al. 2009, 2010)

Fig. 6.—Comparison between the [X/Fe] trends of observed stars (crosses: the previous studies [e.g., Gratton & Sneden 1991; Sneden et al. 1991; Edvardsson et al.
1993; McWilliam et al. 1995a, 1995b; Ryan et al. 1996;McWilliam 1997; Carretta et al. 2000; Primas et al. 2000; Gratton et al. 2003; Bensby et al. 2003]; open circles: CA04;
open squares: HO04) and those of individual starsmodels ( filled circles: normal SNe; filled triangles: HNewith caseA; filled rhombus: HNewith case B) and IMF integration
( filled squares). The parameters are shown in Table 1.

Fig. 7.—Same as Fig. 3, but for MMS ¼ 25 M", E51 ¼ 5.

Fig. 8.—Comparison between the abundance pattern of the C-rich EMP star
(circles with error bars: CS 29498#043; Aoki et al. 2004) and the theoretical
faint SN yields (solid line: 25F). The mixing-fallback parameters are determined
so as to reproduce the abundance pattern of CS 29498#043.

(Joggerst et al. 2009, 2010)

(Tom
inaga et al. 2007)



• just like in present-day SF, we expect 

- turbulence

- thermodynamics (i.e. heating vs. cooling)

- feedback

- magnetic fields 

to influence first star formation.

• masses of first stars still uncertain, but we expect a wide mass range 
with typical masses of several 10s of M⦿

• disks unstable: first stars in binaries or part of small clusters

• current frontier: include feedback and magnetic fields and possibly 
dark matter annihilation...

primordial star formation



• from present-day star formation theory we know, that 

- magnetic fields: Peters et al. 2011, Seifried et al. 2012, Hennebelle et al. 2011

- accretion heating: Peters et al. 2010, Krumholz et al. 2009, Kuipers et al. 2011

can influence the fragmentation behavior.
• in the context of Pop III

- radiation: Hosokawa et al. 2012, Stacy et al. 2012a

- magnetic fields: Turk et al. 2012, but see also Bovino et al. 2013  
Schleicher et al. 2010, Sur et al. 2010, Federrath et al. 2011, Schober et al. 2012ab, 2013

• all these will reduce degree of fragmentation  
(but not by much, see Rowan Smith et al. 2011, 2012, at least for accretion heating)

• DM annihililation might become important for disk dynamics and 
fragmentation (Ripamonti et al. 2011, Stacy et al. 2012b, Rowan Smith et al. 2012)

primordial star formation



stellar archeology

• if genuine Pop III stars with M<0.8 M⦿ have been formed, 
they should be still be around ! 

• could be seen in current (and future) surveys of searching 
for extremely metal-poor stars

• QUESTION:  
can we constrain the low-mass end of the primordial IMF?
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Figure 1. Roadmap, illustrating our model, with references to the relevant sections and equations. Based on the merger tree, we check
which haloes are able to form Pop III stars. These checks include the critical mass, the absence of dynamical heating due to mergers, no
pollution by metals and the strength of the LW background. We assign an individual number of Pop III stars to each successful halo and
determine the influence on their environment. The contribution of Pop I/II star formation is modelled based on the analytical cosmic
star formation history. By comparing to existing observations, we can calibrate our model parameters. Finally, we derive a prediction for
the number of Pop III survivors in the Milky Way and determine constraints on the primordial IMF.

the instantaneous merger rate
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z1=z2

d lnM1dz1 =

√
2
π

σ2
1

(σ2
1 − σ2

2)
3/2

dδ1
dz1

∣∣∣∣
d lnσ1

d lnM1

∣∣∣∣ d lnM1dz1,

(5)

where f represents the fraction of mass from haloes of mass
M2 at redshift z2 that is contained in progenitor haloes of
mass M1 at an earlier redshift z1 and δ1 = δc(z1) is the
critical overdensity (Eq. 2) at redshift z1. Consequently, the
mean number of haloes of mass M1 into which a halo of
mass M2 splits when one takes a step dz1 up in redshift
(and hence backwards in cosmic time) is given by

dN
dM1

=
1
M1

df
dz1

M2

M1
dz1 (M1 < M2). (6)

For a mass resolution limit of Mres, the mean number of
progenitors with masses M1 in the interval Mres < M1 <
M2/2 can be expressed as

P =

∫ M2/2

Mres

dN
dM1

dM1, (7)

and the fraction of mass of the final object in progenitors
below the resolution limit is given by

F =

∫ Mres

0

dN
dM1

M1

M2
dM1. (8)

Note, that the quantities P and F are proportional to the
redshift step dz1 (Eq. 6). For a given target mass and red-
shift, the galform algorithm generates a corresponding bi-
nary merger tree backwards in time by choosing a redshift
step dz1, such that P ≪ 1, to ensure that the halo is unlikely
to have more than two progenitors at the earlier redshift
z + dz. Next, it generates a uniform random number R, in
the interval 0 to 1. If R > P , then the main halo is not split
at this step. We simply reduce its mass to M2(1−F ) to ac-
count for mass accreted in unresolved haloes. Alternatively,
if R ! P , then we generate a random value of M1 in the

range Mres < M1 < M2/2, consistent with the distribution
given by Eq. (6), to produce two new haloes with masses M1

and M2(1−F )−M1. The same process is repeated for each
new halo at successive redshift steps to build up a complete
tree, which is finally stored at a limited number of output
redshifts, so that each halo can have multiple progenitors at
these discretised output redshifts.
The original galform code systematically underpredicts
the mass of the most massive progenitors for higher red-
shifts. Hence, we use the updated version of the code by
Parkinson et al. (2008), which modifies the progenitor mass
function with a perturbing function

dN
dM1

→ dN
dM1

G(σ1/σ2, δ2/σ2) (9)

to match the halo merger histories of the Millennium sim-
ulation (Springel et al. 2005). The best-fitting perturbing
function is given by

G(σ1/σ2, δ2/σ2) = 0.57

(
σ1

σ2

)0.38 ( δ2
σ2

)−0.01

. (10)

We have chosen this specific implementation of the merger
tree, because on the one hand it provides a fast algorithm
to produce merger trees with arbitrary mass resolution and
on the other hand, it performs best compared to other
codes. Jiang & van den Bosch (2014) recently compared
four different implementations of merger trees and find the
algorithm of Parkinson et al. (2008) to be the only one that
yields the mass assembly history, merger rates, and the
unresolved subhalo mass function in good agreement with
simulations.

2.1.3 Critical Mass for Baryonic Collapse

Whether the primordial gas in a halo can collapse and form
stars mainly depends on its ability to cool, which in turn de-
pends on the abundance of molecular hydrogen in the early

c⃝ 2014 RAS, MNRAS 000, 1–19
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Figure 12. Constraints on the lower IMF limit as a function of the sample size, whereas the different lines represent the confidence levels
of 68.27%, 95.55%, and 99.73%. The vertical dashed lines in magenta and light blue indicate the current sample sizes, respectively the
number of stars that have already been observed and that are certainly not Pop III stars. The vertical arrow on the right illustrates the
reduced observation probability for stars below ∼ 0.6M⊙. However, since we model star formation separately for every value of Mmin,
values above the observability threshold are not affected by the reduced observability for smaller stellar masses. For the bulge, we have
to observe a much higher number of stars to find a constraint on Mmin, compared to the halo. Furthermore it is noticeable that we are
already in the interesting regime for the halo and we need sample sizes of 4× 106, 1× 107, 2× 107 to exclude any Pop III survivors with
a confidence level of 68.27%, 95.55%, 99.73%, respectively. The error bars include the uncertainty in the SFE, in the total number of
stars Nt and the statistical scatter between several merger tree realisations.

There are several important conclusions that we can draw
from this plot. The sample size needed for constrainingMmin

is more than two orders of magnitude higher for the Milky
Way bulge than for the halo. Consequently, observations in
the halo are much more promising for constraining the lower
mass IMF limit, especially because the current sample size
is already higher for the halo and because observations in
the bulge are hindered by dust extinction. For an optimistic
reading of the sample size of the Hamburg/ESO survey and
a conservative treatment of the errorbars, we could already
exclude the existence of any Pop III stars with less than
∼ 0.65M⊙ with a certainty of 95%. However, for a more
restrictive reading (corresponding to ∼ 103 halo stars sur-
veyed at sufficiently high quality), no constraints could yet
be placed on the Pop III IMF. In order to exclude any Pop III
survivors with a certainty of 99%, a critical sample size of
∼ 2×107 halo stars has to be achieved, which should be well
within reach of upcoming stellar archaeological campaigns.
However, designing a well considered observing plan
is out of the scope of this work. A basic assumption of
this statistical analysis is that all stars have the same proba-
bility of being observed. Once this assumption breaks down,
we might have to correct for the reduced observation proba-
bility. However, any conclusions drawn from the mass range
above ∼ 0.65M⊙ is not affected by this caveat.

5 CAVEATS AND PARAMETER SENSITIVITY

Although we include the most relevant feedback mechanisms
and calibrate our model against empirical constraints, there
are several approximations and limitations that introduce
uncertainties to our results. In this section, we investigate
these caveats and address the question of how sensitive our
model is to the specific choice of parameters. We begin by
discussing some of the processes that are not included in
our current approach in Section 5.1. It is fair to say that
the numerical calculations of Pop III star formation that
aim at resolving individual objects are still in their infancy
and leave room for large uncertainties with respect to stellar
multiplicity and rotation as well as to the IMF. We assess
the influence of these uncertainties in Sections 5.2 and 5.3,
respectively. Another key factor that enters our model is
the cosmic reionisation history, as modelled by the escape
fraction of ionising radiation. The uncertainties in this pa-
rameter are explored in Section 5.4. We focus our discussion
on the number of expected Pop III survivors as our primary
prediction, and provide the corresponding plots in Fig. 13.

5.1 Neglected Effects

There are a number of physical processes and effects that
are not yet included in our model. The first simplification
is that our approach is a purely statistical one. We have no
information about the exact spatial location of dark matter
haloes and the distance to their neighbours. For this reason,
we can address the question of how feedback influences other

c⃝ 2014 RAS, MNRAS 000, 1–19
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