

# Modelling mass functions of clumps formed during the early MC evolution

Todor V. Veltchev <sup>1,2</sup>

<sup>1</sup> Faculty of Physics, University of Sofia, Bulgaria <sup>2</sup> Institute of Theoretical Astrophysics, Heidelberg, Germany



## Basic assumptions of our statistical approach

- 1) Turbulent cascade in isothermal medium in the scale range
  - $0.5 \leq L \leq 20$  pc, conditioning scaling laws of velocity and density according to Larson (1981).
- 2) Lognormal probability density distribution (PDF) at each scale L
- 3) Mass-density power-law relationship:

$$\operatorname{n}\left(rac{
ho}{\langle
ho
angle}
ight) = x \, \ln\left(rac{m}{m_0}
ight) \,, \quad x < 0, \quad x = x(L)$$

- Self-similar density scaling as expected for turbulent structures 4)
- 5) Equipartition of energies:

 $|W| \sim f_{
m gk} E_{
m kin} \;, \;\; 1 \lesssim f_{
m gk} \lesssim$  4, (wkin{1-4})  $|W| \sim 2E_{\rm kin} + 2E_{\rm th}$ , (wkin2th2)  $|W| \sim 2E_{\rm kin} + E_{\rm mag}$ , (wkin2mag)

## **ALTERNATIVE MODELS WITHIN THE CHOSEN APPROACH**

They are built according to the type of object for which the assumptions of mass-density relationship (3) and equipartition of energies (5) hold:

- Statistical ensemble of clumps ('ensemble model'): Populations (ensembles) of clumps generated at abstract spatial scale L obey a mass-density relationship with power-law index x(L), derived from equipartition relation for their representative members ('typical clumps').
- Cloudlet, defined by a density cut-off ('cloudlet model'): A chosen energy equipartition (assumption 5) determines a density threshold in respect to the mean local density  $\langle \rho \rangle_L$ . Then the relationship (3) with a power-law index x(L) describes the intrinsic mass-density scaling of structures built into the delineated cloudlet.

#### Clump mass function from the 'ensemble model'





Clump mass function from the 'cloudlet model'



### **Discussion**

- The modelled high-mass CIMFs exhibit power-law slopes  $\Gamma \sim -1$ , as expected for fractal clouds (Elmegreen 1997). When only gravitationally unstable clumps are considered, the slope of their time-weighted high-mass mass function is similar to that of the stellar IMF:  $\Gamma \sim -1.3$ .
- ▶ The cloudlet mass function exhibit power-law slopes  $-0.8 \leq \Gamma \leq -1$ , typical for CO clumps.

Further insights into physics of the dendrogram objects would allow for derivation of the CIMF within the 'cloudlet model'.

#### Galactic Scale Star Formation, Observation meets theory, Heidelberg, July 30 - August 3, 2012