
SIMULATING FILAMENTARY  
STAR FORMATION

Rowan Smith 
RAS Norman Lockyer Fellow 

JBCA University of Manchester

Simon Glover, Ralf Klessen, Adam Avison, Henrik Beuther, Gary Fuller, Volker 
Springel



Ralf Klessen
Zentrum für Astronomie der Universität Heidelberg 

Institut für Theoretische Astrophysik

High Mass and Clustered 
Star Formation: Simulations

Magnetic field amplification by gravity-driven turbulence 7

Fig. 3.— a) Spherical slice of the gas density inside the Jeans volume at � = 12 for our run with 128 cells per Jeans length. b) Velocity
streamlines on a linear color scale ranging from dark blue (0 km s�1) to light gray (5 km s�1). c) Magnetic field lines, showing a highly
tangled and twisted magnetic field structure typical of the small-scale dynamo; yellow: 0.5mG, red: 1mG. d) Four randomly chosen,
individual field lines. The green one, in particular, is extremely tangled close to the center of the Jeans volume. e) Contours of the vorticity
modulus, |⌅⇥ v|, showing elongated, filamentary structures typically seen in subsonic turbulence (e.g., Frisch 1995). f) Spherical slice of
the divergence of the velocity field, ⌅ · v; white: compression, red: expansion.
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agenda

• remarks on star formation theory

- historic remarks

- current understanding

• controversies / puzzles

- column density PDFs:  do we really understand them?

- molecular gas:  are we sure we see all H2 gas?

- importance of dynamics: what sets the IMF?

- filaments:  are they universal?

NGC 3324 (Hubble, NASA/ESA)
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decrease in spatial scale / increase in density 

• density

- density of ISM: few particles per cm3

- density of molecular cloud: few 100 particles per cm3

- density of Sun: 1.4 g /cm3

• spatial scale

- size of molecular cloud: few 10s of pc

- size of young cluster: ~ 1 pc

- size of Sun: 1.4 x 1010 cm

Andromeda (R. Gendler)

NGC 602 in LMC (Hubble)

Proplyd in Orion (Hubble)

Sun (SOHO)
Earth



decrease in spatial scale / increase in density 

• contracting force

-  only force that can do this compression 
 is GRAVITY 

• opposing forces

-  there are several processes that can oppose gravity

-  GAS PRESSURE

-  TURBULENCE

-  MAGNETIC FIELDS 

-  RADIATION PRESSURE

Andromeda (R. Gendler)

NGC 602 in LMC (Hubble)

Proplyd in Orion (Hubble)

Sun (SOHO)
Earth

Modern star formation 
theory is based on the 
complex interplay between 
all these processes.



• Jeans (1902): Interplay between  
self-gravity and thermal pressure 
- stability of homogeneous spherical 

density enhancements against  
gravitational collapse 

- dispersion relation: 

- instability when  

- minimal mass:  
  

early theoretical models

Sir James Jeans, 1877 - 1946
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• von Weizsäcker (1943, 1951)  and  
Chandrasekhar (1951): concept of 
MICROTURBULENCE 
- BASIC ASSUMPTION: separation of  

scales between dynamics and turbulence 
lturb « ldyn 

- then turbulent velocity dispersion contributes 
to effective soundspeed: 

- ! Larger effective Jeans masses ! more stability 
- BUT: (1)  turbulence depends on k: 
 
          (2) supersonic turbulence    !                    usually 

first approach to turbulence

S. Chandrasekhar,  
1910 - 1995
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problems of early dynamical theory

• molecular clouds are highly Jeans-unstable, 
yet, they do NOT form stars at high rate  
and with high efficiency (Zuckerman & Evans 1974 conundrum) 
(the observed  global SFE in molecular clouds is ~5%)  
! something prevents large-scale collapse. 

• all throughout the early 1990’s, molecular clouds 
had been thought to be long-lived quasi-equilibrium 
entities. 

• molecular clouds are magnetized



• Mestel & Spitzer (1956): Magnetic 
fields can prevent collapse!!! 
- Critical mass for gravitational  

collapse in presence of B-field 

- Critical mass-to-flux ratio 
(Mouschovias & Spitzer 1976) 
  

- Ambipolar diffusion can initiate collapse

magnetic star formation 
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• BASIC ASSUMPTION: Stars form from  
magnetically highly subcritical cores 

• Ambipolar diffusion slowly  
increases (M/Φ): τAD ≈ 10τff 

• Once (M/Φ) > (M/Φ)crit : 
dynamical collapse of SIS 

•  Shu (1977) collapse solution 

•  dM/dt = 0.975 cs
3/G = const.  

• Was (in principle) only intended  
for isolated, low-mass stars

“standard theory” of star formation 

Frank Shu, 1943 -  

magnetic field



problems of “standard theory”

• Observed B-fields are weak, at most 
marginally critical (Crutcher 1999, Bourke et al. 
2001) 

• Magnetic fields cannot prevent decay of 
turbulence 
(Mac Low et al. 1998, Stone et al. 1998, Padoan & 
Nordlund 1999) 

• Structure of prestellar cores 
(e.g. Bacman  et al. 2000, Alves et al. 2001) 

• Strongly time varying dM/dt 
(e.g. Hendriksen et al. 1997, André et al. 2000) 

• More extended infall motions than 
predicted by the standard model 
(Williams & Myers 2000, Myers et al. 2000) 

• Most stars form as binaries 
(e.g. Lada 2006)

• As many prestellar cores as protostellar 
cores in SF regions (e.g. André et al 2002) 

• Molecular cloud clumps are chemically 
young  
(Bergin & Langer 1997, Pratap et al 1997, Aikawa 
et al 2001) 

• Stellar age distribution small (τff << τAD)  
(Ballesteros-Paredes et al. 1999, Elmegreen 2000, 
Hartmann 2001) 

• Strong theoretical criticism of the SIS as 
starting condition for gravitational 
collapse 
(e.g. Whitworth et al 1996, Nakano 1998, as 
summarized in Klessen & Mac Low 2004) 

• Standard AD-dominated theory is 
incompatible with observations  
(Crutcher et al. 2009, 2010ab, Bertram et al. 2011)

 (see e.g. Mac Low & Klessen, 2004, Rev. Mod. Phys., 76, 125-194,  
Klessen & Glover 2014, Saas Fee Lecture, arXiv:1412.5182, 1-191)



• laminar flows turn turbulent at high Reynolds numbers  
  

                                   
 
V= typical velocity on scale L,  ν = η/ρ = kinematic viscosity,     
turbulence for Re > 1000 ➞ typical values in ISM 108-1010 

• Navier-Stokes equation (transport of momentum) 

Re =

advection

dissipation

=

V L

⌫
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• putting all together, the momentum equation for ideal
gases in the absence of external forces, (2.24) or (2.20), but
with corrections from velocity gradients in non-equilibrium
systems to the stress-energy tensor (2.31), reads
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• the right-rand side of this equation can be simplified to
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• the left-hand side of (2.33) can be rewritten using the conti-
nuity equation (2.3),
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• we have now derived the transport equation for momen- see also Landau & Lifschitz, Vol.
6 “Hydrodynamics” §15tum in hydrodynamics, the Navier-Stokes equation:
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as expected, this simplifies to the Euler equation (2.24),

⇢
d~v
dt
= �~rP

for inviscid fluids, i.e. for ⌘ = ⇣ = 0;

 shear viscosity bulk viscosity 
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• we now examine how the symmetric and the antisymmet- the Levi-Civita tensor ✏i jk is the
totally skew-symmetric tensor
of rank 3; its values are

✏i jk =

8
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>
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:

1 even permutations of 123
�1 odd permutations of 123

0 some indices are equal

recall also that
@xl
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ric parts behave if the velocity field is caused by rigid rota-
tion,

~v = ~! ⇥ ~x , vi = ✏i jk! jxk , (2.26)

we see that the antisymmetric part turns into
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while the symmetric part vanishes; our tensor �i j there-
more must be symmetric;

• we go one step further and we split the tensor �i j into a
contribution from shear flows (with vanishing trace) which
deform the medium and a contribution from compression
(with vanishing off-diagonal elements);

• the trace of 1/2(@vi/@x j +@v j/@xi) simply is the divergence of
~v:
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and we can construct the trace-free residual, the shear ten-
sor, as
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• putting it all together, we obtain the most general form of
the viscous stress tensor,
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where the coefficients ⌘ and ⇣ determine the relative impor-
tance of shear and compression to the viscous stresses in
the fluids; consequently, ⌘ is called shear viscosity coeffi-
cient (sometimes second viscosity) and ⇣ bulk viscosity co-
efficient; both are characteristics of the material under con-
sideration and can be determined experimentally;

• the corresponding the stress-energy tensor with contribu-
tions from velocity gradients is then

Ti j = ⇢viv j + P�i j � �i j , (2.31)

where the minus sign is conventional;

viscous stress tensor   

properties of turbulence



• laminar flows turn turbulent at high Reynolds numbers  
  

                                   
 
V= typical velocity on scale L,  ν = η/ρ = kinematic viscosity,     
turbulence for Re > 1000 ➞ typical values in ISM 108-1010 

• vortex streching --> turbulence is intrinsically anisotropic  
(only on large scales you may get  
homogeneity & isotropy in a statistical sense;  
see Landau & Lifschitz, Chandrasekhar, Taylor, etc.) 
 
  
(ISM turbulence: shocks & B-field  
cause additional inhomogeneity) 

Re =

advection

dissipation

=

V L

⌫

properties of turbulence



•
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•

ηK
-1

energy source & scale 
NOT known  
(supernovae, winds,  
spiral density waves?)

dissipation scale not known 
(ambipolar diffusion,   
molecular diffusion?)

turbulent cascade in the ISM

• scale-free behavior of turbulence 
in the range 

• slope between -5/3 ... -2 
• energy “flows” from large to small 

scales, where it turns into heat 

  

€ 

L
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≈ Re3/ 4

•

transfer



•

 molecular clouds 

σrms  ≈ several km/s 
Mrms > 10 
    L  > 10 pc
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dissipation scale not known 
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•

 massive cloud cores 

σrms  ≈ few km/s         
Mrms ≈ 5 
      L ≈ 1 pc 

•

dense  
protostellar  
cores 

σrms << 1 km/s          
Mrms ≤ 1    
     L ≈ 0.1 pc 

turbulent cascade in the ISM



• BASIC ASSUMPTION:   
  

star formation is controlled by interplay between 
supersonic turbulence and self-gravity  

• turbulence plays a dual role: 

- on large scales it provides support 

- on small scales it can trigger collapse 

• some predictions: 

- dynamical star formation timescale τff 

- high binary fraction 

- complex spatial structure of  
embedded star clusters 

- and many more . . .

gravoturbulent star formation

Mac Low & Klessen, 2004, Rev. Mod. Phys., 76, 125-194 
McKee & Ostriker, 2007, ARAA, 45, 565 
Klessen & Glover 2014, Saas Fee Lecture, arXiv:1412.5182, 1-191
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Figure 4. Histograms of the pixel-averaged H i brightness temperature where significant CO emission is detected for Type I (blue), Type II (yellow), and Type III (red)
GMCs. Histograms are shown for the whole LMC, and for three different regions—Bar, North, and Arc—which are indicated in the right panel.
(A color version of this figure is available in the online journal.)

envelopes each GMC. The associated H i is often elongated
along the GMCs and the region of intense H i emission is usu-
ally <100 pc wide. The CO emission typically extends over a
velocity range of ∼5 km s−1; beyond a few times this veloc-
ity range, the associated H i emission generally becomes much
weaker or disappears.

3.2. Physical Properties of the H i Envelope

In general, it is a complicated task to derive reliable physical
properties of the H i gas associated with a GMC because the
H i profiles are a blend of several different components along
the line of sight, making it difficult to select the H i gas that is
physically connected to a GMC. Another obstacle is that the H i
emission is spatially more extended than the CO emission and
has a less clear boundary than the CO.

For our analysis, we first selected GMCs with simple single-
peaked H i profiles from the Fukui et al. (2008) catalog. The
resulting sample consists of 123 GMCs in total. Their catalog
numbers and basic physical properties, taken from Fukui et al.
(2008), are listed in Table 2. For these GMCs, we tested
whether there was a bias in their location with respect to
the kinematic center of the galaxy, in their CO line width or
in their molecular mass. The histograms in Figure 6 indicate
that there is no particular trend for these properties of the
selected GMCs compared to GMCs in the complete catalog,
suggesting that there is no appreciable selection bias. We
applied a Kolmogorov–Smirnov test to the three histograms
and calculated maximum deviations of 0.031, 0.061, and 0.117,
respectively, for the three parameters. These values are less than
the critical deviation, 0.129, for a conventional significance level
of 0.05, confirming that there is no selection bias.

Next, we made Gaussian fits to the H i and CO profiles
toward the CO peak of each GMC. This procedure yields a

peak intensity, peak velocity, and half-power line width for each
line profile (a summary is given for each GMC type in Table 1).
Figure 7 shows the relation between the CO line width and the
difference between the CO and H i peak velocities. We find the
H i and CO peak velocities to be in good agreement, showing
only a small scatter of less than a few km s−1. Figure 8 shows
two histograms of the H i and CO line widths. We see that the
H i line width is typically 14 km s−1, roughly three times larger
than that of CO. Figure 9 shows a correlation between H i and
CO line widths. The two quantities show a positive correlation
with a correlation coefficient of 0.39. The correlation coefficient
is determined using the Spearman rank method throughout this
paper. The kinematic properties of H i and CO, as illustrated in
Figures 7 and 9, lend further support to a physical association
between the H i and CO.

In order to estimate the size of the H i envelope surrounding
each GMC, we construct an H i integrated intensity map of
each GMC. First, we find the local peak in the H i intensity cube
surrounding the CO emission, and then integrate the H i intensity
over the velocity channels corresponding to the FWHM of the
H i line profile at this peak position. Next we estimate the area,
S, where the H i integrated intensity is greater than 80% of the
value at the local H i peak. We then calculate the radius of the
H i envelope, R(H i), from its projected area, S = πR(H i)2.
The H i integrated intensity is calculated for all the pixels
with detectable CO emission; the spatial distribution of the
H i emission generally shows a peak and a reasonably defined
boundary. The 80% level was chosen after a few trials using
different levels; it is the maximum value for which a reasonable
H i size is obtained for 116 of the 123 envelopes. While 80%
seems to be rather high for such a definition of a cloud envelope,
the H i size can be unrealistically large compared to the CO
cloud size along a filamentary H i distribution if we use a lower

molecular cloud formation

Idea: 

Molecular clouds form at 
stagnation points of large-
scale convergent flows, 
mostly triggered by global 
(or external) perturbations. 
Their internal turbulence is 
driven by accretion, i.e. by 
the process of cloud 
formation

Fukui et al. (2009)

• molecular clouds grow in 
mass 

• this is inferred by looking at 
molecular clouds in different 
evolutionary phases in the 
LMC (Fukui et al. 2008, 2009)
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Figure 4. Histograms of the pixel-averaged H i brightness temperature where significant CO emission is detected for Type I (blue), Type II (yellow), and Type III (red)
GMCs. Histograms are shown for the whole LMC, and for three different regions—Bar, North, and Arc—which are indicated in the right panel.
(A color version of this figure is available in the online journal.)

envelopes each GMC. The associated H i is often elongated
along the GMCs and the region of intense H i emission is usu-
ally <100 pc wide. The CO emission typically extends over a
velocity range of ∼5 km s−1; beyond a few times this veloc-
ity range, the associated H i emission generally becomes much
weaker or disappears.

3.2. Physical Properties of the H i Envelope

In general, it is a complicated task to derive reliable physical
properties of the H i gas associated with a GMC because the
H i profiles are a blend of several different components along
the line of sight, making it difficult to select the H i gas that is
physically connected to a GMC. Another obstacle is that the H i
emission is spatially more extended than the CO emission and
has a less clear boundary than the CO.

For our analysis, we first selected GMCs with simple single-
peaked H i profiles from the Fukui et al. (2008) catalog. The
resulting sample consists of 123 GMCs in total. Their catalog
numbers and basic physical properties, taken from Fukui et al.
(2008), are listed in Table 2. For these GMCs, we tested
whether there was a bias in their location with respect to
the kinematic center of the galaxy, in their CO line width or
in their molecular mass. The histograms in Figure 6 indicate
that there is no particular trend for these properties of the
selected GMCs compared to GMCs in the complete catalog,
suggesting that there is no appreciable selection bias. We
applied a Kolmogorov–Smirnov test to the three histograms
and calculated maximum deviations of 0.031, 0.061, and 0.117,
respectively, for the three parameters. These values are less than
the critical deviation, 0.129, for a conventional significance level
of 0.05, confirming that there is no selection bias.

Next, we made Gaussian fits to the H i and CO profiles
toward the CO peak of each GMC. This procedure yields a

peak intensity, peak velocity, and half-power line width for each
line profile (a summary is given for each GMC type in Table 1).
Figure 7 shows the relation between the CO line width and the
difference between the CO and H i peak velocities. We find the
H i and CO peak velocities to be in good agreement, showing
only a small scatter of less than a few km s−1. Figure 8 shows
two histograms of the H i and CO line widths. We see that the
H i line width is typically 14 km s−1, roughly three times larger
than that of CO. Figure 9 shows a correlation between H i and
CO line widths. The two quantities show a positive correlation
with a correlation coefficient of 0.39. The correlation coefficient
is determined using the Spearman rank method throughout this
paper. The kinematic properties of H i and CO, as illustrated in
Figures 7 and 9, lend further support to a physical association
between the H i and CO.

In order to estimate the size of the H i envelope surrounding
each GMC, we construct an H i integrated intensity map of
each GMC. First, we find the local peak in the H i intensity cube
surrounding the CO emission, and then integrate the H i intensity
over the velocity channels corresponding to the FWHM of the
H i line profile at this peak position. Next we estimate the area,
S, where the H i integrated intensity is greater than 80% of the
value at the local H i peak. We then calculate the radius of the
H i envelope, R(H i), from its projected area, S = πR(H i)2.
The H i integrated intensity is calculated for all the pixels
with detectable CO emission; the spatial distribution of the
H i emission generally shows a peak and a reasonably defined
boundary. The 80% level was chosen after a few trials using
different levels; it is the maximum value for which a reasonable
H i size is obtained for 116 of the 123 envelopes. While 80%
seems to be rather high for such a definition of a cloud envelope,
the H i size can be unrealistically large compared to the CO
cloud size along a filamentary H i distribution if we use a lower

zooming in ...



image from Alyssa Goodman: COMPLETE survey

position-position-velocity structure of the Perseus cloud



Schmidt et al. (2009, A&A, 494, 127)



caveat of numerical simulations

•  most astrophysical turbulence simulations use an LES approach to  
 model the flow 

•  principal problem: only large scale flow properties  
-  Reynolds number: Re = LV/ν  (Renature >> Remodel) 
-  dynamic range much smaller than true physical one 
-  need subgrid model (often only dissipation) 
-  but what to do for more complex when  

 processes on subgrid scale determine  
 large-scale dynamics  
 (chemical reactions, nuclear burning, etc)  

-  Turbulence is “space filling” --> difficulty  
 for AMR (don’t know what criterion to use 
 for refinement) 

•   how large a Reynolds number do  
  we need to catch basic dynamics  
  right?

log E

L-1 ηK
-1

true dynamic range

dynamic range 
of model



including detailed 

chemistry



- Arepo and FLASH 
- stochastic forcing    
   (Ornstein-Uhlenbeck) 
- self-gravity 
- time-dependent chemistry  
  (DVODE, standard variable- 
   coefficient ordinary differential     
   equation solver) 
- cooling & heating processes
- gives you mathematically  
  well defined boundary  
  conditions  
  --> good for statistical studies 
- gives external radiation with  
  TreeCol (a new approximative  
  scheme to calculate column  
  densities from the gravity  
  solver)

experimental set-up



chemical model 0

32 chemical species 
17 in instantaneous equilibrium: 

19 full non-equilibrium evolution 

218 reactions 
various heating and cooling processes

long series of publications by Simon Glover and collaborators, e.g. Glover & Mac Low (2007ab), Glover, Federrath, Mac Low, Klessen (2010),  
Glover & Clark (2012, 2013), Clark & Clover (2012, 2013)
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12 CO / 
13 CO ratio



1
1 CO chemistry in GMCs

(Szücs, Glover, Klessen 2014, MNRAS 445, 4055-4072)

Non-isotope selective reactions

Production

I. Diffuse region (Av < 0.5m)

II. Translucent  region (1m < A  < 2m)

III. Dense core (Av ≈ 5m)

Destruction

Accretion to grains Depletion

C+ depletes
Freeze-out  &  CRP destruction

a) preferential 13CO photo- 
    dissociation

b) Fractionation reaction
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9 Detailed thermodynamic analysis

4058 L. Szűcs, S. C. O. Glover and R. S. Klessen

formula (Bohlin, Savage & Drake 1978; Draine & Bertoldi 1996)

AV = Ntot

1.8699 × 1021 cm2
× fdg, (2)

where Ntot is the total H nuclei column density and fdg = Z/Z⊙ is
the factor correcting for the simulation metallicity.

We model the attenuation of the ISRF by multiplying the optically
thin photodissociation rates with shielding factors depending on the
column density and visual extinction. The H2 photodissociation
rate is attenuated due to dust absorption and H2 self-shielding.
The dust shielding factor can be calculated in the plane-parallel
approximation by

!dust = exp(−γAV) (3)

with γ = 3.74 (Draine & Bertoldi 1996). The self-shielding fac-
tor depends on the H2 column density and is calculated according
to equation 37 in Draine & Bertoldi (1996). In the case of 12CO
and 13CO, the shielding is due to dust absorption, the H2 Lyman–
Werner lines and CO self-shielding. The shielding factor due to
dust absorption for both isotopic species is given by equation (3)
with γ = 3.53. The tabulated CO shielding by H2 and self-shielding
factors are adopted from Visser et al. (2009). We used the same re-
lation between the column density and the CO self-shielding factor
for both CO isotopes when calculating the self-shielding, but with
the corresponding isotope column density.

We refer to section 2.2 in Glover et al. (2010) for a more detailed
description of the adopted treatment of photochemistry.

2.3 Thermal model

We calculate the thermal balance and temperatures of gas and dust
self-consistently, taking a number of cooling and heating processes
into account. The temperature structure of the cloud has a large im-
pact on the chemical fractionation (due to the temperature barrier for
the right-to-left path), a moderate effect on the selective photodisso-
ciation (more strongly isotope selective in colder gas; discussed in
detail in Visser et al. (2009), but not considered here) and significant
influence on CO excitation, therefore a realistic thermal model is
necessary.

The adopted thermal model – with the complete list of heating
and cooling processes and rates – is presented in section 3.2.4 of
Glover & Clark (2012a). Fig. 2 summarizes the contributions of

thermal processes to the thermal balance in our simulations. The
dominant heating processes are the photoelectric, shock, cosmic ray,
and P dV (expansion and contraction) heating. The major coolants
at low and intermediate densities are C+ and CO, while at high
density cooling is dominated by the dust. We consider the C+ and
CO isotopes separately when calculating the cooling rates. Thanks
to its lower optical depth, 13CO might became as effective coolant
as 12CO at densities higher than 104 cm−3. However, the effect of
this on the thermal balance is negligible, since at these densities,
dust cooling is already the dominant process.

2.4 Initial conditions

Our basic initial setup is identical to Glover & Clark (2012a). We
start the simulations with a uniform density sphere with 104 M⊙
total mass. The initial volume density of the sphere is set to 300 or
1000 cm−3, resulting in an approximate cloud radius of 6 or 4 pc,
respectively. The initial velocities of the SPH particles are cho-
sen so that the initial velocity field has a steep power spectrum with
P(k) ∝ k−4, using the ‘cloud-in-cell’ scheme (Hockney & Eastwood
1988; Mac Low et al. 1998). The velocity field is scaled such that
the total kinetic energy equals to the gravitational potential energy,
corresponding to 3D root-mean-square (rms) velocities (σ rms, 3D) of
2.81 and 3.43 km s−1 for the different initial densities. We do not
apply turbulent driving during the simulations and the turbulence is
allowed to dissipate freely through shocks and numerical viscosity.
Consequently, the overall rms velocity of the cloud decreases with
time. In the first ∼0.5 Myr, the rms velocity stagnates; afterwards,
it decreases with time as σ rms, 3D(t) ∝ t−0.24. By the time of the anal-
ysed snapshots, it reaches the values of 2 and 2.6 km s−1. The initial
gas and dust temperature are uniform at 20 and 15 K, respectively.

In the case of the solar metallicity (Z⊙) runs, the adopted ini-
tial abundances of 12C, 13C and O relative to hydrogen nuclei are
x12C = 1.4 × 10−4, x13C = 2.3 × 10−6 and xO = 3.2 × 10−4, re-
spectively (Sembach et al. 2000). In the case of ‘fully molecular’
initial composition (models a to f), all hydrogen atoms are in H2

form, while when ‘atomic’ initial conditions are adopted (model g,
see discussion in Appendix B), then all hydrogen is atomic and neu-
tral. In both cases, we assume that all carbon is in ionized form. The
helium is neutral and its fractional abundance is 0.079, equivalent
to 24 per cent mass fraction, in all simulations. The total abundance
of low ionization potential metals (Na, Mg, etc.) is xM = 1 × 10−7.

Figure 2. The median cooling and heating rates as a function of hydrogen nuclei number density for the fiducial model (d). The cooling rates of C-bearing
molecules are calculated separately for the 12C and 13C isotopologues but their combined rates are shown here. The exception is CO, for which we also plot
the isotopic contributions separately. For the detailed description of the cooling and heating processes, see Glover & Clark (2012a).
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6 different models:

all relevant heating and cooling processes:

(Szücs et al. 2014, MNRAS 445, 4055) (also Glover & Clark 2012, MNRAS, 421, 9)
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The 12CO/13CO ratio in MCs 4063

Table 2. Coefficients of the best-fitting polynomials in the case of the 12CO column density–isotope ratio correlation.

Model a0, 12 a1, 12 a2, 12 a3, 12 a4, 12 a5, 12

a 44 118.20 ± 946.40 − 16 028.90 ± 336.30 2308.65 ± 47.51 − 164.3870 ± 3.336 5.781 27 ± 0.1164 − 0.080 301 ± 0.001 62
b 39 398.60 ± 990.50 − 14 339.70 ± 348.80 2069.68 ± 48.80 − 147.7000 ± 3.390 5.206 28 ± 0.1170 − 0.072 481 ± 0.001 60
c − 129 934.00 ± 22 970.00 39 353.20 ± 7218.00 − 4717.00 ± 904.00 279.7200 ± 56.410 − 8.206 54 ± 1.7540 0.095 312 ± 0.021 70
d 23 435.20 ± 1973.00 − 8696.25 ± 675.90 1277.96 ± 91.93 − 92.6067 ± 6.206 3.304 31 ± 0.2079 − 0.046 415 ± 0.002 77
e 16 928.80 ± 919.10 − 6337.57 ± 320.20 939.74 ± 44.29 − 68.6503 ± 3.041 2.466 68 ± 0.1037 − 0.034 852 ± 0.001 41
f 6002.58 ± 2009.00 − 2530.75 ± 701.70 416.65 ± 96.97 − 33.2072 ± 6.631 1.281 80 ± 0.2244 − 0.019 203 ± 0.003 01

combined 23 619.40 ± 1657.00 − 8801.37 ± 566.20 1298.19 ± 76.76 − 94.3795 ± 5.162 3.377 43 ± 0.1723 − 0.047 569 ± 0.002 28

ratios follow the probability density distribution well, justifying our
approach.

The mean isotope ratio curves show a very good overall agree-
ment in all cases (see Fig. 7). However, there is a weak cor-
relation between the curve shape and the physical parameters.
A higher initial density (n0) might result in higher isotope ra-
tios at high 12CO column densities. As the metallicity decreases
from 1 to 0.3 Z⊙, the isotope-selective photodissociation seem to
increase the 12CO/13CO ratio slightly above the elemental at CO
column densities below 1011 cm−2 (middle panel). The decreasing
radiation field strength seems to decrease the minimum isotope ratio
from 19.23 ± 2.98 to 14.40 ± 1.17 (right-hand panel).

The depth of the dip in the isotope ratio curve is expected to
depend on the gas temperature (and therefore the heating and cool-
ing processes) of the corresponding cloud regions. The chemical
fractionation has an energy barrier for the right to left reaction path
(see equation 1 and Section 2.1), which is approximately 35 K. At
temperature much higher than this, the reaction could proceed in
both directions with similar rate, resulting in a less enhanced 13CO
abundance and an isotope ratio closer to the 12C/13C ratio (e.g.
Röllig & Ossenkopf 2013).

We emphasize, however, that these trends are not statistically
significant in our simulations, and the model-by-model deviations
of the isotope ratio curves are typically comparable to the standard
deviations of the ratio. From this point on, we dispense with further
investigation of the trends in the mean isotope ratio curves with
physical parameters and assume that there is an unequivocal corre-
lation between the 12CO column density and the 12CO/13CO ratio
which is independent of the parameters we vary in the simulations.

3.3 Fitting formula

To derive a functional form for the N(12CO)-isotope ratio rela-
tionship, we fit the curves presented in Fig. 7 individually and
together using the non-linear least-squares Marquardt–Levenberg
algorithm implemented in GNUPLOT4 (Williams et al. 2011). The
combined data are constructed from all models except models (c)
and (g), due to the low numerical resolution at low column den-
sities in the former and for the sake of consistency in the latter
case. We fitted fourth-, fifth- and sixth-order polynomial func-
tions taking the standard deviation of each data point into account.
The best-fitting fourth-order polynomial overpredicts the ratios for
1015 cm−2 < N(12CO) < 1017 cm−2, and underpredicts in every
other case. The sixth-order polynomial does not provide a signifi-
cantly better fit than the fifth-order polynomial, therefore we chose
to use the best-fitting fifth-order polynomial for the further analysis.

4 http://gnuplot.sourceforge.net/

Figure 8. Similar to Fig. 7. Here, we compare the N(12CO)-isotope ratio
curves derived from the simulation (coloured dotted lines) to the adopted
fitting formula (black solid line). The upper panel shows the percentage
error of the formula when compared to the model data.

The best-fitting polynomial coefficients are presented in Table 2 for
the individual and the combined data.

We adopt the best-fitting coefficients for the combined model with
the modifications that the ratio at 12CO column densities lower than
3.2 × 1010 cm−2 is equal to the ratio at N (12CO) = 3.2 × 1010 cm−2

and we set the ratio to 60 above an upper limit of N (12CO) =
6 × 1018 cm−2. The final form of our fitting formula is

r(N12)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

r(N12 = 3.2 × 1010) if N12 < 3.2 × 1010

a0,12 + a1,12 log10(N12)
+a2,12 log10(N12)2

+a3,12 log10(N12)3

+a4,12 log10(N12)4

+a5,12 log10(N12)5 if 3.2 × 1010 ≤ N12 ≤ 6 × 1018

60 if N12 > 6 × 1018

,

(4)

where r is the 12CO/13CO ratio and N12 is the 12CO column density
in units of cm−2. To justify this choice, we compare the function
derived from the combined models to the individual models. The
bottom panel of Fig. 8 shows the unmodified curves from Sec-
tion 3.2 for all models with the standard deviations represented by
the vertical lines. The black line represents the fitting function. The
top panel shows the per cent error between the data points from the
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The 12CO/13CO ratio in MCs 4063

Table 2. Coefficients of the best-fitting polynomials in the case of the 12CO column density–isotope ratio correlation.

Model a0, 12 a1, 12 a2, 12 a3, 12 a4, 12 a5, 12

a 44 118.20 ± 946.40 − 16 028.90 ± 336.30 2308.65 ± 47.51 − 164.3870 ± 3.336 5.781 27 ± 0.1164 − 0.080 301 ± 0.001 62
b 39 398.60 ± 990.50 − 14 339.70 ± 348.80 2069.68 ± 48.80 − 147.7000 ± 3.390 5.206 28 ± 0.1170 − 0.072 481 ± 0.001 60
c − 129 934.00 ± 22 970.00 39 353.20 ± 7218.00 − 4717.00 ± 904.00 279.7200 ± 56.410 − 8.206 54 ± 1.7540 0.095 312 ± 0.021 70
d 23 435.20 ± 1973.00 − 8696.25 ± 675.90 1277.96 ± 91.93 − 92.6067 ± 6.206 3.304 31 ± 0.2079 − 0.046 415 ± 0.002 77
e 16 928.80 ± 919.10 − 6337.57 ± 320.20 939.74 ± 44.29 − 68.6503 ± 3.041 2.466 68 ± 0.1037 − 0.034 852 ± 0.001 41
f 6002.58 ± 2009.00 − 2530.75 ± 701.70 416.65 ± 96.97 − 33.2072 ± 6.631 1.281 80 ± 0.2244 − 0.019 203 ± 0.003 01

combined 23 619.40 ± 1657.00 − 8801.37 ± 566.20 1298.19 ± 76.76 − 94.3795 ± 5.162 3.377 43 ± 0.1723 − 0.047 569 ± 0.002 28

ratios follow the probability density distribution well, justifying our
approach.

The mean isotope ratio curves show a very good overall agree-
ment in all cases (see Fig. 7). However, there is a weak cor-
relation between the curve shape and the physical parameters.
A higher initial density (n0) might result in higher isotope ra-
tios at high 12CO column densities. As the metallicity decreases
from 1 to 0.3 Z⊙, the isotope-selective photodissociation seem to
increase the 12CO/13CO ratio slightly above the elemental at CO
column densities below 1011 cm−2 (middle panel). The decreasing
radiation field strength seems to decrease the minimum isotope ratio
from 19.23 ± 2.98 to 14.40 ± 1.17 (right-hand panel).

The depth of the dip in the isotope ratio curve is expected to
depend on the gas temperature (and therefore the heating and cool-
ing processes) of the corresponding cloud regions. The chemical
fractionation has an energy barrier for the right to left reaction path
(see equation 1 and Section 2.1), which is approximately 35 K. At
temperature much higher than this, the reaction could proceed in
both directions with similar rate, resulting in a less enhanced 13CO
abundance and an isotope ratio closer to the 12C/13C ratio (e.g.
Röllig & Ossenkopf 2013).

We emphasize, however, that these trends are not statistically
significant in our simulations, and the model-by-model deviations
of the isotope ratio curves are typically comparable to the standard
deviations of the ratio. From this point on, we dispense with further
investigation of the trends in the mean isotope ratio curves with
physical parameters and assume that there is an unequivocal corre-
lation between the 12CO column density and the 12CO/13CO ratio
which is independent of the parameters we vary in the simulations.

3.3 Fitting formula

To derive a functional form for the N(12CO)-isotope ratio rela-
tionship, we fit the curves presented in Fig. 7 individually and
together using the non-linear least-squares Marquardt–Levenberg
algorithm implemented in GNUPLOT4 (Williams et al. 2011). The
combined data are constructed from all models except models (c)
and (g), due to the low numerical resolution at low column den-
sities in the former and for the sake of consistency in the latter
case. We fitted fourth-, fifth- and sixth-order polynomial func-
tions taking the standard deviation of each data point into account.
The best-fitting fourth-order polynomial overpredicts the ratios for
1015 cm−2 < N(12CO) < 1017 cm−2, and underpredicts in every
other case. The sixth-order polynomial does not provide a signifi-
cantly better fit than the fifth-order polynomial, therefore we chose
to use the best-fitting fifth-order polynomial for the further analysis.

4 http://gnuplot.sourceforge.net/

Figure 8. Similar to Fig. 7. Here, we compare the N(12CO)-isotope ratio
curves derived from the simulation (coloured dotted lines) to the adopted
fitting formula (black solid line). The upper panel shows the percentage
error of the formula when compared to the model data.

The best-fitting polynomial coefficients are presented in Table 2 for
the individual and the combined data.

We adopt the best-fitting coefficients for the combined model with
the modifications that the ratio at 12CO column densities lower than
3.2 × 1010 cm−2 is equal to the ratio at N (12CO) = 3.2 × 1010 cm−2

and we set the ratio to 60 above an upper limit of N (12CO) =
6 × 1018 cm−2. The final form of our fitting formula is

r(N12)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

r(N12 = 3.2 × 1010) if N12 < 3.2 × 1010

a0,12 + a1,12 log10(N12)
+a2,12 log10(N12)2

+a3,12 log10(N12)3

+a4,12 log10(N12)4

+a5,12 log10(N12)5 if 3.2 × 1010 ≤ N12 ≤ 6 × 1018

60 if N12 > 6 × 1018

,

(4)

where r is the 12CO/13CO ratio and N12 is the 12CO column density
in units of cm−2. To justify this choice, we compare the function
derived from the combined models to the individual models. The
bottom panel of Fig. 8 shows the unmodified curves from Sec-
tion 3.2 for all models with the standard deviations represented by
the vertical lines. The black line represents the fitting function. The
top panel shows the per cent error between the data points from the
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N. Schneider et al.: Understanding star formation in molecular clouds. I.

Fig. 1. Herschel column density maps (in [cm−2], all starting at zero) of Auriga, Maddalena, NGC 3603, and Carina after correcting for line-of-
sight contamination and removing noisy edges and areas where there was no overlap between PACS and SPIRE. The contour levels are 3, 6, 10,
and 50 × 1021 cm−2 for NGC 3606 and 5, 10, and 20 × 1021 cm−2 for Carina.

between 1.5 and 3.2 × 1021 cm−2 with an average value of
(2.4 ± 0.4) × 1021 cm−2. The surface density Σ varies between
28 for Auriga and 60 for NGC 3603 with an average value of
Σ = 44 M⊙ pc−2 (instead of 82 M⊙ pc−2 that was obtained from
the original maps)3. This value corresponds very well to the one
found by Heyer et al. (2009) with Σ = 42 M⊙ pc−2 from a sample
of clouds (>250) from the FCRAO Galactic Ring Survey investi-
gated with 13CO 1→0 emission, and to the value Σ = 41 M⊙ pc−2

obtained from extinction maps of five nearby clouds (Lombardi
et al. 2010). However, we note that our simple approach may still
under- or overestimate the LOS contamination. In a forthcoming
paper (Paper III), we will present a study of more than 20 clouds
to reach greater statistical significance.

The PDFs determined from the original and contamination
corrected maps are shown in Figs. 2 and 3. The low column
density regime of the uncorrected maps is limited by noise and
LOS contamination of the map (∆Av-value listed in Table 1), the
vertical dashed line in Figs. 2 and 3 indicates the approximate
completeness level (see above). For Auriga, the pixels left of the
completeness limit still sample low-column density molecular
cloud material, though we most likely miss the larger extent of
this cloud component. We then fitted with a lognormal function

3 We use the threshold Av = 1 mag to “define” a molecular cloud.
Taking a higher value such as Av = 2 mag, we obtain a variation in Σ
between 47 and 90 M⊙ pc−2 with an average value of 63 M⊙ pc−2.

the lower extinction part of the PDF as explained in Sect. 3.14.
For the LOS-corrected maps, the low extinction values (left of
the PDF peak) do not neccessarily have a perfect lognormal dis-
tribution (e.g., Maddalena) because removing a constant offset
can lead to negative pixels in the maps that are ignored during
the process to make the PDF.

As outlined in Sect. 6, noise and “overcorrection” can lead to
a Gaussian pixel distribution that shows up as a linear run in the
low column density range of the PDF. We therefore slightly iter-
ated the correction value for the contamination value in order to
avoid this effect and optimized the threshold where we start the
lognormal fit. The original Auriga PDF (see also Harvey et al.
2013) shows a superposition of two PDFs where the first (low
extinction) peak is compatible with the contamination level of
the map and nearly disappears when a level of ∆Av = 0.8 is
removed. In the case of Auriga, the correction works very well
because the contamination is most likely a rather homogeneous
layer in front of or behind the Auriga cloud. Such a superposition
has already been observed in Pipe (Lombardi et al. 2006).

The LOS contamination correction has several effects: (i) the
PDF is broader (increase of ⟨ση⟩ from 0.23 ± 0.02 to 0.42 ±
0.04); (ii) the slope becomes flatter; and (iii) the peak and devi-
ation point of the PDF from lognormal to excess (Av (DP) from

4 We keep the classical approach to fit one lognormal PDF to the low
column density range though other functional fits, such as a Gaussian,
can be possible as well (Alves et al. 2014).
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Fig. 3. PDFs derived from Herschel column density maps toward the high-mass star-forming regions NGC 3603 and Carina. Left panel: the PDF
from the original map, right: one from the corrected map. All other parameters as in Fig. 1.

of 2.8, matching the typically observed spatial scaling behavior.
Because the fBm maps are characterized by a normal distribu-
tion of values, we obtained the desired PDF in a second step by
shifting each density by the value given by the ratio of the in-
verse integrals of the original and the desired PDFs. The result
is visualized in Fig. 4. Larger and smaller fields were tested to
verify the numerical accuracy of the method.

The generated field was then “contaminated” by adding a
constant level to all map values and finally “observed” including
Gaussian white noise typical of the Herschel observations. The
overall model is characterized by six parameters: the width and
the center Av of the lognormal PDF contribution, the exponent of
the power-law tail, the deviation point characterizing the transi-
tion from the lognormal to the power-law PDF, the additive con-
tamination ∆Av and the standard deviation of the observational
noise. To analyze the impact of the contamination we fixed all
other parameters to lie within a range obtained for the observa-
tions in Sect. 5, i.e., a center (peak) at Av = 2.0 mag, ση = 0.5,
s = −2.0, Av (DP) = 4.3 mag, and a noise rms σAV = 0.1.

6.2. Effect of LOS-contamination on PDF properties

In Fig. 5 it becomes obvious that the fit of the resulting mea-
surable PDFs provides parameters that clearly deviate from the
original input, in particular for the ∆Av = 3.0 case. One observes
that the lognormal part of the PDF is strongly compressed, con-
sistent with what we observe for the NGC 3603 cloud (Fig. 3).
The statistical sampling of that part becomes very rough. The
value for Av (DP) increases, and the slope of the power-law tail

Fig. 4. Simulated map (500 × 500 pixels) characterized by a PDF with
lognormal part and power-law tail, derived from a fractional Brownian
motion (fBm) map with a power spectral index of 2.8. The column
densities are expressed in Av.

becomes steeper than s = −2.0 that characterized the original
cloud7.
7 The offset correction mathematically results in a modified function
without a power-law tail. However, the corrections are small enough, so
that fitting a power-law function and inferring a slope from this fitting
function is still a reasonable procedure.
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Fig. 2. PDFs derived from Herschel column density maps toward the low-mass star-forming regions Maddalena and Auriga. Left panel: PDF
from the original map, right: one from the corrected map. The vertical dashed line indicates the approximate completeness limit. The left y-axis
gives the normalized probability p(η), the right y-axis the number of pixels per log bin. The upper x-axis is the visual extinction and the lower
x-axis the logarithm of the normalized column density. The green curve indicates the fitted PDF. For Auriga, diffuse LOS-contamination (or a well
defined seperate cloud) shows up as an individual PDF at low extinctions. The red line indicates a power-law fit to the high Av tail. Inside each
panel, we give the value where the PDF peaks (Av,pk), the deviation point from lognormal to power-law tail (DP), the dispersion of the fitted PDF
(ση), the slope s and the X2 of the fit (linear regression), and the exponent α of an equivalent spherical density distribution. These values are also
summarized in Table 1.

now on) shift to lower values. In Sect. 6, we quantify these ef-
fects by an analytic model. The most dramatic change is ob-
served for the PDFs of high-mass SF regions (Fig. 3). The very
narrow distribution5 (ση = 0.27) for NGC 3603 becomes much
broader (ση = 0.52), the PDF peak shifts from Av = 4.8 mag to
1.6 mag, and Av (DP) from 8.1 mag to 4.9 mag. The same applies
for the Carina PDF with a change of ση = 0.2 to 0.38 after cor-
rection6. Other Herschel studies of high-mass SF regions, such
as NGC 6334 (Russeil et al. 2013) where a LOS contamination
of ∆Av ∼ 2−3 mag was estimated, show the same narrow PDFs.
It is thus essential to consider the contamination for a correct
interpretation of PDFs for high-mass SF regions.

In Table 1 the PDF properties are listed, and they reveal
that the correction leads to an equalization of the values for all

5 A low angular resolution (such as for extinction maps at a few ar-
cmin resolution) also naturally results in narrower PDFs since the high-
est density structures are not resolved well. This effect can become
important for very distant clouds.
6 Our PDF is different from the one shown in Preibisch et al. (2012)
because their column density map was obtained from a fit using only
the Herschel wavelengths 70 and 160 µm, which are not good tracers of
cold gas.

clouds. The PDF peak values now have a range of 1.4 mag to
2.6 mag instead of 2.3 mag to 4.8 mag, and Av (DP) changes to
3.5 mag to 5.5 mag with an average of 4.7 ± 0.4 mag. (Original
values are 4.0 mag to 8.1 mag with an average of 6.8±1.0 mag.)
A value of Av (DP) between 4 and 5 is less than what was
found in other studies using extinction maps (Av (DP) = 6 in
Froebrich & Rowles 2010), but consistent with recent hydrody-
namic models of turbulent and self-gravitating gas (Ward et al.
2014).

6. Simulations

6.1. Method

We modeled the effect of LOS contamination in a numerical sim-
ulation, providing “ideal” PDFs consisting of a lognormal part
and a power-law tail. Maps were generated with 500× 500 pixels
matching the typical observational map size and grid investi-
gated in Sect. 5. To simulate maps that combine the given proba-
bility distribution of pixel values with spatial correlations among
the pixels that are characteristic of observed maps (needed in
Sect. 6.3), we started from fractional Brownian motion (fBm)
fractal maps (Stutzki et al. 1998) with a power spectral index
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Fig. 8. Simulations of reconstructed PDFs observed with different
amplitudes of noise σA, expressed in terms of visual extinction.
The reconstruction does not depend on the absolute value of the
foreground/background contamination.

may reappear as amplified after the correction of the contamina-
tion. The noise is assumed to have an approximately Gaussian
distribution providing a floor of small fluctuations with zero av-
erage. In the logarithmic binning, the core of this Gaussian gives
a linear contribution to the PDF for low densities, i.e. below the
lognormal part of the PDF of the observed structure. This ef-
fect is simulated in Fig. 8 where we varied the observational
noise from Fig. 5 and applied the contamination correction to
reconstruct the PDF of the original structure.

We find a clear excess at low column densities, which turns
close to the expected linear behavior for σAV = 0.8. Starting
from σAV = 0.4, we also find a slight, but noticeable, shift in the
PDF peak to higher Av. For actually observed data, this should
be taken into account. The effect is independent of the contami-
nation that is added and subtracted in the PDF transformation.

The observed PDFs in Sect. 5 show the same kind of low-
column density excess as these simulations; in fact, the example
of the Maddalena cloud matches the simulation for σAV = 0.4
exactly. However, the pure observational noise in the column
density maps is much lower. This can be explained by addi-
tional small scale uncertainties and fluctuations in σA. They be-
have similarly to noise, but are not observational noise. They
may represent fluctuations in the overall cloud contamination,
either variations in the foreground screen or small background
contaminating clouds (see also discussion in Alves et al. (2014)
for correlated pattern of noise in extinction maps). As long as
the fluctuations are relatively small, their impact on the fit of the
main lognormal part of the PDF is negligible.

Very low column densities, giving rise to a linear contribu-
tion to the PDF for low Av, can also stem from an “overcor-
rection” of the contamination, however, shifting part of the real
cloud structure to column densities around zero. Therefore, us-
ing too high a value for the contamination correction by ∆Av,
leads to a similar effect as increased noise. Figure 9 shows this
for an example calculated with negligible noise (σA = 0.01) for
different levels of ∆Av. We find a similar linear distribution
for the low column-density pixels that becomes more important
for increasing ∆Av. In this case, the peak of the PDF shifts in the
other direction, compared to the addition of noise/fluctuations,
i.e., to lower column densities.

When evaluating the low-column-density excess, we find
that an overcorrection always has a stronger impact than noise
or fluctuations of the same amplitude. Therefore we can analyze

Fig. 9. Simulations of a PDF with negligible noise (σA = 0.01) when
applying values that are too high for the contamination correction ∆Av.
The reconstruction does not depend on the absolute value of the fore-
ground/background contamination but only on the difference between
actual contamination and subtracted contamination.

Fig. 10. Amplitude of the low column density in the PDF as a function
of the added level of noise or small-scale fluctuations, corresponding to
Fig. 8 for two points in the low-column density wing. The scatter in the
points results from the adaptive binning in the PDF computation.

the low-density excess in the observations to get an upper limit
of the uncertainty in the contamination correction when compar-
ing the excess with the noise impact. This uncertainty then repre-
sents either fluctuations in the contamination or an absolute error
in the contamination correction (in which case it would be some-
what overestimated). This is done through the simulation shown
in Fig. 10. It gives the amplitude of the PDF at AV = 0.2 and
AV = 0.5 as a function of the amplitude of the fluctuations; i.e.,
this quantifies the low-density excess in Fig. 8 for all possible
noise/fluctuation levels. For all observations, we used this ap-
proach to quantify the uncertainty of the contamination correc-
tion, then excluding the low-density part from the fit of the log-
normal part of the PDF of the actual cloud structure (see Sect. 5).
Figure 11 illustrates an example of this procedure where we
chose the “worst case” scenario for Maddalena. The PDF is plot-
ted over a wide column density range, and the Av = 0.5 mag level
corresponds to an amplitude of the PDF of ≈0.06. Using Fig. 7 as
a look-up table indicates that for this amplitude, the uncertainty
of the correction corresponds to approximately 0.5 mag.

In this way, we not only can estimate the contamination of
the cloud extinction by foreground or background material, but
also the uncertainty of the contamination. The uncertainty can be
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2 examples

Schneider et al. 2015, A&A, 575, A79

fore/background correction 
leads to 
— flatter power laws 
— wider ‘log-normal’ part 
in the standard fitting  
approach

A&A 575, A79 (2015)

Fig. 5. Simulations of the PDF of an observed cloud with an originally
perfectly lognormal core and a power-law tail (solid line). The represen-
tation by a finite-size map introduces some uncertainties (dotted line).
The addition of an ∆Av = 1.0 (3) contamination distorts the shape of
the PDF and observational noise adds a low-exctinction component.
The deviation point Av (DP) shifts by ∼4 mag for a contamination of
∆Av = 1.0 (3). The fit of the resulting PDF by a lognormal core and a
power-law tail does not recover the initial parameters.

To quantify this effect systematically, we show in Fig. 6 the
change in the width of the PDF and the slope of the power-law
tail when measured as a function of LOS contamination, always
starting from the standard parameters of the underlying cloud
with ση = 0.5 and s = −2.0. The small irregularities in the curve
result from the discrete binning of the randomly sampled PDF.
We find a dramatic effect in both parameters. For a contamina-
tion of ∆Av = 2, ση is already reduced by more than a factor two,
and the slope of the power-law tail has steepened from −2.0 to
−2.4. For an ∆Av ≈ 10, characterizing distant massive regions or
infrared dark clouds, ση has decreased by more than a factor of
five and the power-law tail has a slope of −3.4.

6.3. Effect of finite resolution on the PDF

Figure 7 shows the impact of a finite angular resolution on the
PDF shape, which is implemented here as a convolution with
a Gaussian beam of varying FWHM. We find the impact of
a reduced resolution at very low column densities and at col-
umn densities above Av = 15. When reducing the resolution,
the measured peak column densities drop. However, one clearly
sees that a finite resolution only detracts from the highest peaks
in the high-density PDF tail, but it does not change any of the
properties of the PDF (peak, width, deviation point, slope) that
we discuss here. However, lower resolution can lead to bumps
and distortions in the general power-law tail. In real maps with

(a)

(b)

Fig. 6. Dependence of the fitted width of the lognormal core of the PDF
a) and the fitted slope of the power-law tail b) as a function of the fore-
ground (and/or background) contamination for the standard parameters
of the molecular cloud PDFs.

Fig. 7. Influence of finite beam size on the PDF shape. Different beam
size (expressed as pixel size of 2, 4, 8, 16, and 32) were chosen. The
convolution has a minor effect for the high-column density tail of the
PDF and no influence on the lower-density lognormal distribution.

observational noise, the change at low densities would not be
visible because the low column density part is more strongly
affected by noise.

6.4. Effect of noise and uncertainty on the correction

The addition of observational noise adds a contribution to the
structure that is hardly visible in the contaminated PDF, but that
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ABSTRACT
Hennebelle & Chabrier attempted to derive the stellar initial mass function (IMF) as a con-
sequence of lognormal density fluctuations in a turbulent medium, using an argument similar
to Press & Schechter for Gaussian random fields. Like that example, however, the solution
there does not resolve the ‘cloud-in-cloud’ problem; it also does not extend to the large scales
that dominate the velocity and density fluctuations. In principle, these can change the results
at the order-of-magnitude level or more. In this paper, we use the results from Hopkins to
generalize the excursion set formalism and derive the exact solution in this regime. We argue
that the stellar IMF and core mass function (CMF) should be associated with the last-crossing
distribution, i.e. the mass spectrum of bound objects defined on the smallest scale on which
they are self-gravitating. This differs from the first-crossing distribution (mass function on
the largest self-gravitating scale) which is defined in cosmological applications and which,
Hopkins shows, corresponds to the giant molecular cloud (GMC) mass function in discs. We
derive an analytic equation for the last-crossing distribution that can be applied for an arbitrary
collapse threshold shape in interstellar medium and cosmological studies. With this, we show
that the same model that predicts the GMC mass function and large-scale structure of galaxy
discs also predicts the CMF – and by extrapolation stellar IMF – in good agreement with
observations. The only adjustable parameter in the model is the turbulent velocity power spec-
trum, which in the range p ≈ 5/3−2 gives similar results. We also use this to formally justify
why the approximate solution in Hennebelle & Chabrier is reasonable (up to a normalization
constant) over the mass range of the CMF/IMF; however, there are significant corrections
at intermediate and high masses. We discuss how the exact solutions here can be used to
predict additional quantities such as the clustering of stars, and embedded into time-dependent
models that follow density fluctuations, fragmentation, mergers and successive generations of
star formation.

Key words: galaxies: active – galaxies: evolution – galaxies: formation – galaxies: star
formation – cosmology: theory.

1 IN T RO D U C T I O N

The origin of the stellar initial mass function (IMF) is a question
of fundamental importance for the study of star formation, stellar
evolution and feedback, and galaxy formation. It is an input into a
huge range of models of all of these phenomena, and a necessary
assumption when deriving physical parameters from many obser-
vations. However, despite decades of theoretical study, it remains
poorly understood. A critical first step – although by no means a
complete description of the origin of the IMF – is understanding
the origin and form of the mass function (MF) of protostellar cores

⋆E-mail: phopkins@astro.berkeley.edu

[the core mass function (CMF)], specifically that of self-gravitating,
collapsing cores that will ultimately form stars.

Recently, Hennebelle & Chabrier (2008, hereafter HC08) pre-
sented a compelling argument for the physical origin of the
IMF shape, as a consequence of the CMF resulting from log-
normal density fluctuations in a turbulent medium. It is increas-
ingly clear that the density structure of the interstellar medium
(ISM) is dominated by supersonic turbulence over a wide range
of scales (e.g. Elmegreen & Scalo 2004; Mac Low & Klessen
2004; Scalo & Elmegreen 2004; McKee & Ostriker 2007), and
a fairly generic consequence of this is that the density distribution
converges towards a lognormal probability distribution function
(PDF), with a dispersion that scales weakly with Mach number
(e.g. Vazquez-Semadeni 1994; Padoan, Nordlund & Jones 1997;

C⃝ 2012 The Author
Monthly Notices of the Royal Astronomical Society C⃝ 2012 RAS



there are different quantitative IMF based on turbulence 

Padoan & Nordlund (2002, 2007) 
Hennebelle & Chabrier (2008, 2009) 
Hopkins (2012) 
all relate the mass spectrum to statistical characteristics of the 
turbulent velocity fields 

there are alternative approaches 

IMF as closest packing problem / sampling problem in fractal 
clouds (Larson 1992, 1995, Elmegreen 1997ab, 2000ab, 2002) 

IMF as purely statistical problem 
(Larson 1973, Zinnecker 1984, 1990, Adams & Fatuzzo 1996) 

IMF from (proto)stellar feedback (Silk 1995, Adams & Fatuzzo 
1996) 

IMF from competitive coagulation (Murray & Lin 1995, Bonnell et 
al. 2001ab, etc.)

different statistical approaches



combine scale free process ! POWER LAW BEHAVIOR  
- turbulence (Padoan & Nordlund 2002, Hennebelle & Chabrier 2008, Hopkins 2008) 
- gravity in dense clusters (Bonnell & Bate 2006, Klessen 2001) 

with highly stochastic processes ! central limit theorem 
! GAUSSIAN DISTRIBUTION  
- basically mean thermal Jeans length (or feedback)  
- universality due to dust physics: coupling between dust and 
  gas insensitive to radiation field and metallicity  
  (Elmegreen et al. 2008, Omukai et al. 2005) 

caveat: everybody gets the IMF!

+ =

Offner et al. 2014, Protostars and Planets VI, 53-75  
Klessen & Glover 2014, Saas Fee Lecture, arXiv:1412.5182, 1-191



caveat: everybody gets the IMF!

+ =

Offner et al. 2014, Protostars and Planets VI, 53-75  
Klessen & Glover 2014, Saas Fee Lecture, arXiv:1412.5182, 1-191

“everyone” gets the right IMF  
! better look for secondary indicators 

stellar multiplicity  
protostellar spin (including disk) 
spatial distribution + kinematics in young clusters 
magnetic field strength and orientation  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50 pc

next steps:  
studying details of 
ISM morphology and 
star formation in 
dedicated zoom-in 
simulation 

example:  
giant molecular cloud 
complex (~106 M⦿) 
viewed in the plane 
of the disk.

large-scale filaments

50 pc

Ragan et al., 2014, A&A submitted, arXiv:1403.1450)
Smith et al. (2014, MNRAS, 445, 2900)



50 pc

next steps:  
studying details of 
ISM morphology and 
star formation in 
dedicated zoom-in 
simulation  
(resolution ≲2000 AU, 
with full chemistry) 

analysis:  
- morphology 
- velocity 
- chemistry 
- observations (dust  
  maps for Herschel,  
  CO, N2H+, HCN,  
  etc. for line obs.) 

zoom-in on filaments

Smith et al. (2014, MNRAS, 445, 2900,  
also Smith et al. 2012, ApJ, 750, 64, Smith et al. 2013, ApJ, 771, 24, Chira et al., 2014, MNRAS, submitted)

3

Figure 2. The four simulations at the end of the analysed period. The filament skeleton identified using DispPerSE is shown in grey,
the filaments analysed are shown in white, and star-forming cores are shown by black diamonds.

likely to undergo future star formation. Using DispPerSE
we generate a list of filament segments describing the local
orientation of the filament on the column density grid. Fig-
ure 2 shows an example of the filaments found by DispPerSE
when applied to our simulations. To find the density profile
of the filaments we find the density profile perpendicular to
the filament in each local section. Following the approach of
Arzoumanian et al. (2011) these are then averaged to give
the mean filament density profiles and their standard devi-
ation.

In order to compare the observed filaments with the 3D
simulation distribution we also investigate how the filaments
seen in column density correspond to the underlying density
distribution. Again we use DispPerSE to identify filaments,
this time using a 3D density grid derived from the simula-
tion. Once we have the skeleton of the new filaments we find
the density profile perpendicular to the 3D filament filament
vector in each section using the densities and positions from
the original simulation not the grid, and as before find the
average filament profile.

c⃝ 2010 RAS, MNRAS 000, 1–13
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Figure 4. Top: The filaments S2F1T180, S3F1T170 and S4F1T030 from left to right. The green points show the 2D spine of the filament.
Bottom: The filament column density profiles in log space. The black lines show the average column density profiles, the grey error bars
show the standard deviation of the average, the red line shows the best Plummer-like fit, the green line shows the best Gaussian fit to
the entire filament, and the blue line shows the best Gaussian fit to the core of the filament.

Dataset p Rflat FWHMall

avg. σ avg. σ avg. σ

This work 2.20 0.54 0.074 0.042 0.348 0.091
A11 1.68 0.27 0.046 0.026 - -
J12a 2.28 1.71 0.078 0.099 0.336 0.186

Table 3. Comparison to observations (all physical sizes in par-
secs). A11 represents Arzoumanian et al. (2011) and J12a rep-
resents Juvela et al. (2012a). The full width half maximum in
Arzoumanian is not quoted as it is only measured for the flat
core of the filament.

3 compares the average fitted parameters to observational
estimates by A11 and J12a. The observational datasets also
include some longer and lower density filaments that are not
necessarily star-forming. Nevertheless, filaments in molecu-
lar clouds are found to have fairly universal properties in
A11 and so our filament properties should match the ob-
servations if the simulations are an accurate depiction of
reality.

In agreement with the observations we typically find

that the best fitting Plummer-like profiles have a relatively
shallow power law index p ∼ 2. The prediction for an isother-
mal cylinder in hydrostatic equilibrium is p = 4 (Ostriker
1964). Clearly both our theoretical models and the obser-
vations disagree with this value. One potential explanation
proposed for this disparity is support by magnetic fields,
as magnetised filaments typically exhibit shallower profiles
(Fiege & Pudritz 2000). However, our simulations do not
include magnetic fields, and so magnetic support cannot be
the explanation for the shallow profiles that we find for our
simulated filaments. Another potential explanation comes
from (Fischera & Martin 2012) who found that while fila-
ments that were highly over-pressured with respect to their
environment tended towards ρ(r) ∝ r−4 at large radii, in
agreement with the classical isothermal result, a smaller
over-pressure of 6-12 times the background level results in
profiles more consistent with ρ(r) ∝ r−2 at large radii. On-
going accretion in a direction perpendicular to the filament
may also flatten the density profile. Both these effects are
operative for our simulated filaments.

Our mean best fit values of p and Rflat are in remark-
ably close agreement with the observations of J12a and are

c⃝ 2010 RAS, MNRAS 000, 1–19

50 pc

Smith et al. (2014, MNRAS, 445, 2900)

filaments do not have universal width
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Figure 4. Top: The filaments S2F1T180, S3F1T170 and S4F1T030 from left to right. The green points show the 2D spine of the filament.
Bottom: The filament column density profiles in log space. The black lines show the average column density profiles, the grey error bars
show the standard deviation of the average, the red line shows the best Plummer-like fit, the green line shows the best Gaussian fit to
the entire filament, and the blue line shows the best Gaussian fit to the core of the filament.
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A11 1.68 0.27 0.046 0.026 - -
J12a 2.28 1.71 0.078 0.099 0.336 0.186

Table 3. Comparison to observations (all physical sizes in par-
secs). A11 represents Arzoumanian et al. (2011) and J12a rep-
resents Juvela et al. (2012a). The full width half maximum in
Arzoumanian is not quoted as it is only measured for the flat
core of the filament.

3 compares the average fitted parameters to observational
estimates by A11 and J12a. The observational datasets also
include some longer and lower density filaments that are not
necessarily star-forming. Nevertheless, filaments in molecu-
lar clouds are found to have fairly universal properties in
A11 and so our filament properties should match the ob-
servations if the simulations are an accurate depiction of
reality.

In agreement with the observations we typically find

that the best fitting Plummer-like profiles have a relatively
shallow power law index p ∼ 2. The prediction for an isother-
mal cylinder in hydrostatic equilibrium is p = 4 (Ostriker
1964). Clearly both our theoretical models and the obser-
vations disagree with this value. One potential explanation
proposed for this disparity is support by magnetic fields,
as magnetised filaments typically exhibit shallower profiles
(Fiege & Pudritz 2000). However, our simulations do not
include magnetic fields, and so magnetic support cannot be
the explanation for the shallow profiles that we find for our
simulated filaments. Another potential explanation comes
from (Fischera & Martin 2012) who found that while fila-
ments that were highly over-pressured with respect to their
environment tended towards ρ(r) ∝ r−4 at large radii, in
agreement with the classical isothermal result, a smaller
over-pressure of 6-12 times the background level results in
profiles more consistent with ρ(r) ∝ r−2 at large radii. On-
going accretion in a direction perpendicular to the filament
may also flatten the density profile. Both these effects are
operative for our simulated filaments.

Our mean best fit values of p and Rflat are in remark-
ably close agreement with the observations of J12a and are

c⃝ 2010 RAS, MNRAS 000, 1–19

50 pc

filaments do not have universal width

Smith et al. (2014, MNRAS, 445, 2900)

Arzoumanian, et al., 
2011, A&A, 529, L6 



3D filaments have complex structure

13

Figure 9. Filament 1 from S1 (top) and Filament 1 from S2 (bottom). The panels on the left show our standard x-y projection view
in which we identified the filaments using the column densities. The middle panels shows the same gas projected in the y-z plane. The
green points in these panels are at the same x-y position as on the left but the z co-ordinate is taken from the cell that has the maximum
density at that x-y position. The filaments are clearly not one continuous maximum density structure. The panels on the right show the
y-z projection, finding the z co-ordinate by finding a new filament in y-z column density.

tion which is elongated along the y-axis, as shown in Figure
11 and online.

Ideally, we would like to find the 3D density profile by
fitting the average density profile perpendicular to the fila-
ment spine as in Section 3. However, the averaged 3D den-
sity distribution is extremely noisy. In Figure 12 we show
the average of the density profiles parallel to the filament
3D spine vectors for S1-F1-T140 shown in Figure 11. The
profile contains multiple peaks due to the closely overlap-
ping sub-filaments. While it is possible to fit the profile with
Equation 1 the fit is poor. This can be easily understood by
inspecting Figure 10 which shows that the density distribu-
tion within the gas in never radially symmetric.

Instead we fit each segment of the all the 3D spine vec-
tors identified from DisPerSE individually. For each segment
we centre on the densest gas, rotate the simulation gas cells
about the spine vector, and calculate the profile of the gas
in that segment. As the 3D spine is made up of a variety of
sub-filaments it is not a continuous structure but contains a
mixture of segments from different sub-filaments. In Figure
13 we show the distribution of the best fit values for the

3D Plummer-profile (Equation 1) for the segments of the
3D spine found for the filaments in each of the simulations.
Table 6 summarises the average and median values of the
best fits for the filaments in each simulation. In Table 6 we
do not include the FWHM as we found that it generally did
not fit the filament well in 3D and was purely determined
by the shape of the background gas.

Figure 13 shows that there is over a magnitude scatter
in the best fits found for the individual 3D spine filament
segments. There does not seem to be many visible differ-
ences between the two distributions, however, a K-S test
does confirm that the four datasets are drawn from differ-
ent populations. The mean flattening radius for the three
simulations are very similar (Rflat ∼ 0.035) and are smaller
than the flattening radius found in 2D at the same time in
Table 2. The jeans length for gas of 105 cm−3 at T = 12 K
(typical of the gas at the centre of the filaments) is 0.032 pc.
The filament flattening radii seen in 3D are therefore con-
sistent with that predicted by thermal support. In column
density projection the filaments flattening radii are much
more variable than in 3D, this suggests that differences in

c⃝ 2010 RAS, MNRAS 000, 1–19

Smith et al. (2014, MNRAS, 445, 2900)

2D filament detection 
shows nice coherent 
filament

2D + LOS peak 
detection shows 
complex structure

full 3D filament 
analysis confirms  
this picture



50 pc

walk along the filament

Smith et al. (2014, in preparation)

• walking along the 
filament exhibits 
complex 3D structure 
that is now (fully) seen 
in projected density 

• is this similar to the 
filament fibers proposed 
by Hacar et al.  
(2013, A&A, 554, 55)

A. Hacar et al.: Hierarchical core formation in L1495/B213
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Fig. 12. Location of the cloud components of L1495/B213 identified with the FIVe algorithm. Each component is represented by
its central axis and has been color-coded for easier identification. The background grey-scale image is a SPIRE 250µm continuum
map from the Gould Belt Survey (André et al. 2010) that has been blanked out to match the coverage of our FCRAO data.

length of the components is about 15 M� pc�1. This value is sig-
nificantly lower than the ⇡ 54 M� pc�1 derived by Palmeirim et
al. (2013) from their Herschel continuum data, but as mentioned
before, this di↵erence results from the fact that the continuum
analysis associates all the mass to a single cloud component,
while our line analysis shows that the mass is distributed among
distinct velocity components.

Interestingly, the derived mean mass per unit length of
15 M� pc�1 is very close to the equilibrium value for an isother-
mal cylinder in pressure equilibrium at 10 K (Stodólkiewicz
1963; Ostriker 1964). This property, and both the length and as-
pect ratio discussed before, make the L1495/B213 components
very similar to the velocity-coherent filaments of the nearby
L1517 cloud, also studied using C18O data. These L1517 fila-
ments had aspect ratios of approximately 4, typical lengths of
0.5 pc, and mass per unit length in agreement with the predic-
tion for a 10 K isothermal cylinder (Hacar & Tafalla 2011).

A notable di↵erence with the L1517 filaments is the larger
velocity dispersion of the gas in the L1495/B213 components.
The middle-right histogram in Fig. 13 shows the distribution
of the non-thermal velocity dispersion normalized to the sound
speed at 10 K, as calculated by taking the unweighted mean of
the non thermal linewdiths in the individual gaussian fits to the
spectra (the dispersion of the individual line center velocities
presents a similar behavior). While the gas in the L1517 fila-
ments was overwhelmingly subsonic (98% of the points) with a
typical �NT /cs = 0.54 ± 0.19, the gas in L1495/B213 presents
an approximately sonic dispersion of �NT /cs = 1.0 ± 0.2, al-

though there is a ⇠ 15% minority of subsonic, L1517-like fil-
aments. This larger value of the C18O non-thermal motions in
L1495/B213 does not arise only from the action of the embed-
ded protostars (whose e↵ect is noticeable but local), and indi-
cates that the gas in most L1495/B213 filaments is more tur-
bulent, or has larger internal velocity gradients, than the gas in
L1517. Even so, the estimated �NT /cs values indicate that the
internal motions in the L1495/B213 filaments are at most mildly
transonic, and therefore inconsistent with a possible picture of
supersonic turbulence.

Probably related to this larger C18O dispersion is an also
larger dispersion of the non-thermal component of N2H+. The
mean �NT /cs value for this species is 0.61 ± 0.17, compared to
0.36 ± 0.09 in L1517. Apart from this higher velocity disper-
sion, the behavior of the gas in the L1495/B213 filaments is very
similar to L1517, as we discuss in the following section.

The final two histograms present the distribution of velocity
gradients measured along the long axis of each filament (bot-
tom panels of Fig. 13). The left histogram shows the distribution
of global velocity gradients, which are determined by fitting the
full set of LSR velocity values along the long axis with a single
linear gradient. The right histogram (Fig. 13f) shows the distri-
bution of local velocity gradients, which are determined using a
similar method, but this time splitting the velocity data in 0.1 pc
fragments and then taking the average of the fits. As can be seen,
the mean value of the global gradients is close to 0.5 km s�1pc�1,
and the mean value of the local gradients is about 1 km s�1pc�1.
The larger value of the local gradients results from the presence
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+

Smith et al. (2014, MNRAS, 445, 2900)



summary



summary

• controversies / puzzles

- column density PDFs:  do we really understand them?  
—> more work needed, also on line PDFs

- molecular gas:  are we sure we see all H2 gas?  
—> we may be missing lots of H2 gas in clouds

- importance of dynamics: what sets the IMF?  
—> the IMF is easy to get, better look for other tracers

- filaments:  are they universal?  
—> much more work needed including kinematic tracers

NGC 3324 (Hubble, NASA/ESA)
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