

The University of Manchester

SIMULATING FILAMENTARY STAR FORMATION

Rowan Smith RAS Norman Lockyer Fellow JBCA University of Manchester

Simon Glover, Ralf Klessen, Adam Avison, Henrik Beuther, Gary Fuller, Volker Springel

High Mass and Clustered Star Formation: Simulations

Ralf Klessen

Astronomie der Universität Heidelberg ut für Theoretische Astrophysik

agenda

remarks on star formation theory

- historic remarks
- current understanding
- controversies / puzzles
 - column density PDFs: do we really understand them?
 - molecular gas: are we sure we see all H_2 gas?
 - importance of dynamics: what sets the IMF?
 - filaments: are they universal?

decrease in spatial scale / increase in density

- density of ISM: few particles per cm³
- density of molecular cloud: few 100 particles per cm³
- density of Sun: I.4 g/cm³
- spatial scale
 - size of molecular cloud: few 10s of pc
 - size of young cluster: ~ I pc
 - size of Sun: 1.4×10^{10} cm

Sun (SOHO)

decrease in spatial scale / increase in density

- contracting force
 - only force that can do this compression is *GRAVITY*
- Proplyd in Orion (Hubble)

- opposing forces
 - there are several processes that can oppose gravity
 - GAS PRESSURE
 - TURBULENCE
 - MAGNETIC FIELDS
 - RADIATION PRESSURE

Modern star formation theory is based on the complex interplay between *all* these processes.

early theoretical models

- Jeans (1902): Interplay between self-gravity and thermal pressure
 - stability of homogeneous spherical density enhancements against gravitational collapse
 - dispersion relation:

$$\omega^2 = c_s^2 k^2 - 4\pi G \rho_0$$

instability whe

$$\omega^2 < 0$$

- minimal mass:

$$M_J = \frac{1}{6}\pi^{-5/2} G^{-3/2} \rho_0^{-1/2} c_s^3 \propto \rho_0^{-1/2} T^{+3/2}$$

Sir James Jeans. 1877 - 1946

$$\omega^2 < 0$$

first approach to turbulence

- von Weizsäcker (1943, 1951) and Chandrasekhar (1951): concept of MICROTURBULENCE
 - BASIC ASSUMPTION: separation of scales between dynamics and turbulence

l_{turb} « l_{dyn}

- then turbulent velocity dispersion contributes to effective soundspeed:

$$c_c^2 \mapsto c_c^2 + \sigma_{rms}^2$$

- \rightarrow Larger effective Jeans masses \rightarrow more stability
- BUT: (1) turbulence depends on k: $\sigma_{rms}^{2}(k)$

(2) supersonic turbulence $\rightarrow \sigma_{rms}^2(k) >> C_s^2$ usually

S. Chandrasekhar,

C.F. von Weiszäcker, 1912 - 2007

$$asses \rightarrow mores$$

on k: σ^2 (k)

1910 - 1995

problems of early dynamical theory

- molecular clouds are *highly Jeans-unstable*, yet, they do *NOT* form stars at high rate and with high efficiency (Zuckerman & Evans 1974 conundrum) (the observed global SFE in molecular clouds is ~5%)
 - \rightarrow something prevents large-scale collapse.
- all throughout the early 1990's, molecular clouds had been thought to be long-lived quasi-equilibrium entities.
- molecular clouds are *magnetized*

magnetic star formation

- *Mestel & Spitzer (1956):* Magnetic fields can prevent collapse!!!
 - Critical mass for gravitational collapse in presence of B-field

$$M_{cr} = \frac{5^{3/2}}{48\pi^2} \frac{B^3}{G^{3/2}\rho^2}$$

 Critical mass-to-flux ratio (Mouschovias & Spitzer 1976)

$$\left[\frac{M}{\Phi}\right]_{cr} = \frac{\zeta}{3\pi} \left[\frac{5}{G}\right]^{1/2}$$

- Ambipolar diffusion can initiate collapse

Lyman Spitzer, Jr., 1914 - 1997

"standard theory" of star formation

- BASIC ASSUMPTION: Stars form from magnetically highly subcritical cores
- Ambipolar diffusion slowly increases (M/ Φ): $\tau_{AD} \approx 10\tau_{ff}$
- Once (M/Φ) > (M/Φ)_{crit} : dynamical collapse of SIS
 - Shu (1977) collapse solution
 - $dM/dt = 0.975 c_s^3/G = const.$
- Was (in principle) only intended for isolated, low-mass stars

Frank Shu, 1943 -

magnetic field

problems of "standard theory"

- Observed B-fields are weak, at most marginally critical (Crutcher 1999, Bourke et al. 2001)
- Magnetic fields cannot prevent decay of turbulence (Mac Low et al. 1998, Stone et al. 1998, Padoan & Nordlund 1999)
- Structure of prestellar cores (e.g. Bacman et al. 2000, Alves et al. 2001)
- Strongly time varying dM/dt (e.g. Hendriksen et al. 1997, André et al. 2000)
- More extended infall motions than predicted by the standard model (Williams & Myers 2000, Myers et al. 2000)
- Most stars form as binaries (e.g. Lada 2006)

- As many prestellar cores as protostellar cores in SF regions (e.g. André et al 2002)
- Molecular cloud clumps are chemically young (Bergin & Langer 1997, Pratap et al 1997, Aikawa et al 2001)
- Stellar age distribution small (τ_{ff} << τ_{AD}) (Ballesteros-Paredes et al. 1999, Elmegreen 2000, Hartmann 2001)
- Strong theoretical criticism of the SIS as starting condition for gravitational collapse (e.g. Whitworth et al 1996, Nakano 1998, as summarized in Klessen & Mac Low 2004)
- Standard AD-dominated theory is incompatible with observations (Crutcher et al. 2009, 2010ab, Bertram et al. 2011)

properties of turbulence

• laminar flows turn *turbulent* at *high Reynolds* numbers

$$Re = \frac{\text{advection}}{\text{dissipation}} = \frac{VL}{\nu}$$

V= typical velocity on scale L, $v = \eta/\rho$ = kinematic viscosity, turbulence for Re > 1000 \rightarrow typical values in ISM 10⁸-10¹⁰

lence for Re > 1000 \rightarrow typical values in ISM 10⁸-10¹⁰

$$\rho \frac{d\vec{v}}{dt} = \rho \left(\frac{\partial \vec{v}}{\partial t} + (\vec{v} \cdot \vec{\nabla}) \vec{v} \right) = -\vec{\nabla}P + \eta \vec{\nabla}^2 \vec{v} + \left(\frac{\eta}{3} + \zeta \right) \vec{\nabla} (\vec{\nabla} \cdot \vec{v})$$

$$shear viscosity$$

$$bulk viscosity$$

$$\sigma_{ij} \equiv \eta \left(\frac{\partial v_i}{\partial x_j} + \frac{\partial v_j}{\partial x_i} - \frac{2}{3} \delta_{ij} \frac{\partial v_k}{\partial x_k} \right) + \zeta \delta_{ij} \frac{\partial v_k}{\partial x_k}$$

$$viscous stress tensor$$

properties of turbulence

• laminar flows turn *turbulent* at *high Reynolds* numbers

$$Re = \frac{\text{advection}}{\text{dissipation}} = \frac{VL}{\nu}$$

V= typical velocity on scale L, $v = \eta/\rho$ = kinematic viscosity, turbulence for Re > 1000 \rightarrow typical values in ISM 10⁸-10¹⁰

 vortex streching --> turbulence is intrinsically anisotropic (only on large scales you may get homogeneity & isotropy in a statistical sense; see Landau & Lifschitz, Chandrasekhar, Taylor, etc.)

(ISM turbulence: shocks & B-field cause additional inhomogeneity)

turbulent cascade in the ISM

energy source & scale *NOT known* (supernovae, winds, spiral density waves?) dissipation scale not known (ambipolar diffusion, molecular diffusion?)

turbulent cascade in the ISM

energy source & scale *NOT known* (supernovae, winds, spiral density waves?) $\sigma_{\rm rms} << 1$ km/s M_{rms} ≤ 1 L ≈ 0.1 pc dissipation scale not known (ambipolar diffusion, molecular diffusion?)

gravoturbulent star formation

• BASIC ASSUMPTION:

star formation is controlled by interplay between supersonic turbulence and self-gravity

- turbulence plays a *dual role*:
 - on large scales it provides support
 - on small scales it can trigger collapse
- some predictions:
 - dynamical star formation timescale $\tau_{\rm ff}$
 - high binary fraction
 - complex spatial structure of embedded star clusters
 - and many more . . .

Mac Low & Klessen, 2004, Rev. Mod. Phys., 76, 125-194 McKee & Ostriker, 2007, ARAA, 45, 565 Klessen & Glover 2014, Saas Fee Lecture, arXiv:1412.5182, 1-191

molecular cloud formation

Idea:

Molecular clouds form at stagnation points of largescale convergent flows, mostly triggered by global (or external) perturbations. Their internal turbulence is driven by accretion, i.e. by the process of cloud formation

- molecular clouds grow in mass
- this is inferred by looking at molecular clouds in different evolutionary phases in the LMC (Fukui et al. 2008, 2009)

zooming in ...

position-position-velocity structure of the Perseus cloud

caveat of numerical simulations

- most astrophysical turbulence simulations use an LES approach to model the flow
- principal problem: only large scale flow properties
 - Reynolds number: Re = LV/v (Re_{nature} >> Re_{model})
 - dynamic range much smaller than true physical one
 - need *subgrid model* (often only dissipation)
 - but what to do for more complex when processes on subgrid scale determine large-scale dynamics (chemical reactions, nuclear burning, etc)
 - Turbulence is "space filling" --> difficulty for AMR (don't know what criterion to use for refinement)
- how *large* a Reynolds number do we need to catch basic dynamics right?

experimental set-up

chemical model 0

32 chemical species 17 in instantaneous equilibrium:

 $\mathrm{H^-,\ H_2^+,\ H_3^+,\ CH^+,\ CH_2^+,\ OH^+,\ H_2O^+,\ H_3O^+,\ CO^+,\ HOC^+,\ O^-,\ C^-\ and\ O_2^+}$

•19 full non-equilibrium evolution

 $e^{-}, H^{+}, H, H_{2}, He, He^{+}, C, C^{+}, O, O^{+}, OH, H_{2}O, CO,$

 C_2 , O_2 , HCO^+ , CH, CH_2 and CH_3^+

218 reactions

various heating and cooling processes

long series of publications by Simon Glover and collaborators, e.g. Glover & Mac Low (2007ab), Glover, Federrath, Mac Low, Klessen (2010), Glover & Clark (2012, 2013), Clark & Clover (2012, 2013)

chemical model 1

Ρ	ro	cess	

•

Cooling:			
C fine structure lines	Atomic data – Silva & Viegas (2002)		
	Collisional rates (H) – Abrahamsson, Krems & Dalgarno (2007)		
	Collisional rates (H ₂) – Schroder et al. (1991)		
	Collisional rates (e^-) – Johnson et al. (1987)		
	Collisional rates (H ⁺) – Roueff & Le Bourlot (1990)		
C ⁺ fine structure lines	Atomic data – Silva & Viegas (2002)		
	Collisional rates (H ₂) – Flower & Launay (1977)		
	Collisional rates (H, $T < 2000 \text{ K}$) – Hollenbach & McKee (1989)		
	Collisional rates (H, $T > 2000$ K) – Keenan et al. (1986)		
	Collisional rates (e ⁻) – Wilson & Bell (2002)		
O fine structure lines	Atomic data – Silva & Viegas (2002)		
	Collisional rates (H) – Abrahamsson, Krems & Dalgarno (2007)		
	Collisional rates (H_2) – see Glover & Jappsen (2007)		
	Collisional rates (e ⁻) – Bell, Berrington & Thomas (1998)		
	Collisional rates (H ⁺) – Pequignot (1990, 1996)		
H ₂ rovibrational lines	Le Bourlot, Pineau des Forêts & Flower (1999)		
CO and H ₂ O rovibrational lines	Neufeld & Kaufman (1993); Neufeld, Lepp & Melnick (1995)		
OH rotational lines	Pavlovski et al. (2002)		
Gas-grain energy transfer	Hollenbach & McKee (1989)		
Recombination on grains	Wolfire et al. (2003)		
Atomic resonance lines	Sutherland & Dopita (1993)		
H collisional ionization	Abel et al. (1997)		
H ₂ collisional dissociation	See Table B1		
Compton cooling	Cen (1992)		
Heating:			
Photoelectric effect	Bakes & Tielens (1994); Wolfire et al. (2003)		
H ₂ photodissociation	Black & Dalgarno (1977)		
UV pumping of H ₂	Burton, Hollenbach & Tielens (1990)		
H ₂ formation on dust grains	Hollenbach & McKee (1989)		
Cosmic ray ionization	Goldsmith & Langer (1978)		

No.	Reaction		JUE	
1	$H + e^- \rightarrow H^- + \gamma$	$k_1 = dex[-17.845 \pm 0.762 \log T \pm 0.1523 (\log T)^2$		
		$-0.03274(\log T)^{\circ}$	$T\leqslant 6000~{\rm K}$	
		$= dex[-16.420 + 0.1998(log T)^2]$		
		$-5.447 \times 10^{-3} (\log T)^4$		
		$+4.0415 \times 10^{-5} (\log T)^{6}$	$T > 6000 { m K}$	
2	$H^- + H \rightarrow H_2 + e^-$	$k_2 = 1.5 \times 10^{-9}$	$T \leqslant 300 \text{ K}$	
		$=4.0 \times 10^{-9} T^{-0.17}$	$T > 300 { m K}$	
3	$H + H^+ \rightarrow H_2^+ + \gamma$	$k_3 = dex[-19.38 - 1.523 \log T]$		
		$+ 1.118(\log T)^{s} - 0.1269(\log T)^{s}$		
4	$H + H_2^+ \rightarrow H_2 + H^+$	$k_4 = 6.4 \times 10^{-10}$		
5	$H^- + H^+ \rightarrow H + H$	$k_5 = 2.4 \times 10^{-6} T^{-1/2} (1.0 + T/20000)$		
6	$H_2^+ + e^- \rightarrow H + H$	$k_6 = 1.0 \times 10^{-8}$	$T \leqslant 617 \text{ K}$	
		$= 1.32 \times 10^{-6} T^{-0.76}$	$T > 617 { m K}$	
7	$H_2 + H^+ \rightarrow H_2^+ + H$	$k_7 = [-3.3232183 \times 10^{-7}]$		
		$+3.3735382 \times 10^{-7} \ln T$		
		$-1.4491368 \times 10^{-7} (\ln T)^2$		
		$+3.4172805 \times 10^{-6} (\ln T)^{6}$		
		$-4.7813720 \times 10^{-6} (\ln T)^{-6}$		
		$+ 3.9731542 \times 10^{-11} (\ln T)^{-1}$		
		$-1.8171411 \times 10^{-1}(\ln T)^{-1}$ + 2.5211022 $\times 10^{-13}(\ln T)^{7}$		
		$+ 3.5311932 \times 10^{-1} (\ln T)^{-1}$		
_		$\times \exp\left(\frac{T}{T}\right)$		
8	$H_2 + e^- \rightarrow H + H + e^-$	$k_8 = 3.73 \times 10^{-5} T^{5.1121} \exp\left(\frac{-35450}{T}\right)$		
9	$H_2 + H \rightarrow H + H + H$	$k_{9,1} = 6.67 \times 10^{-12} T^{1/2} \exp \left[-\left(1 + \frac{65590}{T}\right)\right]$		
		$k_{9,h} = 3.52 \times 10^{-9} \exp \left(-\frac{43900}{T}\right)$		
		$n_{\rm cr,H} = dex \left[3.0 - 0.416 \log \left(\frac{T}{10000} \right) - 0.327 \left\{ log \left(\frac{T}{10000} \right) \right\}^2 \right]$		
10	$H_2 + H_2 \rightarrow H_2 + H + H$	$k_{10,1} = \frac{5.996 \times 10^{-30} T^{4.1881}}{(5.996 \times 10^{-30} T^{4.1881} \exp\left(-\frac{54657.4}{10}\right)}$		
		$(1.0+6.761\times10-9T)^{0.0861}$ T		
		$\kappa_{10,h} = 1.5 \times 10^{-1} \exp\left(-\frac{T}{T}\right)$		
		$n_{\rm cr,H_2} = \det \left[4.845 - 1.3 \log \left(\frac{T}{10000} \right) + 1.62 \left\{ \log \left(\frac{T}{10000} \right) \right\}^2 \right]$		
11	$\mathrm{H} + \mathrm{e^-} \rightarrow \mathrm{H^+} + \mathrm{e^-} + \mathrm{e^-}$	$k_{11} = \exp[-3.271396786 \times 10^{4}]$		
		$+ 1.35365560 \times 10^{4} \ln T_{e}$		
		$-5.73932875 \times 10^{\circ} (\ln T_{e})^{2}$		
		$+ 1.56315498 \times 10^{\circ} (\ln T_{e})^{\circ}$		
		$-2.87705600 \times 10^{-3} (\ln T_e)^{*}$		
		$+ 3.48255977 \times 10^{-6} (\ln T_e)^{-6}$		
		$-2.03197017 \times 10^{-7} (\ln T_{e})^{-7}$ + 1.11054205 × 10 ⁻⁴ (lp T) ⁷		
		$-2.03014085 \times 10^{-6} (\ln T_e)^8$		
10	H+ L = H L =	$= 2.03314363 \times 10^{-11} (1176)$	C	
12	$H^+ + e^- \rightarrow H + \gamma$	$\kappa_{12,\Lambda} = 1.269 \times 10^{-10} \left(\frac{T}{T} \right)$ × $\left[1.0 \pm \left(\frac{604625}{0.470} \right)^{0.470} \right]^{-1.923}$	Case A	
		$\left(\frac{1.0}{T} + \left(\frac{-T}{T}\right)\right)$		
		$k_{12,B} = 2.753 \times 10^{-14} \left(\frac{313014}{0.477} \right)$	Case B	
		$\times \left[1.0 + \left(\frac{115188}{T}\right)^{0.407}\right]^{-2.242}$		
13	$\mathrm{H^-} + \mathrm{e^-} \rightarrow \mathrm{H} + \mathrm{e^-} + \mathrm{e^-}$	$k_{13} = \exp[-1.801849334 \times 10^{1}]$		
		$+ 2.36085220 \times 10^{0} \ln T_{e}$		
		$-2.82744300 \times 10^{-1} (\ln T_e)^2$		
		$+ 1.62331664 \times 10^{-2} (\ln T_e)^3$		
		$-3.36501203 \times 10^{-2} (\ln T_e)^4$		
		$+ 1.17832978 \times 10^{-2} (\ln T_e)^5$		
		$-1.65619470 \times 10^{-3} (\ln T_e)^6$		
		$+ 1.06827520 \times 10^{-9} (\ln T_{*})^{7}$		

	Table B1. 1	14 H ⁻	$\begin{array}{c} + {\rm H} \rightarrow {\rm H} + {\rm H} + {\rm e} \\ \hline 36 {\rm CH} + {\rm H}_2 \\ 37 {\rm CH} + {\rm C} \rightarrow \end{array} \begin{array}{c} 88 {\rm H}_2 + {\rm H} \\ 89 {\rm H}_2 + {\rm H} \\ 90 {\rm CH} + {\rm H} \\ 21 {\rm CH} + {\rm H}_2 \end{array}$	$e^+ \rightarrow He + H_2^+$ $e^+ \rightarrow He + H + H^+$ $I^+ \rightarrow CH^+ + H$	$k_{88} = 7$ $k_{89} = 3$ $k_{90} = 1$	1.2×10^{-15} $1.7 \times 10^{-14} \exp\left(\frac{35}{T}\right)$ 1.9×10^{-9}	63 63 28	
	No. Rea 1 H +		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} \mathbf{H} & \rightarrow \mathbf{O} \mathbf{H}_2 + \mathbf{H} \\ \mathbf{H}^+ & \rightarrow \mathbf{O} \mathbf{H}^+ + \mathbf{H} \\ \mathbf{e}^+ & \rightarrow \mathbf{O} \mathbf{H}^+ + \mathbf{H} \\ \mathbf{H}^+ & \rightarrow \mathbf{O} \mathbf{H}^+ + \mathbf{H} \\ \mathbf{H}^+ & \rightarrow \mathbf{H}_2 \mathbf{O}^+ + \mathbf{H} \\ \mathbf{H}^+ & \rightarrow \mathbf{H}_2 \mathbf{O}^+ + \mathbf{H} \\ \mathbf{H} \mathbf{e}^+ & \rightarrow \mathbf{O} \mathbf{H} + \mathbf{H} \mathbf{e} + \mathbf{H}^+ \\ \end{array} $	$k_{91} = 1$ $k_{93} = 1$ $k_{94} = 2$ $k_{95} = 1$ $k_{96} = 6$ $k_{97} = 2$	$\begin{array}{c} 3 \times 10^{-9} \\ \hline & & \\ 5 \times 10^{-9} \\ 3.9 \times 10^{-9} \\ 0.04 \times 10^{-10} \end{array}$	28 28 28 28 28 64 65	ARI+ITA-LSW
Table	B2. List of	photoche	98 U.O. emical reactions included in	our chemical mod	el	25×10^{-15}	0E	81
No.	Reaction		Optically thin rate	(s ⁻¹) γ	Ref.	0×10^{-17} 0×10^{-17} $0 \times 10^{-18} (T_{-})^{0.35} = 0$	161.3)	82 82
166	U ⁻ tory	H + e ⁻	$P_{100} = 7.1 \times 10^{-7}$	0.5	1	$\frac{36 \times 10^{-10}}{1 \times 10^{-19}}$ $(\frac{1}{300})$ exp (-	$T \leq 300 \text{ K}$	83 84
167	$H^+ + \gamma \rightarrow$ $H^+ + \gamma \rightarrow$	$H + H^+$	$R_{166} = 1.1 \times 10^{-9}$ $R_{167} = 1.1 \times 10^{-9}$	1.9	2	$0.09 \times 10^{-17} \left(\frac{T}{300}\right)^{0.33} \exp\left(-\frac{T}{300}\right)^{0.33} \exp\left(-$	$-\frac{1629}{T}$ T > 300 K	85
168	$H_2 + \gamma \rightarrow 1$	H + H	$R_{167} = 5.6 \times 10^{-11}$	See §2.2	3	$46 \times 10^{-16} T^{-0.5} \exp \left(-\frac{4.9}{T^{2/2}}\right)$	$\frac{3}{3}$)	86
169	$H_{2}^{+} + \gamma \rightarrow$	$H_2 + H^4$	$R_{169} = 4.9 \times 10^{-13}$	1.8	4	$0 \times 10^{-16} \left(\frac{T}{300}\right)^{-16}$	T < 200 V	87
170	$H_3^+ + \gamma \rightarrow$	$H_{2}^{+} + H$	$R_{170} = 4.9 \times 10^{-13}$	2.3	4	$14 \times 10^{-18} \left(\frac{T}{200}\right)^{-0.15} \exp\left(\frac{T}{1000}\right)^{-0.15}$	$(\frac{68}{2})$ $T > 300 \text{ K}$	04
171	$C + \gamma \rightarrow C$	+	D 2.1 × 10-10	2.0	r.	(300)	(1) - ,	28
172	$C^- + \gamma \rightarrow$	Table	B3. List of reactions include	ed in our chemical	model	that involve cosmic rays	or cosmic-ray induced UV	emission 28
173	$CH + \gamma -$							32
174	$CH + \gamma - CH + \gamma - CH + \gamma - \gamma$	No.	Reaction	Rate $(s^{-1}\zeta_{H}^{-1})$		Ref.		38
175	$CH^{+} + \gamma$ $CH_{2} + \gamma$	100	$\mathbf{U} + \mathbf{c} = \mathbf{v} + \mathbf{U}^{+} + \mathbf{c}^{-}$	B 1.0				39
177	$CH_2 + \gamma$ $CH_2 + \gamma$	200	$H + c.r. \rightarrow H^{+} + e^{-}$ He + c.r. $\rightarrow He^{+} + e^{-}$	$R_{199} = 1.0$ $R_{200} = 1.1$		1		1
178	$CH_{+}^{+} + \gamma$	201	$H_2 + c.r. \rightarrow H^+ + H + e^-$	$R_{200} = 1.1$ $R_{201} = 0.037$		1		12
179	$CH_{2}^{+} + \gamma$	202	$H_2 + c.r. \rightarrow H + H$	$R_{202} = 0.22$		1		13
180	$CH_{3}^{2} + \gamma$	203	$H_2 + c.r. \rightarrow H^+ + H^-$	$R_{203} = 6.5 \times 10$	-4	1		14
181	$C_2 + \gamma \rightarrow$	204	$H_2 + c.r. \rightarrow H_2^+ + e^-$	$R_{204} = 2.0$		1		15
182	$O^- + \gamma -$	205	$C + c.r. \rightarrow C^+ + e^-$	$R_{205} = 3.8$		1		37
183	$OH + \gamma -$	206	$O + c.r. \rightarrow O^+ + e^-$	$R_{206} = 5.7$		1		37
184	$OH + \gamma -$	207	$CO + c.r. \rightarrow CO^+ + e^-$	$R_{207} = 6.5$		1		13
185	$OH^+ + \gamma$	208	$C + \gamma_{c.r.} \rightarrow C^+ + e^-$	$R_{208} = 2800$		2		35
180	$H_2O + \gamma$	209	$CH + \gamma_{c.r.} \rightarrow C + H$	$R_{209} = 4000$ $R_{209} = 060$		3		\$7
188	$H_2O + \gamma$ $H_2O^+ + \gamma$	210	$CH^{\circ} + \gamma_{c.r.} \rightarrow C^{\circ} + H^{\circ}$ $CH_{\circ} + \gamma_{c.r.} \rightarrow CH^{+} + e^{-}$	$R_{210} = 900$ $R_{211} = 2700$		1)5
189	$H_{2}O^{+} + 0$	212	$CH_2 + \gamma_{c.r.} \rightarrow CH_2 + c$ $CH_2 + \gamma_{c.r.} \rightarrow CH + H$	$R_{211} = 2700$ $R_{212} = 2700$		1)6
190	$H_2O^+ + 1$	213	$C_2 + \gamma_{c.r.} \rightarrow C + C$	$R_{213} = 1300$		3		_
191	$H_2O^+ + \gamma$	214	$OH + \gamma_{c.r.} \rightarrow O + H$	$R_{214} = 2800$		3		_
192	$H_3O^+ + \gamma$	215	$H_2O + \gamma_{c.r.} \rightarrow OH + H$	$R_{215} = 5300$		3		
193	$H_3O^+ + \gamma$	216	$O_2 + \gamma_{c.r.} \rightarrow O + O$	$R_{216} = 4100$		3		
194	$H_3O^+ + \gamma$	217	$O_2 + \gamma_{c.r.} \rightarrow O_2^+ + e^-$	$R_{217} = 640$		3		
195	$H_3O^+ + \gamma$	218	$CO + \gamma_{c.r.} \rightarrow C + O$	$R_{218} = 0.21T^{1/2}$	$x_{H_2} x_{C}^{-1}$	0 4		
196	$O_2 + \gamma \rightarrow$	0.0	D			× 10-13	28	
197 198	$O_2 + \gamma \rightarrow 0$ $CO + \gamma \rightarrow 0$	C + 0	$R_{197} = 7.0 \times 10^{-10}$ $R_{198} = 2.0 \times 10^{-10}$	1.8 See §2.2	7 13	$\times 10^{-10}$ × 10 ⁻¹⁰	28	
		_	$\begin{array}{c} 86 \\ 87 \\ HCO^+ + 4 \\ HCO^+ + H_2O \rightarrow CO + H_3O^+ \end{array}$	$C \rightarrow CO + e^{-}$ $k_{87} = 2.5 \times 10^{-9}$	$k_{140} =$	$\times 10^{-10}$ $\times 10^{-10}$ 5.0×10^{-10}	28 28 28 62	
		-						

1300 ratic 1200

CO chemistry in GMCs

a) preferential ¹³CO photodissociation

b) Fractionation reaction $^{12}CO+^{13}C\leftarrow\rightarrow^{13}CO+^{12}C+36K$

III. Dense core $(A_v \approx 5^m)$ C⁺ depletes Freeze-out & CRP destruction

Detailed thermodynamic analysis

Model	$n_0 \; [\mathrm{cm}^{-3}]$	Metallicity $[Z_{\odot}]$	ISRF $[G_0]$	Time [Myr]		
a	300	0.3	1	2.046		
b	300	0.6	1	1.930		
с	300	1	0.1	2.124		
d	300	1	1	2.150		
е	300	1	10	2.022		
f	1000	1	1	0.973		

6 different models:

Results – N(¹²CO)/N(¹³CO) column densities ratio

Results – N(¹²CO)/N(¹³CO) column densities ratio

(Szücs et al. 2014, MNRAS 445, 4055-4072)

White contour shows $5 \times 10^{21} \text{ cm}^{-2}$ \rightarrow overall density is not changing significantly

Results – N(¹²CO)/N(¹³CO) column densities ratio

(Szücs et al. 2014, MNRAS 445, 4055-4072)

Fitting formula

density

dust emission PDFs

Fig. 1. *Herschel* column density maps (in $[cm^{-2}]$, all starting at zero) of Auriga, Maddalena, NGC 3603, and Carina after correcting for line-ofsight contamination and removing noisy edges and areas where there was no overlap between PACS and SPIRE. The contour levels are 3, 6, 10, and 50×10^{21} cm⁻² for NGC 3606 and 5, 10, and 20×10^{21} cm⁻² for Carina.

influence of fore/background

influence of fore/background

results of fore/background correction:

- peak of 'log-normal' shifts to lower Av
- · transition from 'lognormal' to powerlaw shifts to lower Av
- power-law tail remains

detailed analysis on synthetic data

Fig. 8. Simulations of reconstructed PDFs observed with different amplitudes of noise σ_A , expressed in terms of visual extinction. The reconstruction does not depend on the absolute value of the foreground/background contamination.

Fig. 9. Simulations of a PDF with negligible noise ($\sigma_A = 0.01$) when applying values that are too high for the contamination correction ΔA_v . The reconstruction does not depend on the absolute value of the fore-ground/background contamination but only on the difference between actual contamination and subtracted contamination.

influence of 'over correction'

2 examples

fore/background correction leads to — flatter power laws — wider 'log-normal' part in the standard fitting approach

- there are different quantitative IMF based on turbulence
 - Padoan & Nordlund (2002, 2007)
 - Hennebelle & Chabrier (2008, 2009)
 - Hopkins (2012)
 - all relate the mass spectrum to statistical characteristics of the turbulent velocity fields

THE ASTROPHYSICAL JOURNAL, 684:395-410, 2008 September 1 © 2008. The American Astronomical Society. All rights reserved. Printed in U.S.A.

ANALYTICAL THEORY FOR THE INITIAL MASS FUNCTION: CO CLUMPS AND PRESTELLAR CORES

PATRICK HENNEBELLE Laboratoire de Radioastronomie, UMR CNRS 8112, École Normale Supérieure et Observatoire de Paris, 24 rue Lhomond, 75231 Paris Cedex 05, France

AND

GILLES CHABRIER¹ École Normale Supérieure de Lyon, CRAL, UMR CNRS 5574, Université de Lyon, 69364 Lyon Cedex 07, France Received 2008 February 12; accepted 2008 May 4

- there are different quantitative IMF based on turbulence
 - Padoan & Nordlund (2002, 2007)
 - Hennebelle & Chabrier (2008, 2009)
 - Hopkins (2012)
 - all relate the mass spectrum to statistical characteristics of the turbulent velocity fields

THE ASTROPHYSICAL JOURNAL, 684:395-410, 2008 September 1 © 2008. The American Astronomical Society. All rights reserved. Printed in U.S.A.

THE ASTROPHYSICAL JOURNAL, 702:1428–1442, 2009 September 10 © 2009. The American Astronomical Society. All rights reserved. Printed in the U.S.A. doi:10.1088/0004-637X/702/2/1428

ANALYTICAL THEORY FOR THE INITIAL MASS FUNCTION. II. PROPERTIES OF THE FLOW

PATRICK HENNEBELLE¹ AND GILLES CHABRIER²

¹ Laboratoire de radioastronomie, UMR CNRS 8112, École normale supérieure et Observatoire de Paris, 24 rue Lhomond, 75231 Paris cedex 05, France ² École normale supérieure de Lyon, CRAL, UMR CNRS 5574, Université de Lyon, 69364 Lyon Cedex 07, France Received 2009 April 1; accepted 2009 July 17; published 2009 August 21

- there are different quantitative IMF based on turbulence
 - Padoan & Nordlund (2002, 2007)
 - Hennebelle & Chabrier (2008, 2009)
 - Hopkins (2012)
 - all relate the mass spectrum to statistical characteristics of the turbulent velocity fields

T	HE ASTROPHYSICAL JOURN	al, 684:395-410, 2008 September 1				
C	2008. The American Astron	omical Society. All rights reserved. Printed in U.S.A.				
L						
	THE ASTROPHYSIC	AL JOURNAL, 702:1428–1442, 2009 September 10	doi:10.1088/0004-	637X/702/2/1428		
	© 2009. The American	Astronomical Society. All rights reserved. Printed in the U.S.A.				
		MonthlyNotices				
		of the ROYAL ASTRONOMICAL SOCIETY	Armony and Geographics	L		
	ANA	Mon. Not. R. Astron. Soc. 423, 2037–2044 (2012)	doi:10.1111/j.1365-2966.2012.20731.x	ow		
L	¹ Laboratoir The stellar initial mass function, core mass function and the last-crossing distribution					
		Philip F. Hopkins [★] Department of Astronomy, University of California Berkeley, Berkeley, CA 94720, USA				

- there are different quantitative IMF based on turbulence
 - Padoan & Nordlund (2002, 2007)
 - Hennebelle & Chabrier (2008, 2009)
 - Hopkins (2012)
 - all relate the mass spectrum to statistical characteristics of the turbulent velocity fields
- there are alternative approaches
 - IMF as closest packing problem / *sampling* problem in *fractal* clouds (Larson 1992, 1995, Elmegreen 1997ab, 2000ab, 2002)
 - IMF as purely statistical problem (Larson 1973, Zinnecker 1984, 1990, Adams & Fatuzzo 1996)
 - IMF from (proto)stellar *feedback* (Silk 1995, Adams & Fatuzzo 1996)
 - IMF from competitive *coagulation* (Murray & Lin 1995, Bonnell et al. 2001ab, etc.)

caveat: everybody gets the IMF!

- combine scale free process → POWER LAW BEHAVIOR
 - turbulence (Padoan & Nordlund 2002, Hennebelle & Chabrier 2008, Hopkins 2008)
 - gravity in dense clusters (Bonnell & Bate 2006, Klessen 2001)
- with highly stochastic processes → central limit theorem
 → GAUSSIAN DISTRIBUTION
 - basically mean thermal Jeans length (or feedback)
 - universality due to dust physics: coupling between dust and gas insensitive to radiation field and metallicity

(Elmegreen et al. 2008, Omukai et al. 2005)

caveat: everybody gets the IMF!

"everyone" gets the right IMF

- \rightarrow better look for secondary indicators
 - stellar multiplicity
 - protostellar *spin* (including disk)
 - spatial distribution + kinematics in young clusters
 - magnetic field strength and orientation

large-scale filaments

Smith et al. (2014, MNRAS, 445, 2900)

next steps:

studying details of ISM morphology and star formation in dedicated zoom-in simulation

example:

giant molecular cloud complex (~10⁶ M_☉) viewed in the plane of the disk.

zoom-in on filaments

next steps:

studying details of ISM morphology and star formation in dedicated zoom-in simulation (resolution ≤2000 AU, with full chemistry)

analysis:

- morphology
- velocity
- chemistry
- observations (dust maps for Herschel, CO, N₂H+, HCN, etc. for line obs.)

Smith et al. (2014, MNRAS, 445, 2900, also Smith et al. 2012, ApJ, 750, 64, Smith et al. 2013, ApJ, 771, 24, Chira et al., 2014, MNRAS, submitted)

filaments do not have universal width

Smith et al. (2014, MNRAS, 445, 2900)

filaments do not have universal width

Smith et al. (2014, MNRAS, 445, 2900)

3D filaments have complex structure

2D filament detection shows nice coherent filament 2D + LOS peak detection shows complex structure full 3D filament analysis confirms this picture

walk along the filament

- walking along the filament exhibits complex 3D structure that is now (fully) seen in projected density
- is this similar to the filament fibers proposed by Hacar et al. (2013, A&A, 554, 55)

summary

- controversies / puzzles
 - column density PDFs: do we really understand them?
 —> more work needed, also on line PDFs
 - molecular gas: are we sure we see all H₂ gas?
 —> we may be missing lots of H2 gas in clouds
 - importance of dynamics: what sets the IMF?
 —> the IMF is easy to get, better look for other tracers
 - filaments: are they universal?
 - --> much more work needed including kinematic tracers

