

ISM Dynamics and Star Formation

Ralf Klessen

Astronomie der Universität Heidelberg ut für Theoretische Astrophysik

thanks to ...

... people in the star formation group at Heidelberg University:

Christian Baczynski, Erik Bertram, Frank Bigiel, Carla June Carroll, Diane Cormier, Simon Glover, Dimitrious Gouliermis, Lionel Haemmerle, Juan Ibanez, Jan-Pieter Paardekooper, Anna Schauer, Jennifer Schober, Rahul Shetty, Daniel Whalen, Katharina Wollenberg

... former group members:

Robi Banerjee, Paul Clark, Christoph Federrath, Philipp Girichidis, Tilman Hartwig, Lukas Konstandin, Thomas Peters, Dominik Schleicher, Rowan Smith, László Szűcs...

... many collaborators abroad!

Deutsche Forschungsgemeinschaft DFG

European Research Council

agenda

remarks on star formation theory

- historic remarks
- current understanding
- applications / controversies / puzzles
 - global star formation relations: do we understand them?
 - molecular gas: are we sure we see all H_2 gas?
 - filaments: is there a universal width?

decrease in spatial scale / increase in density

- density of ISM: few particles per cm³
- density of molecular cloud: few 100 particles per cm³
- density of Sun: I.4 g/cm³
- spatial scale
 - size of molecular cloud: few 10s of pc
 - size of young cluster: ~ I pc
 - size of Sun: 1.4×10^{10} cm

Sun (SOHO)

decrease in spatial scale / increase in density

- contracting force
 - only force that can do this compression is *GRAVITY*
- Proplyd in Orion (Hubble)

- opposing forces
 - there are several processes that can oppose gravity
 - GAS PRESSURE
 - TURBULENCE
 - MAGNETIC FIELDS
 - RADIATION PRESSURE

Modern star formation theory is based on the complex interplay between *all* these processes.

early theoretical models

- Jeans (1902): Interplay between self-gravity and thermal pressure
 - stability of homogeneous spherical density enhancements against gravitational collapse
 - dispersion relation:

$$\omega^2 = c_s^2 k^2 - 4\pi G \rho_0$$

instability whe

$$\omega^2 < 0$$

- minimal mass:

$$M_J = \frac{1}{6}\pi^{-5/2} G^{-3/2} \rho_0^{-1/2} c_s^3 \propto \rho_0^{-1/2} T^{+3/2}$$

Sir James Jeans. 1877 - 1946

$$\omega^2 < 0$$

first approach to turbulence

- von Weizsäcker (1943, 1951) and Chandrasekhar (1951): concept of MICROTURBULENCE
 - BASIC ASSUMPTION: separation of scales between dynamics and turbulence

l_{turb} « l_{dyn}

 then turbulent velocity dispersion contributes to effective soundspeed:

$$c_c^2 \mapsto c_c^2 + \sigma_{rms}^2$$

- \rightarrow Larger effective Jeans masses \rightarrow more stability
- BUT: (1) turbulence depends on k: $\sigma_{rms}^{2}(k)$

(2) supersonic turbulence $\rightarrow \sigma_{rms}^2(k) >> C_s^2$ usually

S. Chandrasekhar,

C.F. von Weiszäcker, 1912 - 2007

$$asses \rightarrow mores$$

on k: σ^2 (k)

1910 - 1995

problems of early dynamical theory

- molecular clouds are *highly Jeans-unstable*, yet, they do *NOT* form stars at high rate and with high efficiency (Zuckerman & Evans 1974 conundrum) (the observed global SFE in molecular clouds is ~5%)
 - \rightarrow something prevents large-scale collapse.
- all throughout the early 1990's, molecular clouds had been thought to be long-lived quasi-equilibrium entities.
- molecular clouds are *magnetized*

magnetic star formation

- *Mestel & Spitzer (1956):* Magnetic fields can prevent collapse!!!
 - Critical mass for gravitational collapse in presence of B-field

$$M_{cr} = \frac{5^{3/2}}{48\pi^2} \frac{B^3}{G^{3/2}\rho^2}$$

 Critical mass-to-flux ratio (Mouschovias & Spitzer 1976)

$$\left[\frac{M}{\Phi}\right]_{cr} = \frac{\zeta}{3\pi} \left[\frac{5}{G}\right]^{1/2}$$

- Ambipolar diffusion can initiate collapse

Lyman Spitzer, Jr., 1914 - 1997

"standard theory" of star formation

- BASIC ASSUMPTION: Stars form from magnetically highly subcritical cores
- Ambipolar diffusion slowly increases (M/ Φ): $\tau_{AD} \approx 10\tau_{ff}$
- Once (M/Φ) > (M/Φ)_{crit} : dynamical collapse of SIS
 - Shu (1977) collapse solution
 - $dM/dt = 0.975 c_s^3/G = const.$
- Was (in principle) only intended for isolated, low-mass stars

Frank Shu, 1943 -

magnetic field

problems of "standard theory"

- Observed B-fields are weak, at most marginally critical (Crutcher 1999, Bourke et al. 2001)
- Magnetic fields cannot prevent decay of turbulence (Mac Low et al. 1998, Stone et al. 1998, Padoan & Nordlund 1999)
- Structure of prestellar cores (e.g. Bacman et al. 2000, Alves et al. 2001)
- Strongly time varying dM/dt (e.g. Hendriksen et al. 1997, André et al. 2000)
- More extended infall motions than predicted by the standard model (Williams & Myers 2000, Myers et al. 2000)
- Most stars form as binaries (e.g. Lada 2006)

- As many prestellar cores as protostellar cores in SF regions (e.g. André et al 2002)
- Molecular cloud clumps are chemically young (Bergin & Langer 1997, Pratap et al 1997, Aikawa et al 2001)
- Stellar age distribution small (τ_{ff} << τ_{AD}) (Ballesteros-Paredes et al. 1999, Elmegreen 2000, Hartmann 2001)
- Strong theoretical criticism of the SIS as starting condition for gravitational collapse (e.g. Whitworth et al 1996, Nakano 1998, as summarized in Klessen & Mac Low 2004)
- Standard AD-dominated theory is incompatible with observations (Crutcher et al. 2009, 2010ab, Bertram et al. 2011)

properties of turbulence

• laminar flows turn *turbulent* at *high Reynolds* numbers

$$Re = \frac{\text{advection}}{\text{dissipation}} = \frac{VL}{\nu}$$

V= typical velocity on scale L, $v = \eta/\rho$ = kinematic viscosity, turbulence for Re > 1000 \rightarrow typical values in ISM 10⁸-10¹⁰

lence for Re > 1000 \rightarrow typical values in ISM 10⁸-10¹⁰

$$\rho \frac{d\vec{v}}{dt} = \rho \left(\frac{\partial \vec{v}}{\partial t} + (\vec{v} \cdot \vec{\nabla}) \vec{v} \right) = -\vec{\nabla}P + \eta \vec{\nabla}^2 \vec{v} + \left(\frac{\eta}{3} + \zeta \right) \vec{\nabla} (\vec{\nabla} \cdot \vec{v})$$

$$shear viscosity$$

$$bulk viscosity$$

$$\sigma_{ij} \equiv \eta \left(\frac{\partial v_i}{\partial x_j} + \frac{\partial v_j}{\partial x_i} - \frac{2}{3} \delta_{ij} \frac{\partial v_k}{\partial x_k} \right) + \zeta \delta_{ij} \frac{\partial v_k}{\partial x_k}$$

$$viscous stress tensor$$

properties of turbulence

• laminar flows turn *turbulent* at *high Reynolds* numbers

$$Re = \frac{\text{advection}}{\text{dissipation}} = \frac{VL}{\nu}$$

V= typical velocity on scale L, $v = \eta/\rho$ = kinematic viscosity, turbulence for Re > 1000 \rightarrow typical values in ISM 10⁸-10¹⁰

 vortex streching --> turbulence is intrinsically anisotropic (only on large scales you may get homogeneity & isotropy in a statistical sense; see Landau & Lifschitz, Chandrasekhar, Taylor, etc.)

(ISM turbulence: shocks & B-field cause additional inhomogeneity)

turbulent cascade in the ISM

energy source & scale *NOT known* (supernovae, winds, spiral density waves?) dissipation scale not known (ambipolar diffusion, molecular diffusion?)

turbulent cascade in the ISM

energy source & scale *NOT known* (supernovae, winds, spiral density waves?) $\sigma_{\rm rms} << 1$ km/s M_{rms} ≤ 1 L ≈ 0.1 pc dissipation scale not known (ambipolar diffusion, molecular diffusion?)

gravoturbulent star formation

• BASIC ASSUMPTION:

star formation is controlled by interplay between supersonic turbulence and self-gravity

- turbulence plays a *dual role*:
 - on large scales it provides support
 - on small scales it can trigger collapse
- some predictions:
 - dynamical star formation timescale $\tau_{\rm ff}$
 - high binary fraction
 - complex spatial structure of embedded star clusters
 - and many more . . .

Mac Low & Klessen, 2004, Rev. Mod. Phys., 76, 125-194 McKee & Ostriker, 2007, ARAA, 45, 565 Klessen & Glover 2014, Saas Fee Lecture, arXiv:1412.5182, 1-191

gravoturbulent star formation

- interstellar gas is highly *inhomogeneous*
 - gravitational instability
 - thermal instability
 - *turbulent compression* (in shocks $\delta \rho / \rho \propto M^2$; in atomic gas: $M \approx 1...3$)
- cold molecular clouds can form rapidly in high-density regions at stagnation points of convergent large-scale flows
 - chemical phase transition: atomic → molecular
 - process is *modulated* by large-scale *dynamics* in the galaxy
- inside *cold clouds:* turbulence is highly supersonic (M ≈ 1...20)
 - → *turbulence* creates large density contrast,

gravity selects for collapse

GRAVOTUBULENT FRAGMENTATION

 turbulent cascade: local compression within a cloud provokes collapse → formation of individual stars and star clusters

(e.g. Mac Low & Klessen, 2004, Rev. Mod. Phys., 76, 125-194)

molecular cloud formation

Idea:

Molecular clouds form at stagnation points of largescale convergent flows, mostly triggered by global (or external) perturbations. Their internal turbulence is driven by accretion, i.e. by the process of cloud formation

- molecular clouds grow in mass
- this is inferred by looking at molecular clouds in different evolutionary phases in the LMC (Fukui et al. 2008, 2009)

zooming in ...

position-position-velocity structure of the Perseus cloud

caveat of numerical simulations

- most astrophysical turbulence simulations use an LES approach to model the flow
- principal problem: only large scale flow properties
 - Reynolds number: Re = LV/v (Re_{nature} >> Re_{model})
 - dynamic range much smaller than true physical one
 - need *subgrid model* (often only dissipation)
 - but what to do for more complex when processes on subgrid scale determine large-scale dynamics (chemical reactions, nuclear burning, etc)
 - Turbulence is "space filling" --> difficulty for AMR (don't know what criterion to use for refinement)
- how *large* a Reynolds number do we need to catch basic dynamics right?

chemical model 0

32 chemical species 17 in instantaneous equilibrium:

 $\mathrm{H^-,\ H_2^+,\ H_3^+,\ CH^+,\ CH_2^+,\ OH^+,\ H_2O^+,\ H_3O^+,\ CO^+,\ HOC^+,\ O^-,\ C^-\ and\ O_2^+}$

•19 full non-equilibrium evolution

 $e^{-}, H^{+}, H, H_{2}, He, He^{+}, C, C^{+}, O, O^{+}, OH, H_{2}O, CO,$

 C_2 , O_2 , HCO^+ , CH, CH_2 and CH_3^+

218 reactions

various heating and cooling processes

long series of publications by Simon Glover and collaborators, e.g. Glover & Mac Low (2007ab), Glover, Federrath, Mac Low, Klessen (2010), Glover & Clark (2012, 2013), Clark & Clover (2012, 2013)

Process

chemical model 1

Cooling:				
C fine structure lines	Atomic data – Silva & Viegas (2002)			
	Collisional rates (H) – Abrahamsson, Krems & Dalgarno (2007)			
	Collisional rates (H_2) – Schroder et al. (1991)			
	Collisional rates (e^-) – Johnson et al. (1987)			
	Collisional rates (H ⁺) – Roueff & Le Bourlot (1990)			
C ⁺ fine structure lines	Atomic data – Silva & Viegas (2002)			
	Collisional rates (H ₂) – Flower & Launay (1977)			
	Collisional rates (H, $T < 2000 \text{ K}$) – Hollenbach & McKee (1989)			
	Collisional rates (H, $T > 2000 \text{ K}$) – Keenan et al. (1986)			
	Collisional rates (e ⁻) – Wilson & Bell (2002)			
O fine structure lines	Atomic data – Silva & Viegas (2002)			
	Collisional rates (H) – Abrahamsson, Krems & Dalgarno (2007)			
	Collisional rates (H ₂) – see Glover & Jappsen (2007)			
	Collisional rates (e ⁻) – Bell, Berrington & Thomas (1998)			
	Collisional rates (H ⁺) – Pequignot (1990, 1996)			
H ₂ rovibrational lines	Le Bourlot, Pineau des Forêts & Flower (1999)			
CO and H ₂ O rovibrational lines	Neufeld & Kaufman (1993); Neufeld, Lepp & Melnick (1995)			
OH rotational lines	Pavlovski et al. (2002)			
Gas-grain energy transfer	Hollenbach & McKee (1989)			
Recombination on grains	Wolfire et al. (2003)			
Atomic resonance lines	Sutherland & Dopita (1993)			
H collisional ionization	Abel et al. (1997)			
H ₂ collisional dissociation	See Table B1			
Compton cooling	Cen (1992)			
Heating:				
Photoelectric effect	Bakes & Tielens (1994); Wolfire et al. (2003)			
H ₂ photodissociation	Black & Dalgarno (1977)			
UV pumping of H ₂	Burton, Hollenbach & Tielens (1990)			
H ₂ formation on dust grains	Hollenbach & McKee (1989)			
Cosmic ray ionization	Goldsmith & Langer (1978)			

No.	Reaction) (] (=	l of.
1	$\rm H + e^- \rightarrow \rm H^- + \gamma$	$k_1 = \det[-17.845 + 0.762 \log T + 0.1523 (\log T)^2]$		1
		$-0.03274(\log T)^{3}$	$T \leqslant 6000 \ {\rm K}$	
		$= dex[-16.420 + 0.1998(log T)^{-1}]$		
		$-5.447 \times 10^{-6} (\log T)^{-6}$ + 4.0415 $\times 10^{-5} (\log T)^{6}$	T > 6000 K	
0	$\mathbf{U}^- + \mathbf{U} \rightarrow \mathbf{U}_0 + \mathbf{o}^-$	$+4.0415 \times 10^{-9}$	$T \le 200 \text{ K}$	2
2	$n + n \rightarrow n_2 + e$	$\kappa_2 = 1.5 \times 10^{-9} T^{-0.17}$	$T \ge 300 \text{ K}$ $T \ge 300 \text{ K}$	4
3	$H + H^+ \rightarrow H^+ + \infty$	$k_2 = dex[-19, 38 - 1.523 \log T]$	1 > 000 K	3
		$+ 1.118(\log T)^2 - 0.1269(\log T)^3$		0
4	$H + H_2^+ \rightarrow H_2 + H^+$	$k_4 = 6.4 \times 10^{-10}$		4
5	$H^- + H^+ \rightarrow H + H$	$k_5 = 2.4 \times 10^{-6} T^{-1/2} (1.0 + T/20000)$		5
6	$H_2^+ + e^- \rightarrow H + H$	$k_6 = 1.0 \times 10^{-8}$	$T \leqslant 617 \text{ K}$	6
	2	$= 1.32 \times 10^{-6} T^{-0.76}$	$T > 617 { m K}$	
7	$H_2 + H^+ \rightarrow H_2^+ + H$	$k_7 = [-3.3232183 \times 10^{-7}]$		7
	-	$+3.3735382 \times 10^{-7} \ln T$		
		$-1.4491368 \times 10^{-7} (\ln T)^2$		
		$+ 3.4172805 \times 10^{-8} (\ln T)^3$		
		$-4.7813720 \times 10^{-9} (\ln T)^4$		
		$+ 3.9731542 \times 10^{-10} (\ln T)^{5}$		
		$-1.8171411 \times 10^{-11} (\ln T)^{6}$		
		$+3.5311932 \times 10^{-13} (\ln T)^{-1}$		
		$\times \exp\left(\frac{T}{T}\right)$		
8	$H_2 + e^- \rightarrow H + H + e^-$	$k_8 = 3.73 \times 10^{-9} T^{0.1121} \exp\left(\frac{-33435}{T}\right)$		8
9	$H_2 + H \rightarrow H + H + H$	$k_{9,1} = 6.67 \times 10^{-12} T^{1/2} \exp \left[-\left(1 + \frac{63590}{T}\right)\right]$		9
		$k_{9,h} = 3.52 \times 10^{-9} \exp \left(-\frac{43900}{T}\right)$		10
		$n_{\rm cr,H} = \text{dex} \left[3.0 - 0.416 \log \left(\frac{T}{10000} \right) - 0.327 \left\{ \log \left(\frac{T}{10000} \right) \right\}^2 \right]$		10
10	$H_2 + H_2 \rightarrow H_2 + H + H$	$k_{10} = \frac{5.996 \times 10^{-30} T^{4.1881}}{(5.996 \times 10^{-30} T^{4.1881})} \exp\left(-\frac{54657.4}{(5.996 \times 10^{-30} T^{4.1881})}\right)$		11
		$(1.0+6.761\times10^{-6}T)^{5.6881}$ or (T)		19
		$\kappa_{10,h} = 1.3 \times 10^{-7} \exp\left(-\frac{T}{T}\right)$		12
		$n_{\rm cr,H_2} = \text{dex} \left[4.845 - 1.3 \log \left(\frac{x}{10000} \right) + 1.62 \left\{ \log \left(\frac{x}{10000} \right) \right\}^2 \right]$		12
11	$\rm H + e^- \rightarrow \rm H^+ + e^- + e^-$	$k_{11} = \exp[-3.271396786 \times 10^{1}]$		13
		$+ 1.35365560 \times 10^{1} \ln T_{e}$		
		$-5.73932875 \times 10^{\circ} (\ln T_e)^2$		
		$+ 1.56315498 \times 10^{0} (\ln T_{e})^{3}$		
		$-2.87705600 \times 10^{-1} (\ln T_e)^4$		
		$+3.48255977 \times 10^{-2} (\ln T_e)^{\circ}$		
		$-2.03197017 \times 10^{-6} (\ln T_e)^{-7}$ + 1.11054205 $\times 10^{-4} (\ln T_e)^{-7}$		
		$-2.03914985 \times 10^{-6} (\ln T_c)^8$		
12	$H^+ + e^- \rightarrow H + \infty$	$k_{rot} = 1.260 \times 10^{-13} \left(\frac{315614}{1.503}\right)^{1.503}$	Case A	14
12	$n \rightarrow n + q$	$\kappa_{12,\Lambda} = 1.203 \times 10^{-10} \left(\frac{-T}{T}\right)$	Case A	14
		$\left[1.0 + \left(\frac{-T}{T}\right)\right]$ $k_{100} = 2.753 \times 10^{-14} \left(\frac{315614}{1.500}\right)^{1.500}$	Case B	14
		$\times [1.0 + (\frac{115188}{10})^{0.407}]^{-2.242}$	Case 15	
13	$H^- + e^- \rightarrow H + e^- + e^-$	$k_{13} = \exp[-1.801849334 \times 10^{1}]$		13
		$+ 2.36085220 \times 10^{0} \ln T_{e}$		
		$-2.82744300 \times 10^{-1} (\ln T_e)^2$		
		$+ 1.62331664 \times 10^{-2} (\ln T_e)^3$		
		$-3.36501203 \times 10^{-2} (\ln T_e)^4$		
		$+ 1.17832978 \times 10^{-2} (\ln T_e)^5$		
		$-1.65619470 \times 10^{-3} (\ln T_e)^6$		
		$+ 1.06827520 \times 10^{-3} (\ln T_e)^{\prime}$		

	- 1	14	$\rm H^- + \rm H \rightarrow \rm H + \rm H + e^-$	$k_{14} = 2.5634 \times 10^{-9} T_e^{1.78186}$	$T_e \leqslant 0.1 \text{ eV}$	13
				$= \exp[-2.0372609 \times 10^{1}]$		
				$+ 1.13944933 \times 10^{\circ} \ln T_{e}$		
Table	B1.			$-1.4210135 \times 10^{-3} (\ln T_{e})^{*}$ + 8.4644554 $\times 10^{-3} (\ln T_{e})^{3}$		
No.	Rea		cne			
1	U.I			$+2.1256$ $10^{-5} (nT_{e})$		
1	n+			$+ 8.0039032 \times 10^{-5} (\ln T_e)^{\circ}$ - 2.5850097 $\times 10^{-5} (\ln T_e)^{\circ}$		
				$+ 2.4555012 \times 10^{-6} (\ln T_e)^8$		
				$-8.0683825 \times 10^{-8} (\ln T_e)^9$	$T_{\rm e} > 0.1 {\rm eV}$	
-		15	$H^- + H^+ \rightarrow H_2^+ + e^-$	$k_{15} = 6.9 \times 10^{-9} T^{-0.35}$	$T \leqslant 8000 \text{ K}$	15
2	H-			$= 9.6 \times 10^{-7} T^{-0.90}$	$T > 8000 { m K}$	
3	H.	16	$He + e \rightarrow He' + e + e$	$k_{16} = \exp[-4.409864886 \times 10^{\circ}]$ + 2.301506563 × 10 ¹ ln T.		13
				$-1.07532302 \times 10^{1} (\ln T_{e})^{2}$		
4	H +			$+ 3.05803875 \times 10^{0} (\ln T_{e})^{3}$		
5	H^{-}			$-5.6851189 \times 10^{-1} (\ln T_e)^4$		
6	H_2^+			$+ 6.79539123 \times 10^{-2} (\ln T_e)^5$		
-				$-5.0090561 \times 10^{-3} (\ln T_e)^{6}$		
7	н2 -			$+ 2.06723616 \times 10^{-6} (\ln T_e)^{-6}$ - 3.64916141 $\times 10^{-6} (\ln T_e)^{-8}$		
		17	$He^+ + e^- \rightarrow He + \gamma$	$k_{17 \text{ rr}} = 10^{-11} T^{-0.5} [12.72 - 1.615 \log T]$	Case A	16
				$-0.3162(\log T)^2 + 0.0493(\log T)^3$		
				$k_{17,rr,B} = 10^{-11}T^{-0.5} [11.19 - 1.676 \log T]$	Case B	16
				$-0.2852(\log T)^2 + 0.04433(\log T)^3$		
				$k_{17,di} = 1.9 \times 10^{-3} T^{-1.5} \exp \left(-\frac{473421}{T}\right)$		
				$\times \left[1.0 + 0.3 \exp \left(-\frac{94684}{T}\right)\right]$		17
	U.	18	$\mathrm{He^+} + \mathrm{H} \rightarrow \mathrm{He} + \mathrm{H^+}$	$k_{18} = 1.25 \times 10^{-15} \left(\frac{T}{300}\right)^{0.25}$		18
0	112 ·	19	$He + H^+ \rightarrow He^+ + H$	$k_{19} = 1.26 \times 10^{-9} T^{-0.75} \exp\left(-\frac{127500}{T}\right)$	$T \leqslant 10000 \text{ K}$	19
9	112.			$=4.0 \times 10^{-37} T^{4.74}$	T > 10000 K	
		20	$C^+ + e^- \rightarrow C + \gamma$	$k_{20} = 4.67 \times 10^{-12} \left(\frac{T}{300}\right)^{-0.6}$	$T \leqslant 7950 \text{ K}$	20
				$= 1.23 \times 10^{-17} \left(\frac{T}{200} \right)^{2.49} \exp \left(\frac{21845.6}{T} \right)$	$7950~{\rm K} < T \leqslant 21140~{\rm K}$	
10	H_2 -			$=9.62 \times 10^{-8} \left(\frac{T}{T_{0}}\right)^{-1.37} \exp\left(\frac{-115786.2}{T_{0}}\right)$	T > 21140 K	
		21	$O^+ + e^- \rightarrow O + \gamma$	$k_{21} = 1.30 \times 10^{-10} T^{-0.64}$	$T \leqslant 400 \text{ K}$	21
				$= 1.41 \times 10^{-10} T^{-0.66} + 7.4 \times 10^{-4} T^{-1.5}$		
				$\times \exp\left(-\frac{175000}{T}\right) \left[1.0 + 0.062 \times \exp\left(-\frac{145000}{T}\right)\right]$	$T > 400 { m K}$	
11	n+	22	$C + e^- \rightarrow C^+ + e^- + e^-$	$k_{22} = 6.85 \times 10^{-8} (0.193 + u)^{-1} u^{0.25} e^{-u}$	$u = 11.26/T_e$	22
		23	$O + e^- \rightarrow O^+ + e^- + e^-$	$k_{23} = 3.59 \times 10^{-6} (0.073 + u)^{-1} u^{0.34} e^{-u}$ $k_{23} = 4.00 \times 10^{-11} T^{0.405} + 7.54 \times 10^{-10} T^{-0.458}$	$u = 13.6/T_{e}$	22
		24	$O^+ H^+ \rightarrow O^+ H^+$	$k_{24} = 4.99 \times 10^{-11} T^{0.517} + 7.54 \times 10^{-11} T^{0.517}$		20
		20	0+H -> 0 +H	$+4.00 \times 10^{-10} T^{0.00669} \exp\left(-\frac{227}{27}\right)$		2.1
		26	$O + He^+ \rightarrow O^+ + He$	$k_{06} = 4.991 \times 10^{-15} \left(\frac{T}{T}\right)^{0.3794} \exp\left(-\frac{T}{T}\right)$		25
			0 1 110 1 00 1 110	(10000) = (121000)		20
		97	$C + H^+ \rightarrow C^+ + H$	$+2.780 \times 10^{-10} (\frac{10000}{10000}) \exp(\frac{10000}{815800})$		24
12	H^+	20	$C^+ + H \rightarrow C + H^+$	$k_{27} = 6.08 \times 10^{-14} \left(\frac{T}{T}\right)^{1.96} \exp\left(-\frac{170000}{1}\right)$		24
		20	$C + He^+ \rightarrow C^+ + He$	$k_{28} = 0.08 \times 10^{-17} (10000)$ exp $(-T)$	$T \le 200 \text{ K}$	26
		20	$0 + 10 \rightarrow 0 + 10$	$= 3.25 \times 10^{-17} T^{0.968}$	$200 < T \le 2000$ K	20
				$= 2.77 \times 10^{-19} T^{1.597}$	$T > 2000 { m K}$	
12		30	$H_2 + He \rightarrow H + H + He$	$k_{30,1} = dex \left[-27.029 + 3.801 \log \left(T \right) - 29487/T \right]$		27
15	n			$k_{30,h} = \text{dex}\left[-2.729 - 1.75\log\left(T\right) - 23474/T\right]$		
				$n_{\rm cr,He} = \text{dex} \left[5.0792(1.0 - 1.23 \times 10^{-5}(T - 2000)) \right]$		27
		31	$OH + H \rightarrow O + H + H$	$k_{31} = 6.0 \times 10^{-5} \exp\left(-\frac{50500}{T}\right)$		28
		32	$HOC^+ + H_2 \rightarrow HCO^+ + H_2$ $HOC^+ + CO \rightarrow HCO^+ + CO$	$k_{32} = 3.6 \times 10^{-10}$ $k_{33} = 4.0 \times 10^{-10}$		29
		34	$C + H_2 \rightarrow CH + H$	$k_{34} = 6.64 \times 10^{-10} \exp\left(-\frac{11700}{7}\right)$		31
		35	$CH + H \rightarrow C + H_2$	$k_{35} = 1.31 \times 10^{-10} \exp \left(-\frac{80}{2}\right)^{T}$		32
	. I.					

	- 1	14	H^{-}	+ H -	\rightarrow H + H + e	00	$\mathbf{U}_{0} + \mathbf{U}_{0}^{+} + \mathbf{U}_{0} + \mathbf{U}_{1}^{+}$	$h_{\rm m} = 7.9 \times 10^{-15}$	62
			- 1	0.0	CII - II-	80	$H_2 + He^+ \rightarrow He + H_2^+$ $H_2 + He^+ \rightarrow He + H + H^+$	$k_{88} = 7.2 \times 10^{-14} \exp\left(\frac{35}{2}\right)$	63
				30	$CH + H_2 =$ CH + C =	90	$H_2 + H_1 \rightarrow H_1 + H_1$ $CH + H^+ \rightarrow CH^+ + H_1$	$k_{89} = 5.7 \times 10^{-9} \text{ exp} \left(\frac{T}{T} \right)$	28
Table	в1			38	CH + C -	91	$CH_2 + H^+ \rightarrow CH_2^+ + H$	$k_{91} = 1.4 \times 10^{-9}$	28
No	Ree				Ch	.92	$C_{12} - H^+ \rightarrow C^+ + e - H_2$	MACA /	28
180.	nea			39	C	93			28
1	н+			40	$CH_2 + O -$	94	$OH + H^+ \rightarrow OH^+ + H$	$k_{94} = 2.1 \times 10^{-9}$	28
				41	$CH_2 + O -$	96	$H_2O + H^+ \rightarrow H_2O^+ + H_1$	$k_{95} = 1.1 \times 10^{-9}$ $k_{96} = 6.9 \times 10^{-9}$	64
				42	$C_2 + O \rightarrow$	97	$H_2O + He^+ \rightarrow OH + He + H^+$	$k_{97} = 2.04 \times 10^{-10}$	65
		15	H^{-}			98	$H_2O + He^+ \rightarrow OH^+ + He + H$	$k_{98} = 2.86 \times 10^{-10}$	65
2	н-			43	$O + H_2 \rightarrow$	99	$H_2O + He^+ \rightarrow H_2O^+ + He$	$k_{99} = 6.05 \times 10^{-11}$	65
2		16	He	44	$OH + H \rightarrow$	100	$O_2 + H^+ \rightarrow O_2^+ + H_0$ $O_2 + H_0^+ \rightarrow O_2^+ + H_0$	$k_{100} = 2.0 \times 10^{-9}$ $k_{101} = 3.3 \times 10^{-11}$	66
9	n+			45	$OH + H_2$ -	102	$O_2 + He^+ \rightarrow O^+ + O + He$	$k_{101} = 0.0 \times 10^{-9}$ $k_{102} = 1.1 \times 10^{-9}$	66
4	H +			46	$OH + C \rightarrow$	103	$O_2^+ + C \rightarrow O_2 + C^+$	$k_{103} = 5.2 \times 10^{-11}$	28
5	H^{-}			47	OH + O -	104	$\rm CO + He^+ \rightarrow C^+ + O + He$	$k_{104} = 1.4 \times 10^{-9} \left(\frac{T}{300}\right)^{-0.5}$	67
6	H_2^+					105	$\rm CO + He^+ \rightarrow C + O^+ + He$	$k_{105} = 1.4 \times 10^{-16} \left(\frac{T}{300}\right)^{-0.5}$	67
7	Ha			48	OH + OH	106	$\rm CO^+ + H \rightarrow \rm CO + H^+$	$k_{106} = 7.5 \times 10^{-10}$	68
	112			49	$H_2O + H$ -	107	$C^- + H^+ \rightarrow C + H$	$k_{107} = 2.3 \times 10^{-7} \left(\frac{T}{300}\right)^{-0.5}$	28
		17	He	50	$O_2 + H \rightarrow$	108	$O^- + H^+ \rightarrow O + H$	$k_{108} = 2.3 \times 10^{-7} \left(\frac{T}{200} \right)^{-0.5}$	28
				51	$O_2 + H_2 -$	109	$\mathrm{He^+} + \mathrm{H^-} \rightarrow \mathrm{He} + \mathrm{H}$	$k_{109} = 2.32 \times 10^{-7} \left(\frac{T}{200}\right)^{-0.52} \exp\left(\frac{T}{20000}\right)$	69
				52	$O_2 + C \rightarrow$	110	$H_{+}^{+} + e^{-} \rightarrow H_{2} + H_{1}$	$k_{110} = 2.34 \times 10^{-8} \left(\frac{T}{T_{c}}\right)^{-0.52}$	70
						111	$H^+ + e^- \rightarrow H + H + H$	$k_{11} = 4.36 \times 10^{-8} \left(\frac{T}{T}\right)^{-0.52}$	70
				53	$CO + H \rightarrow$	110	$C_{3}^{++} + c_{-}^{-} \rightarrow C_{+}^{++} H$	$k_{111} = 4.00 \times 10^{-8} (\frac{300}{300})$	71
		10		54	$H_2^+ + H_2 -$	112	$CH^+ + e^- \rightarrow C + H$	$\kappa_{112} = 7.0 \times 10^{-7} \left(\frac{1}{300}\right)^{-0.6}$	71
8	H_2 -	18	He	55	$H_3^+ + H \rightarrow$	113	$CH_2 + e \rightarrow CH + H$	$k_{113} = 1.6 \times 10^{-7} \left(\frac{1}{300}\right)^{-0.6}$	72
9	H_2 -	19	ne	56	$C + H_2^+ \rightarrow$	114	$CH_2 + e^- \rightarrow C + H + H$	$k_{114} = 4.03 \times 10^{-7} \left(\frac{300}{300} \right)$	72
		20	C ⁺	57	$C + H_3^+ \rightarrow$	115	$CH_2^- + e^- \rightarrow C + H_2$	$k_{115} = 7.68 \times 10^{-6} \left(\frac{1}{300}\right)$	72
		20	~	58	$C^{+} + H_{2} - CU^{+} + H_{2}$	116	$CH_3^+ + e^- \rightarrow CH_2 + H$	$k_{116} = 7.75 \times 10^{-8} \left(\frac{2}{300}\right)^{-0.5}$	73
10	H2 -			59 60	$CH^+ + H_{a}$	117	$CH_3^+ + e^- \rightarrow CH + H_2$	$k_{117} = 1.95 \times 10^{-7} \left(\frac{T}{300}\right)^{-0.6}$	73
		21	0+	61	$CH^+ + O$	118	$CH_3^+ + e^- \rightarrow CH + H + H$	$k_{118} = 2.0 \times 10^{-7} \left(\frac{T}{300}\right)^{-0.4}$	28
				62	$CH_2 + H^+$	119	$OH^+ + e^- \rightarrow O + H$	$k_{119} = 6.3 \times 10^{-9} \left(\frac{T}{300}\right)^{-0.38}$	74
				63	$CH_2^+ + H$	120	$\rm H_2O^+ + e^- \rightarrow O + H + H$	$k_{120} = 3.05 \times 10^{-7} \left(\frac{T}{300}\right)^{-0.5}$	75
11	н+	22	C+	64	$CH_2^+ + H_2$	121	$H_2O^+ + e^- \rightarrow O + H_2$	$k_{121} = 3.9 \times 10^{-8} \left(\frac{T}{300}\right)^{-0.5}$	75
		23	0	65	$CH_2^+ + O$	122	$H_2O^+ + e^- \rightarrow OH + H$	$k_{122} = 8.6 \times 10^{-8} \left(\frac{T}{300}\right)^{-0.5}$	75
		25	0+	67	$CH_3 + H$	123	$H_3O^+ + e^- \rightarrow H + H_2O$	$k_{123} = 1.08 \times 10^{-7} \left(\frac{T}{200}\right)^{-0.5}$	76
				68	$C_2 + O^+$	124	$H_3O^+ + e^- \rightarrow OH + H_2$	$k_{124} = 6.02 \times 10^{-8} \left(\frac{T}{T}\right)^{-0.5}$	76
		26	0+	69	$O^{+} + H_{2} -$	125	$H_{2}O^{+} + e^{-} \rightarrow OH + H + H$	$k_{125} = 2.58 \times 10^{-7} \left(\frac{T}{T}\right)^{-0.5}$	76
				70	$O + H_2^+ \rightarrow$	126	$H_0O^+ + e^- \rightarrow O + H + H_0$	$k_{125} = 5.6 \times 10^{-9} \left(\frac{T}{T}\right)^{-0.5}$	76
		27	C +	71	$O + H_3^+ \rightarrow$	197	0^+ + $c^ \rightarrow$ 0 + 0	$h_{126} = 0.0 \times 10^{-7} \left(\frac{1}{300} \right)^{-0.7}$	77
12	H^+	28	C^+	72	$OH + H_3$ $OH + C^+$	121	$O_2 + e^{-} \rightarrow O + O$	$\kappa_{127} = 1.35 \times 10^{-7} \left(\frac{300}{300}\right)$	
		29	C +	74	$OH^+ + H_2$	128	$CO^+ + e^- \rightarrow C + O$	$k_{128} = 2.75 \times 10^{-7} \left(\frac{300}{300} \right)$	78
				75	$H_2O^+ + H$	129	$HCO^+ + e^- \rightarrow CO + H$	$k_{129} = 2.76 \times 10^{-7} \left(\frac{300}{300} \right)$	79
		30	Ha	76	$H_2O + H_3^+$	130	$HCO^+ + e^- \rightarrow OH + C$	$k_{130} = 2.4 \times 10^{-6} \left(\frac{1}{300}\right)$	79
13	H^{-}			77	$H_2O + C^+$ $H_2O + C^+$	131	$HOC^+ + e^- \rightarrow CO + H$	$k_{131} = 1.1 \times 10^{-7} \left(\frac{1}{300}\right)^{-10}$	28
				79	$H_{3}O^{+} + C$	132	$H^- + C \rightarrow CH + e^-$	$k_{132} = 1.0 \times 10^{-9}$	28
		31	OH	80	$O_2 + C^+$ -	133	$H^- + OH \rightarrow H_2O + e^-$	$k_{133} = 1.0 \times 10^{-10}$ $k_{134} = 1.0 \times 10^{-10}$	28
		32	HO	81	$O_2 + C^+$	135	$C^- + H \rightarrow CH + e^-$	$k_{135} = 5.0 \times 10^{-10}$	28
		33	HO	82	$O_2 + CH_2^+$	136	$C^- + H_2 \rightarrow CH_2 + e^-$	$k_{136} = 1.0 \times 10^{-13}$	28
		25	CP	63 84	$CO + H^+$	137	$C^- + O \rightarrow CO + e^-$ $O^- + H \rightarrow OH + e^-$	$k_{137} = 5.0 \times 10^{-10}$ $k_{100} = 5.0 \times 10^{-10}$	28
		- 33	On	85	$CO + H_3^+$	139	$O^- + H_2 \rightarrow H_2O + e^-$	$k_{138} = 7.0 \times 10^{-10}$	28
				86	$HCO^+ + C$	140	$O^- + C \rightarrow CO + e^-$	$k_{140} = 5.0 \times 10^{-10}$	28
_			_	87	$HCO^+ + H_2O$	$0 \rightarrow CC$	$P + H_3O^+$ $k_{87} = 2.5 \times 10^{-9}$	62	_

(Glover, Federrath, Mac Low, Klessen, 2010, MNRS, 404, 2)

		14	H^{-}	+H -	H + H + e	88	Ho	$+ He^+ \rightarrow He + H^+$	$r_{\rm e} = 7.2 \times 10^{-15}$ 63	
				36	$CH + H_2 -$	89	H ₂	$+ He^+ \rightarrow He + H_2^+$ $+ He^+ \rightarrow He + H + H^+$	$s_{3} = -1.2 \times 10^{-14} \exp\left(\frac{35}{T}\right)$ 63	7Λ.`
Table F	31.			37	$CH + C \rightarrow$	90	CH	$+ H^+ \rightarrow CH^+ + H$	$_{80} = 1.9 \times 10^{-9}$ 28	ntrum für Astronomie Heidelberg
				38	$CH + C \rightarrow$	91	CH	$_2 + H^+ \rightarrow CH_2^+ + H$	$n = 1.4 \times 10^{-9}$ 28	ARI+ITA+LSW
No.	Rea					92	CI	$2 - H \rightarrow 0 + e - H_2$		
1	H+			39	CHa L O	94	OH	$+ H^+ \rightarrow OH^+ + H$	$_{44} = 2.1 \times 10^{-9}$ 28	
-				41	$CH_2 + O$ $CH_2 + O$	95	OH	$+\mathrm{He^+}\rightarrow\mathrm{O^+}+\mathrm{He}+\mathrm{H}$	$b_5 = 1.1 \times 10^{-9}$ 28	
				42	$C_2 + O \rightarrow$	96	H_2	$O + H^+ \rightarrow H_2O^+ + H$	$h_6 = 6.9 \times 10^{-9}$ 64	
						97	H20	$J + He^+ \rightarrow OH + He + H^+$	77 = 2.04 × 10 ⁻¹⁰ 65	
2	н-	15	н	43	$O + H_2 \rightarrow$	99	142	$C \pm e^- \rightarrow C^- \pm \gamma$	$k_{122} = 2.25 \times 10^{-15}$	81
		16	He	44	$OH + H \rightarrow$	10	143	$C + H \rightarrow CH + \gamma$	$k_{142} = 2.0 \times 10^{-17}$ $k_{143} = 1.0 \times 10^{-17}$	82
3	н+			45	OH + He	10	144	$C + H_2 \rightarrow CH_2 + \gamma$	$k_{144} = 1.0 \times 10^{-17}$	82
4	H.			46	$OH + C \rightarrow$	10	145	$C+C \rightarrow C_2 + \gamma$	$k_{145} = 4.36 \times 10^{-18} \left(\frac{T}{300}\right)^{0.35} \exp\left(-\frac{161.3}{T}\right)$	83
5	н-			47	OH + O -	10	146	$C + O \rightarrow CO + \gamma$	$k_{146} = 2.1 \times 10^{-19}$ $T \leq 300 \text{ K}$	84
6	H_2^+					10			$= 3.09 \times 10^{-17} \left(\frac{T}{300}\right)^{0.53} \exp\left(-\frac{1629}{T}\right)$ T > 300 K	85
_				48	OH + OH	10	147	$C^+ + H \rightarrow CH^+ + \gamma$	$k_{147} = 4.46 \times 10^{-16} T^{-0.5} \exp\left(-\frac{4.93}{T^{2/3}}\right)$	86
7	H2 -			49	$H_2O + H -$	10	148	$C^+ + H_2 \rightarrow CH_2^+ + \gamma$	$k_{148} = 4.0 \times 10^{-16} \left(\frac{T}{300}\right)^{-0.2}$	87
		17	He	50	$O_2 + H \rightarrow$	10	149	$C^+ + O \rightarrow CO^+ + \gamma$	$k_{149} = 2.5 \times 10^{-18}$ $T \leq 300 \text{ K}$	84
				51	$O_2 + H_2 -$	10			$= 3.14 \times 10^{-18} \left(\frac{T}{300} \right)^{-0.13} \exp \left(\frac{68}{T} \right)$ T > 300 K	
				52	$O_2 + C \rightarrow$	10	150	$O + e^- \rightarrow O^- + \gamma$	$k_{150} = 1.5 \times 10^{-15}$	28
						110	151	$O + H \rightarrow OH + \gamma$	$k_{151} = 9.9 \times 10^{-19} \left(\frac{7}{300} \right)_{1.58}$	28
				53	$CO + H \rightarrow$	11.	152	$O + O \rightarrow O_2 + \gamma$	$k_{152} = 4.9 \times 10^{-20} \left(\frac{T}{300}\right)^{1.38}$	82
				54	$H_{2}^{+} + H_{2} -$	11:	153	$OH + H \rightarrow H_2O + \gamma$	$k_{153} = 5.26 \times 10^{-18} \left(\frac{T}{300} \right)^{-5.22} \exp \left(-\frac{90}{T} \right)$	88
8	H_2 -	18	He	55	$H_{2}^{+} + H \rightarrow$	11:	154	$\rm H + \rm H + \rm H \rightarrow \rm H_2 + \rm H$	$k_{154} = 1.32 \times 10^{-32} \left(\frac{T}{300}\right)^{-0.38}$ $T \leq 300 \text{ K}$	89
9	H_2 -	19	He	56	$C + H_2^+ \rightarrow$	11.			$= 1.32 \times 10^{-32} \left(\frac{T}{300}\right)^{-1.0}$ T > 300 K	90
			a +	57	$C + H_3^{\uparrow} \rightarrow$	11	155	$\rm H + \rm H + \rm H_2 \rightarrow \rm H_2 + \rm H_2$	$k_{155} = 2.8 \times 10^{-31} T^{-0.6}$	91
		20	C	58	$C^{+} + H_{2} -$	110	156	$\rm H + \rm H + \rm He \rightarrow \rm H_2 + \rm He$	$k_{156} = 6.9 \times 10^{-32} T^{-0.4}$	92
10	Ha			59	$CH^+ + H$	11'	157	$\mathrm{C} + \mathrm{C} + \mathrm{M} \rightarrow \mathrm{C}_2 + \mathrm{M}$	$k_{157} = 5.99 \times 10^{-33} \left(\frac{T}{5000} \right)^{-1.6}$ $T \leq 5000 \text{ K}$	93
10	112	01	0+	60	$CH^+ + H_2$ $CH^+ + O$	118			$= 5.99 \times 10^{-33} \left(\frac{T}{5000}\right)^{-0.64} \exp\left(\frac{5255}{T}\right)$ T > 5000 K	94
		21	0.	62	$CH_2 + H^+$	119	158	$\rm C+O+M\rightarrow \rm CO+M$	$k_{158} = 6.16 \times 10^{-29} \left(\frac{T}{300}\right)^{-3.08}$ $T \leq 2000 \text{ K}$	35
				63	$CH_2^+ + H$	12			$= 2.14 \times 10^{-29} \left(\frac{T}{300}\right)^{-3.08} \exp\left(\frac{2114}{T}\right)$ T > 2000 K	67
11	н+	22	C +	64	$CH_2^+ + H_2$	12	159	$\mathrm{C^+} + \mathrm{O} + \mathrm{M} \rightarrow \mathrm{CO^+} + \mathrm{M}$	$k_{159} = 100 \times k_{210}$	67
		23	0+	65	$CH_2^+ + O$	12	160	$C + O^+ + M \rightarrow CO^+ + M$	$k_{160} = 100 \times k_{210}$	67
		24 25	0.	66	$CH_3^+ + H$	12	161	$O + H + M \rightarrow OH + M$	$k_{161} = 4.33 \times 10^{-32} \left(\frac{4}{300} \right)^{-2.0}$	43
		20		68	$C_{2} + O^{+}$	12	162	$OH + H + M \rightarrow H_2O + M$	$k_{162} = 2.56 \times 10^{-31} \left(\frac{T}{300} \right)^{-1.0}$	35
		26	0+	69	$O^{+} + H_{2} -$	12	163	$\rm O+O+M \rightarrow O_2+M$	$k_{163} = 9.2 \times 10^{-34} \left(\frac{T}{300} \right)^{-1.0}$	37
				70	$O + H_2^+ \rightarrow$	12	164	$\rm O+CH \rightarrow HCO^+ + e^-$	$k_{164} = 2.0 \times 10^{-11} \left(\frac{T}{300}\right)^{0.44}$	95
		27	C+	71	$O + H_3^+ \rightarrow$	120	165	$H + H(s) \rightarrow H_2$	$k_{165} = 3.0 \times 10^{-18} T^{0.5} f_A [1.0 + 0.04(T + T_d)^{0.5}] f_A = [1.0 + 10^4 \exp(-\frac{600}{T_d})]$	$)]^{-1}$ 96
12	H^+	28	\mathbf{C}^+	72	$OH + H_3$ $OH + C^+$	12			$+0.002 T + 8 \times 10^{-6} T^{2}]^{-1}$	
		29	C+	74	$OH^+ + H_2$	121 -		ot	a ma	
				75	$H_2O^+ + H$	129	нс	$O^+ + e^- \rightarrow CO + H$	$229 = 2.76 \times 10^{-7} \left(\frac{300}{300}\right)$ 79	
		30	Ha	76	$H_2O + H_3^+$	130	нс	$O^+ + e^- \rightarrow OH + C$	$x_{30} = 2.4 \times 10^{-6} \left(\frac{1}{300} \right)_{-1.0}$ 79	
13	н-			78	$H_2O + C^+$ $H_2O + C^+$	131	но	$C^+ + e^- \rightarrow CO + H$	$1_{31} = 1.1 \times 10^{-7} \left(\frac{1}{300}\right)$ 28	
				79	$H_3O^+ + C$	132	н н-	$+ C \rightarrow CH + e^-$ $+ O \rightarrow OH + e^-$	$_{32} = 1.0 \times 10^{-9}$ $_{28}$ $_{28} = 1.0 \times 10^{-9}$ $_{28}$	
		31	OH	80	$O_2 + C^+$ -	134	н-	$+ \text{OH} \rightarrow \text{H}_2\text{O} + e^-$	$_{34} = 1.0 \times 10^{-10}$ 28	
		32	HO	81	$O_2 + C^+ - O_2 + C^{++}$	135	C^{-}	$+ H \rightarrow CH + e^-$	$35 = 5.0 \times 10^{-10}$ 28	
		34	C-	83	$O_2^+ + O_2^-$ $O_2^+ + C^-$	136	C-	$+ H_2 \rightarrow CH_2 + e^-$ + $O \rightarrow CO + e^-$	$_{36} = 1.0 \times 10^{-1.0}$ 28	
		35	CH	84	$CO + H_3^+$	137	ŏ-	$+ H \rightarrow OH + e^-$	$_{38} = 5.0 \times 10^{-10}$ 28	
			_	85	$CO + H_3^+$	139	0-	$+ H_2 \rightarrow H_2O + e^-$	$_{39} = 7.0 \times 10^{-10}$ 28	
		_		86	$HCO^+ + C$ $HCO^+ + U$	140	0	$+ C \rightarrow CO + e^{-}$	$40 = 5.0 \times 10^{-10}$ 28	
				-01	$100 + H_2$	$0 \rightarrow 0$)+n	30 A87 = 2.0 X 10	02	

(Glover, Federrath, Mac Low, Klessen, 2010, MNRS, 404, 2)

Table B1. No. Rea 1 H+	14 H	+ H - 36 37 38 39 40 41 42	$\begin{array}{c} H + H + e^{-}\\ CH + H_2 - \\ CH + C \rightarrow\\ CH + C - \\ CH_2 + O - \\ CH_2 + O - \\ C_2 + O \rightarrow \end{array}$	88 89 90 91 92 93 94 95 96 97	$\begin{array}{l} H_2 + He^+ \to He + H_2^+ \\ H_2 + He^+ \to He + H + H^+ \\ CH + H^+ \to CH^+ + H \\ CH_2 + H^+ \to CH_2^+ + H \\ CH_2 + H^+ \to CH_2^+ + H \\ CH_2 + He^+ \to CH_2^+ + H \\ CH_2 + He^+ \to CH_2^+ + H \\ CH_1 + He^+ \to OH^+ + H \\ OH + He^+ \to O^+ + He + H \\ H_2 O + H^+ \to H_2 O^+ + H \\ H_2 O + He^+ \to OH + He + H^+ \end{array}$	$k_{88} = 7.2 \times 10^{-15}$ $k_{89} = 3.7 \times 10^{-14} \exp\left(\frac{35}{T}\right)$ $k_{90} = 1.9 \times 10^{-9}$ $k_{91} = 1.4 \times 10^{-9}$ $k_{94} = 2.1 \times 10^{-9}$ $k_{95} = 1.1 \times 10^{-9}$ $k_{96} = 6.9 \times 10^{-9}$ $k_{97} = 2.04 \times 10^{-10}$	2	63 63 28 28 28 28 28 28 28 28 28 64 65
	15 11	_		97 98	$H_2O + He^+ \rightarrow OH + He + H^+$	$k_{97} = 2.04 \times 10^{-10}$		65

Table	B2. List of photochemical	reactions included in our che	emical mod	el	25×10^{-15} 0 × 10 ⁻¹⁷	81 82
No.	Reaction	Optically thin rate (s^{-1})	γ	Ref.	0×10^{-17} $36 \times 10^{-18} \left(\frac{T}{200}\right)^{0.35} \exp\left(-\frac{161.3}{T}\right)$	82 83
166	$H^- + \sim \rightarrow H + e^-$	$B_{1ee} = 7.1 \times 10^{-7}$	0.5	1	1×10^{-19} (300) $T \ll 10^{-19}$ $T \leqslant 300 \text{ K}$	84
167	$H^+ + \gamma \rightarrow H + H^+$	$R_{166} = 1.1 \times 10^{-9}$	1.9	2	$09 \times 10^{-17} \left(\frac{T}{300}\right)^{0.33} \exp\left(-\frac{1629}{T}\right)$ T > 300 K	85
168	$H_2 + \gamma \rightarrow H + H$	$R_{167} = 5.6 \times 10^{-11}$	See 82.2	ã	$46 \times 10^{-16} T^{-0.5} \exp\left(-\frac{4.93}{T^{2/3}}\right)$	86
169	$H_2^+ + \gamma \rightarrow H_2 + H^+$	$R_{168} = 3.0 \times 10^{-13}$	1.8	4	$0 \times 10^{-16} \left(\frac{T}{300}\right)^{-0.2}$	87
170	$H^+_3 + \gamma \rightarrow H^+_2 + H$	$R_{170} = 4.9 \times 10^{-13}$	2.3	4	5×10^{-18} $T \leq 300 \text{ K}$	84
171	$C + \gamma \rightarrow C^+ + e^-$	$R_{171} = 3.1 \times 10^{-10}$	3.0	5	$14 \times 10^{-10} \left(\frac{300}{300}\right) \exp \left(\frac{30}{T}\right)$ T > 300 K	28
172	$C^- + \gamma \rightarrow C + e^-$	$R_{172} = 2.4 \times 10^{-7}$	0.9	6	$9 \times 10^{-19} \left(\frac{T}{\pi^{-9}}\right)^{-0.38}$	28
173	$CH + \gamma \rightarrow C + H$	$R_{173} = 8.7 \times 10^{-10}$	1.2	7	$9 \times 10^{-20} \left(\frac{300}{T}\right)^{1.58}$	82
174	$CH + \gamma \rightarrow CH^+ + e^-$	$R_{174} = 7.7 \times 10^{-10}$	2.8	8	$(300)^{-18} \left(\frac{T}{T}\right)^{-5.22} \exp\left(-\frac{90}{9}\right)$	88
175	$CH^+ + \gamma \rightarrow C + H^+$	$R_{175} = 2.6 \times 10^{-10}$	2.5	7	$32 \times 10^{-32} \left(\frac{T}{200}\right)^{-0.38} T \le 300 \text{ K}$	89
176	$CH_2 + \gamma \rightarrow CH + H$	$R_{176} = 7.1 \times 10^{-10}$	1.7	7	$32 \times 10^{-32} \left(\frac{T}{200}\right)^{-1.0}$ T > 300 K	90
177	$CH_2 + \gamma \rightarrow CH_2^+ + e^-$	$R_{177} = 5.9 \times 10^{-10}$	2.3	6	$8 \times 10^{-31} T^{-0.6}$	91
178	$CH_2^+ + \gamma \rightarrow CH^+ + H$	$R_{178} = 4.6 \times 10^{-10}$	1.7	9	$9 \times 10^{-32} T^{-0.4}$	92
179	$CH_3^+ + \gamma \rightarrow CH_2^+ + H$	$R_{179} = 1.0 \times 10^{-9}$	1.7	6	$99 \times 10^{-33} \left(\frac{T}{5000}\right)^{-1.6} \qquad T \leq 5000 \text{ K}$	93
180	$CH_3^+ + \gamma \rightarrow CH^+ + H_2$	$R_{180} = 1.0 \times 10^{-9}$	1.7	6	$99 \times 10^{-33} \left(\frac{T}{5000}\right)^{-3.08} \exp\left(\frac{5255}{T}\right) \qquad T > 5000 \text{ K}$	94
181	$C_2 + \gamma \rightarrow C + C$	$R_{181} = 1.5 \times 10^{-10}$	2.1	7	$16 \times 10^{-29} \left(\frac{T}{300}\right) = 3.08$ (2111) $T \leq 2000 \text{ K}$	35
182	$O^- + \gamma \rightarrow O + e^-$	$R_{182} = 2.4 \times 10^{-7}$	0.5	6	$14 \times 10^{-29} \left(\frac{T}{300}\right)^{-500} \exp\left(\frac{2114}{T}\right) \qquad T > 2000 \text{ K}$	67
183	$OH + \gamma \rightarrow O + H$	$R_{183} = 3.7 \times 10^{-10}$	1.7	10	$10 \times \kappa_{210}$ $10 \times k_{210}$	67 67
184	$OH + \gamma \rightarrow OH^+ + e^-$	$R_{184} = 1.6 \times 10^{-12}$	3.1	6	$33 \times 10^{-32} \left(\frac{T}{200}\right)^{-1.0}$	43
185	$OH^+ + \gamma \rightarrow O + H^+$	$R_{185} = 1.0 \times 10^{-12}$	1.8	4	$56 \times 10^{-31} \left(\frac{T}{200} \right)^{-2.0}$	35
186	$H_2O + \gamma \rightarrow OH + H$	$R_{186} = 6.0 \times 10^{-10}$	1.7	11	$2 \times 10^{-34} \left(\frac{700}{200}\right)^{-1.0}$	37
187	$H_2O + \gamma \rightarrow H_2O^+ + e^-$	$R_{187} = 3.2 \times 10^{-11}$	3.9	8	$0 \times 10^{-11} \left(\frac{T}{200}\right)^{0.44}$	95
188	$H_2O^+ + \gamma \rightarrow H_2^+ + O$	$R_{188} = 5.0 \times 10^{-11}$	See §2.2	12	$(300)^{-1}$ $0 \times 10^{-18} T^{0.5} f_{\rm A} [1.0 + 0.04(T + T_{\rm d})^{0.5}] f_{\rm A} = [1.0 + 10^4 \exp\left(-\frac{600}{T_{\rm c}}\right)]^{-1}$	96
189	$H_2O^+ + \gamma \rightarrow H^+ + OH$	$R_{189} = 5.0 \times 10^{-11}$	See §2.2	12	$0.002 T + 8 \times 10^{-6} T^2]^{-1}$	
190	$H_2O^+ + \gamma \rightarrow O^+ + H_2$	$R_{190} = 5.0 \times 10^{-11}$	See §2.2	12	$_{T}$ $\sum_{T}^{0.00}$ $\langle -0.64$	
191	$H_2O^+ + \gamma \rightarrow OH^+ + H$	$R_{191} = 1.5 \times 10^{-10}$	See §2.2	12	$5 \times 10^{-7} \left(\frac{300}{300}\right)$ 79	
192	$H_3O^+ + \gamma \rightarrow H^+ + H_2O$	$R_{192} = 2.5 \times 10^{-11}$	See §2.2	12	$\times 10^{-6} \left(\frac{1}{300} \right)$ 79	
193	$H_3O^+ + \gamma \rightarrow H_2^+ + OH$	$R_{193} = 2.5 \times 10^{-11}$	See §2.2	12	$\times 10^{-9}$ ($\frac{10^{-9}}{300}$) 28	
194	$H_3O^+ + \gamma \rightarrow H_2O^+ + H$	$R_{194} = 7.5 \times 10^{-12}$	See §2.2	12	× 10 ⁻⁹ 28	
195	$H_3O^+ + \gamma \rightarrow OH^+ + H_2$	$R_{195} = 2.5 \times 10^{-11}$	See §2.2	12	× 10 ⁻¹⁰ 28	
196	$O_2 + \gamma \rightarrow O_2 + e^-$	$R_{196} = 5.6 \times 10^{-10}$	3.7	7	× 10 ⁻¹⁰ 28 × 10 ⁻¹³ 28	
197	$O_2 + \gamma \rightarrow O + O$	$R_{197} = 7.0 \times 10^{-10}$ $R_{197} = 2.0 \times 10^{-10}$	1.8	12	× 10 ⁻¹⁰ 28	
198	$00+\gamma \rightarrow 0+0$	$R_{198} = 2.0 \times 10^{-10}$	See 32.2	13	× 10 ⁻¹⁰ 28	
_		$CO^+ + C \rightarrow CO + C \rightarrow$	- e ⁻	$k_{140} = l$	10^{-10} 28 10×10^{-10} 28	
	87 H	$\mathrm{CO^{+} + H_{2}O \rightarrow CO + H_{3}O^{+}}$ $k_{87} =$	2.5×10^{-9}		62	

(Glover, Federrath, Mac Low, Klessen, 2010, MNRS, 404, 2)

	Table B1. 1	14 H ⁻	$\begin{array}{c} + {\rm H} \rightarrow {\rm H} + {\rm H} + {\rm e} \\ \hline 36 {\rm CH} + {\rm H}_2 \\ 37 {\rm CH} + {\rm C} \rightarrow \end{array} \begin{array}{c} 88 {\rm H}_2 + {\rm H} \\ 89 {\rm H}_2 + {\rm H} \\ 90 {\rm CH} + {\rm H} \\ 21 {\rm CH} + {\rm H}_2 \end{array}$	$e^+ \rightarrow He + H_2^+$ $e^+ \rightarrow He + H + H^+$ $I^+ \rightarrow CH^+ + H$	$k_{88} = 7$ $k_{89} = 3$ $k_{90} = 1$	1.2×10^{-15} $1.7 \times 10^{-14} \exp\left(\frac{35}{T}\right)$ 1.9×10^{-9}	63 63 28	
	No. Rea 1 H +		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} \mathbf{H} & \rightarrow \mathbf{O} \mathbf{H}_2 + \mathbf{H} \\ \mathbf{H}^+ & \rightarrow \mathbf{O} \mathbf{H}^+ + \mathbf{H} \\ \mathbf{e}^+ & \rightarrow \mathbf{O} \mathbf{H}^+ + \mathbf{H} \\ \mathbf{H}^+ & \rightarrow \mathbf{O} \mathbf{H}^+ + \mathbf{H} \\ \mathbf{H}^+ & \rightarrow \mathbf{H}_2 \mathbf{O}^+ + \mathbf{H} \\ \mathbf{H}^+ & \rightarrow \mathbf{H}_2 \mathbf{O}^+ + \mathbf{H} \\ \mathbf{H} \mathbf{e}^+ & \rightarrow \mathbf{O} \mathbf{H} + \mathbf{H} \mathbf{e} + \mathbf{H}^+ \\ \end{array} $	$k_{91} = 1$ $k_{93} = 1$ $k_{94} = 2$ $k_{95} = 1$ $k_{96} = 6$ $k_{97} = 2$	$\begin{array}{c} 3 \times 10^{-9} \\ \hline & & \\ 5 \times 10^{-9} \\ 3.9 \times 10^{-9} \\ 0.04 \times 10^{-10} \end{array}$	28 28 28 28 28 64 65	ARI+ITA-LSW
Table	B2. List of	photoche	98 U.O. emical reactions included in	our chemical mod	el	25×10^{-15}	0E	81
No.	Reaction		Optically thin rate	(s ⁻¹) γ	Ref.	0×10^{-17} 0×10^{-17} $0 \times 10^{-18} (T_{-})^{0.35} = 0$	161.3)	82 82
166	U ⁻ tory	H + e ⁻	$P_{100} = 7.1 \times 10^{-7}$	0.5	1	$\frac{36 \times 10^{-10}}{1 \times 10^{-19}}$ $(\frac{1}{300})$ exp (-	$T \leq 300 \text{ K}$	83 84
167	$H^+ + \gamma \rightarrow$ $H^+ + \gamma \rightarrow$	$H + H^+$	$R_{166} = 1.1 \times 10^{-9}$ $R_{167} = 1.1 \times 10^{-9}$	1.9	2	$0.09 \times 10^{-17} \left(\frac{T}{300}\right)^{0.33} \exp\left(-\frac{T}{300}\right)^{0.33} \exp\left(-$	$-\frac{1629}{T}$ T > 300 K	85
168	$H_2 + \gamma \rightarrow 1$	H + H	$R_{167} = 5.6 \times 10^{-11}$	See §2.2	3	$46 \times 10^{-16} T^{-0.5} \exp \left(-\frac{4.9}{T^{2/2}}\right)$	$\frac{3}{3}$)	86
169	$H_{2}^{+} + \gamma \rightarrow$	$H_2 + H^4$	$R_{169} = 4.9 \times 10^{-13}$	1.8	4	$0 \times 10^{-16} \left(\frac{T}{300}\right)^{-16}$	T < 200 V	87
170	$H_3^+ + \gamma \rightarrow$	$H_{2}^{+} + H$	$R_{170} = 4.9 \times 10^{-13}$	2.3	4	$14 \times 10^{-18} \left(\frac{T}{200}\right)^{-0.15} \exp\left(\frac{T}{1000}\right)^{-0.15}$	$(\frac{68}{2})$ $T > 300 \text{ K}$	04
171	$C + \gamma \rightarrow C$	+	D 2.1 × 10-10	2.0	r.	(300)	(1) - ,	28
172	$C^- + \gamma \rightarrow$	Table	B3. List of reactions include	ed in our chemical	model	that involve cosmic rays	or cosmic-ray induced UV	emission 28
173	$CH + \gamma -$							32
174	$CH + \gamma - CH + \gamma - CH + \gamma - \gamma$	No.	Reaction	Rate $(s^{-1}\zeta_{H}^{-1})$		Ref.		38
175	$CH^{+} + \gamma$ $CH_{2} + \gamma$	100	$\mathbf{U} + \mathbf{c} = \mathbf{v} + \mathbf{U}^{+} + \mathbf{c}^{-}$	B 1.0				39
177	$CH_2 + \gamma$ $CH_2 + \gamma$	200	$H + c.r. \rightarrow H^{+} + e^{-}$ He + c.r. $\rightarrow He^{+} + e^{-}$	$R_{199} = 1.0$ $R_{200} = 1.1$		1		1
178	$CH_{+}^{+} + \gamma$	201	$H_2 + c.r. \rightarrow H^+ + H + e^-$	$R_{200} = 1.1$ $R_{201} = 0.037$		1		12
179	$CH_{2}^{+} + \gamma$	202	$H_2 + c.r. \rightarrow H + H$	$R_{202} = 0.22$		1		13
180	$CH_{3}^{2} + \gamma$	203	$H_2 + c.r. \rightarrow H^+ + H^-$	$R_{203} = 6.5 \times 10$	-4	1		14
181	$C_2 + \gamma \rightarrow$	204	$H_2 + c.r. \rightarrow H_2^+ + e^-$	$R_{204} = 2.0$		1		15
182	$O^- + \gamma -$	205	$C + c.r. \rightarrow C^+ + e^-$	$R_{205} = 3.8$		1		37
183	$OH + \gamma -$	206	$O + c.r. \rightarrow O^+ + e^-$	$R_{206} = 5.7$		1		37
184	$OH + \gamma -$	207	$CO + c.r. \rightarrow CO^+ + e^-$	$R_{207} = 6.5$		1		13
185	$OH^+ + \gamma$	208	$C + \gamma_{c.r.} \rightarrow C^+ + e^-$	$R_{208} = 2800$		2		35
180	$H_2O + \gamma$	209	$CH + \gamma_{c.r.} \rightarrow C + H$	$R_{209} = 4000$ $R_{209} = 060$		3		\$7
188	$H_2O + \gamma$ $H_2O^+ + \gamma$	210	$CH^{\circ} + \gamma_{c.r.} \rightarrow C^{\circ} + H^{\circ}$ $CH_{\circ} + \gamma_{c.r.} \rightarrow CH^{+} + e^{-}$	$R_{210} = 900$ $R_{211} = 2700$		1)5
189	$H_{2}O^{+} + 0$	212	$CH_2 + \gamma_{c.r.} \rightarrow CH_2 + c$ $CH_2 + \gamma_{c.r.} \rightarrow CH + H$	$R_{211} = 2700$ $R_{212} = 2700$		1)6
190	$H_2O^+ + 1$	213	$C_2 + \gamma_{c.r.} \rightarrow C + C$	$R_{213} = 1300$		3		_
191	$H_2O^+ + \gamma$	214	$OH + \gamma_{c.r.} \rightarrow O + H$	$R_{214} = 2800$		3		_
192	$H_3O^+ + \gamma$	215	$H_2O + \gamma_{c.r.} \rightarrow OH + H$	$R_{215} = 5300$		3		
193	$H_3O^+ + \gamma$	216	$O_2 + \gamma_{c.r.} \rightarrow O + O$	$R_{216} = 4100$		3		
194	$H_3O^+ + \gamma$	217	$O_2 + \gamma_{c.r.} \rightarrow O_2^+ + e^-$	$R_{217} = 640$		3		
195	$H_3O^+ + \gamma$	218	$CO + \gamma_{c.r.} \rightarrow C + O$	$R_{218} = 0.21T^{1/2}$	$x_{H_2} x_{C}^{-1}$	0 4		
196	$O_2 + \gamma \rightarrow$	0.0	D			× 10-13	28	
197 198	$O_2 + \gamma \rightarrow 0$ $CO + \gamma \rightarrow 0$	$C^{+0}_{C^{+0}}$	$R_{197} = 7.0 \times 10^{-10}$ $R_{198} = 2.0 \times 10^{-10}$	1.8 See §2.2	13	$\times 10^{-10}$ × 10 ⁻¹⁰	28	
			$\begin{array}{c} 86 & HCO^{+} + (140 & O^{-} + (87 & HCO^{+} + H_2O \rightarrow CO + H_3O^{-} \end{array} \\ 87 & HCO^{+} + H_2O \rightarrow CO + H_3O^{-} \end{array}$	$C \rightarrow CO + e^{-}$ $k_{87} = 2.5 \times 10^{-9}$	$k_{140} =$	$\times 10^{-10}$ $\times 10^{-10}$ 5.0×10^{-10}	28 28 28 62	
		-						

CO chemistry in GMCs

a) preferential ¹³CO photodissociation

b) Fractionation reaction $^{12}CO+^{13}C\leftarrow\rightarrow^{13}CO+^{12}C+36K$

III. Dense core $(A_v \approx 5^m)$ C⁺ depletes Freeze-out & CRP destruction

Detailed thermodynamic analysis

o antor				
Model	$n_0 \; [\mathrm{cm}^{-3}]$	Metallicity $[Z_{\odot}]$	ISRF $[G_0]$	Time [Myr]
a	300	0.3	1	2.046
b	300	0.6	1	1.930
с	300	1	0.1	2.124
d	300	1	1	2.150
е	300	1	10	2.022
f	1000	1	1	0.973

6 different models:

Results – N(¹²CO)/N(¹³CO) column densities ratio

Results – N(¹²CO)/N(¹³CO) column densities ratio

(Szücs et al. 2014, MNRAS 445, 4055-4072)

White contour shows $5 \times 10^{21} \text{ cm}^{-2}$ \rightarrow overall density is not changing significantly

Results – N(¹²CO)/N(¹³CO) column densities ratio

(Szücs et al. 2014, MNRAS 445, 4055-4072)

Fitting formula

Fitting formula

galaxies from THINGS and HERACLES survey (images from Frank Bigiel, ZAH/ITA)

H2 and SF well correlated

Genzel et al. (2010, MNRAS, AJ, 407, 2091)

- standard model: roughly linear relation between H
- standard model: roughly constant depletion time: few x 10
- super linear relation between total gas and SFR

data from STING survey (Rahman et al. 2011, 2012)

QUIZ: do you see a universal

- QUIZ: do you see a universal
- ANSWER: probably not
 - in addition, the relation often is sublinear

data from STING survey (Rahman et al. 2011, 2012)

Shetty et al. (2014, MNRAS, 437, L61, see also Shetty, Kelly, Bigiel, 2013, MNRAS, 430, 288)

Hierarchical Bayesian model for STING galaxies indicate varying depleting times.

all galaxies

physical origin of this behavior?

- maybe strong shear in dense arms (example M51, Meidt et al. 2013)...
- maybe non-star forming H densities (recall H

Shetty et al. (2013, MNRAS, 437, L61, see also Shetty, Kelly, Bigiel, 2013, MNRAS, 430, 288)

modeling Galactic-scale ISM dynamics

Simulation	Surface Density ${\rm M}_{\odot}~{\rm pc}^{-2}$	Radiation Field G_0				
Milky Way	10	1				
Low Density	4	1				
Strong Field	10	10				
Low & Weak	4	0.1				

- Arepo moving mesh code (Springel 2010)
- time dependent chemistry *(Glover et al. 2007)* gives heating & cooling in a 2 phase medium
- two layers of refinement with mass resolution down to $4\ M_{\odot}$ in full Galaxy simulation
- UV field and cosmic rays
- TreeCol (Clark et al. 2012)
- external spiral potential (Dobbs & Bonnell 2006)
- no gas self-gravity, SN, or magnetic fields yet

numerical method

moving mesh code **Arepo**:

- semi-Lagrangian
- flexible refinement
- fluid instabilities and no artificial clumping (Agertz et al. 2007)
- can also handle sub-sonic turbulence (Bauer & Springel 2012)
- no preferred geometry

(Smith et al., 2014, MNRAS, 441, 1628)

(Smith et al., 2014, MNRAS, 441, 1628)

preliminary image from THOR Galactic plane survey (PI H. Beuther): continuum emission around 21 cm

next step: produce all sky maps at various positions in the model galaxy (use RADMC-3D)

preliminary image from THOR Galactic plane survey (PI H. Beuther): continuum emission around 21 cm

next step: produce all sky maps at various positions in the model galaxy (use RADMC-3D)

http://www.mpia.de/thor/Overview.html

HI emission in the Galactic disk may have large regions with $\tau > 0$ (even $\tau \ge 1$).

http://www.mpia.de/thor/Overview.html

Bihr et al. (2015, A&A in press, arXiv:1505.05176)

(Smith et al., 2014, MNRAS, 441, 1628)

(Smith et al., 2014, MNRAS, 441, 1628)

details of CO emission

relation between CO and H₂

(Smith et al., 2014, MNRAS, 441, 1628)

relation between CO and H₂

Nessie filament (Jackson et al. 2010, Goodman et al, 2014)

(Jackson et al. 2010, ApJ, 719, L185)

Filamentary molecular clouds in inter-arm regions are likely only the observable parts of much larger structures.

Name	Cloud	Dense gas	DGMF	$R_{\rm gal}$	β	$\langle z \rangle$	Assoc.
	mass	mass					
	$[M_{\odot}]$	$[M_\odot]$	[%]	[kpc]	[degrees]	[pc]	
GMF 18.0-16.8	1.5e+5	3.9e+3	2.7	6.3	4.6	55	M 16, W 37
GMF 20.0-17.9	4.0e+5	4.8e+4	12.0	5.0	7.7	(12)	W 39, SC-arm
GMF 26.7-25.4	2.0e+5	1.3e+4	6.5	5.7	9.4	68	
GMF 38.1-32.4a	7.0e+5	3.7e+4 ^{<i>a</i>}	5.3	5.9	12.8	(24)	W 44
GMF 38.1-32.4b	7.7e+4	$5.0e + 3^{a}$	6.5	6.2	11.5	(5)	
GMF 41.0-41.3	4.9e+4	7.7e+2	1.6	6.5	12.5	19	
GMF 54.0-52.0	6.8e+4	2.4e+3	3.5	7.3	11.2	25	W 52
Nessie	_	3.9e+5	_	5.6	-7.8	_	SC-arm
G32.02+0.06	2.0e+5	3.0e+4	15.0	4.7	19.7	48	
	Name GMF 18.0-16.8 GMF 20.0-17.9 GMF 26.7-25.4 GMF 38.1-32.4a GMF 38.1-32.4b GMF 41.0-41.3 GMF 54.0-52.0 Nessie G32.02+0.06	NameCloud mass $[M_{\odot}]$ GMF 18.0-16.81.5e+5GMF 20.0-17.94.0e+5GMF 26.7-25.42.0e+5GMF 38.1-32.4a7.0e+5GMF 38.1-32.4b7.7e+4GMF 41.0-41.34.9e+4GMF 54.0-52.06.8e+4Nessie $-$ G32.02+0.062.0e+5	NameCloud mass mass $[M_{\odot}]$ Dense gas mass $[M_{\odot}]$ GMF 18.0-16.8 $1.5e+5$ $3.9e+3$ GMF 20.0-17.9 $4.0e+5$ $4.8e+4$ GMF 26.7-25.4 $2.0e+5$ $1.3e+4$ GMF 38.1-32.4a $7.0e+5$ $3.7e+4^a$ GMF 38.1-32.4b $7.7e+4$ $5.0e+3^a$ GMF 41.0-41.3 $4.9e+4$ $7.7e+2$ GMF 54.0-52.0 $6.8e+4$ $2.4e+3$ Nessie $ 3.9e+5$ G32.02+0.06 $2.0e+5$ $3.0e+4$	NameCloud massDense gas massDGMF $[M_{\odot}]$ $[M_{\odot}]$ $[M_{\odot}]$ $[%]$ GMF 18.0-16.8 $1.5e+5$ $3.9e+3$ 2.7 GMF 20.0-17.9 $4.0e+5$ $4.8e+4$ 12.0 GMF 26.7-25.4 $2.0e+5$ $1.3e+4$ 6.5 GMF 38.1-32.4a $7.0e+5$ $3.7e+4^a$ 5.3 GMF 38.1-32.4b $7.7e+4$ $5.0e+3^a$ 6.5 GMF 41.0-41.3 $4.9e+4$ $7.7e+2$ 1.6 GMF 54.0-52.0 $6.8e+4$ $2.4e+3$ 3.5 Nessie $ 3.9e+5$ $-$ G32.02+0.06 $2.0e+5$ $3.0e+4$ 15.0	NameCloud massDense gas massDGMF R_{gal} M_{\odot} $[M_{\odot}]$ $[M_{\odot}]$ $[%]$ $[kpc]$ GMF 18.0-16.8 $1.5e+5$ $3.9e+3$ 2.7 6.3 GMF 20.0-17.9 $4.0e+5$ $4.8e+4$ 12.0 5.0 GMF 26.7-25.4 $2.0e+5$ $1.3e+4$ 6.5 5.7 GMF 38.1-32.4a $7.0e+5$ $3.7e+4^a$ 5.3 5.9 GMF 38.1-32.4b $7.7e+4$ $5.0e+3^a$ 6.5 6.2 GMF 41.0-41.3 $4.9e+4$ $7.7e+2$ 1.6 6.5 GMF 54.0-52.0 $6.8e+4$ $2.4e+3$ 3.5 7.3 Nessie $ 3.9e+5$ $ 5.6$ G32.02+0.06 $2.0e+5$ $3.0e+4$ 15.0 4.7	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Ragan et al. (2014 A&A 568, A73)

Many of the long filaments are indeed located at interarm regions.

Name	Cloud	Dense gas	DGMF	$R_{\rm gal}$	β	$\langle z \rangle$	Assoc.
	$\max_{[M]}$	$\max_{[M]}$	[0%]	[kpc]	[dagraas]	[no]	
	[₩I⊙]	[<i>IVI</i> $_{\odot}$]	[70]	[kpc]	[uegrees]	[pc]	
GMF 18.0-16.8	1.5e+5	3.9e+3	2.7	6.3	4.6	55	M 16, W 37
GMF 20.0-17.9	4.0e+5	4.8e+4	12.0	5.0	7.7	(12)	W 39, SC-arm
GMF 26.7-25.4	2.0e+5	1.3e+4	6.5	5.7	9.4	68	
GMF 38.1-32.4a	7.0e+5	$3.7e + 4^{a}$	5.3	5.9	12.8	(24)	W 44
GMF 38.1-32.4b	7.7e+4	5.0e+3 ^{<i>a</i>}	6.5	6.2	11.5	(5)	
GMF 41.0-41.3	4.9e+4	7.7e+2	1.6	6.5	12.5	19	
GMF 54.0-52.0	6.8e+4	2.4e+3	3.5	7.3	11.2	25	W 52
Nessie	_	3.9e+5	_	5.6	-7.8	_	SC-arm
G32.02+0.06	2.0e+5	3.0e+4	15.0	4.7	19.7	48	

Filamentary molecular clouds in inter-arm regions are likely only the observable parts of much larger structures.

Ragan et al. (2014 A&A 568, A73)

dark gas fraction

46% molecular gas below CO column densities of 10¹⁶ cm⁻² 42% has an integrated CO emission of less than 0.1 K kms⁻¹

$$X_{co} = 0.42$$
 $X_{co} = 2.2 \times 10^{20} \, \text{cm}^{-2} \text{K}^{-1} \text{km}^{-1} \text{s}^{-1}$

dark gas fraction

* dust methods have large uncertainties.

further evidence

- there is increasing evidence, that a significant fraction of the H₂ gas in galaxies is not traced by CO (e.g. Pringle, Allen, Lubov 2001, Hosokawa & Inutsuka 2007, Clark et al. 2012)
- 3D simulations of colliding HI gas forming molecular clouds at the stagnation region performed by Paul Clark in Heidelberg
 - SPH (also with FLASH)
 - full fledged CO chemistry
 - TREECOL for calculating extinction
 - 'standard' dust model
 - sink particles to account for local collapse (star formation)
 - two models: slow and fast flow

further evidence form detailed colliding flow calculations

Figure 3. Evolution with time of the maximum density (blue, solid line) and minimum temperature (red, dashed line) in the slow flow (top panel) and the fast flow (bottom panel). Note that at any given instant, the coldest SPH particle is not necessarily the densest, and so the lines plotted are strictly independent of one another.

Clark et al. (2012, MNRAS, 424, 2599)

see also Pringle, Allen, Lubov (2001), Hosokawa & Inutsuka (2007)
further evidence form detailed colliding flow calculations

Figure 6. Chemical evolution of the gas in the flow. In the left-hand column, we show the time evolution of the fraction of the total mass of hydrogen that is in the form of H₂ (red solid line) for the 6.8 km s⁻¹ flow (upper panel) and the 13.6 km s⁻¹ flow (lower panel). We also show the time evolution of the fraction of the total mass of carbon that is in the form of C⁺ (green dashed line), C (orange dot–dashed line) and CO (blue double-dot–dashed line). In the right-hand column, we show the peak values of the fractional abundances of H₂ and CO. These are computed relative to the total number of hydrogen nuclei, and so the maximum fractional abundances of H₂ and CO are 0.5 and 1.4×10^{-4} , respectively. Again, we show results for the 6.8 km s⁻¹ flow in the upper panel and the 13.6 km s⁻¹ flow in the lower panel. Note that the scale of the horizontal axis differs between the upper and lower panels.

Clark et al. (2012, MNRAS, 424, 2599)

see also Pringle, Allen, Lubov (2001), Hosokawa & Inutsuka (2007)

H₂ column CO emission

fraction of CO dark gas will also change with metallicity and with ambient radiation field

Clark et al. (2012, MNRAS, 424, 2599)

large-scale filaments

Smith et al. (2014, MNRAS, 445, 2900)

next steps:

studying details of ISM morphology and star formation in dedicated zoom-in simulation

example:

giant molecular cloud complex (~10⁶ M_☉) viewed in the plane of the disk.

Ragan et al., 2014, A&A, 568, A73)

zoom-in on filaments

next steps:

studying details of ISM morphology and star formation in dedicated zoom-in simulation (resolution ≤2000 AU, with full chemistry)

analysis:

- morphology
- velocity
- chemistry
- observations (dust maps for Herschel, CO, N₂H+, HCN, etc. for line obs.)

Smith et al. (2014, MNRAS, 445, 2900, also Smith et al. 2012, ApJ, 750, 64, Smith et al. 2013, ApJ, 771, 24, Chira et al., 2014, MNRAS, 444, 874)

filaments do not have universal width

Smith et al. (2014, MNRAS, 445, 2900)

filaments do not have universal width

Smith et al. (2014, MNRAS, 445, 2900)

3D filaments have complex structure

2D filament detection shows nice coherent filament 2D + LOS peak detection shows complex structure full 3D filament analysis confirms this picture

walk along the filament

- walking along the filament exhibits complex 3D structure that is now (fully) seen in projected density
- is this similar to the filament fibers proposed by Hacar et al. (2013, A&A, 554, 55)

summary

Star formation is intrinsically a multi-scale and multi-physics problem. Many different processes need to be considered simultaneously.

Star formation is intrinsically a multi-scale and multi-physics problem. Many different processes need to be considered simultaneously.

- hierarchical Bayesian statistics indicated galaxy to galaxy variations in the KS relation with typically sublinear slope
 - \rightarrow how much diffuse CO gas is there
- detailed (M)HD calculations with time-dependent chemistry allow us to study the properties of CO-dark H2 gas
 → implications for interpreting observational data?
- molecular clouds are filamentary, but filament parameters (width, slope, central density) may vary significantly
 → what does it mean for star cluster formation?
- next steps:

multi-physics simulations with Arepo and FLASH for comparison with existing survey data

thanks