The Milky Way Project:

Tracing Star Formation in the Milky Way Galaxy with Infrared Bubbles

Sarah Kendrew (MPIA, Heidelberg) + The Zooniverse, Milky Way Project Science Team and 35,000+ Users

Galactic Scale Star Formation conference, Heidelberg, July 2012

Infrared surveys reveal beautiful & complex Interstellar Medium

Glimpse I: Benjamin et at (2003); MIPSGAL: Carey et al (2009)

What can we learn from bubbles?

Sites of feedback from (massive) star(s) -> ISM Bubble expansion: a complex process Bubbles: Not a single type of object!

Drawing Bubbles (www.milkywayproject.org)

First Milky Way Project Public Data Release

The Milky Way Project First Data Release: A Bubblier Galactic Disk^{*}

R. J. Simpson¹[†], M. S. Povich^{2,3}, S. Kendrew⁴, C. J. Lintott^{1,5}, E. Bressert^{6,7,8}, K. Arvidsson⁵, C. Cyganowski^{8,3}, S. Maddison¹² K. Schawinski^{10,11,13}, R. Sherman⁹, A. M. Smith^{1,5}, G. Wolf-Chase^{5,9}

- * Simpson et al, 2012, MNRAS (Arxiv: 1201.6357): 5000 bubbles
- ★ Data at http://www.milkywayproject.org/data
- ★ Interactive bubble explorer
- ★ Bubble "heat maps"

Massive star formation near bubbles (Arxiv: 1203.5486)

SK (MPIA), Rob Simpson (Oxford), Eli Bressert (Exeter/ESO), Matt Povich (Penn State), Chris Lintott (Oxford), Reid Sherman (Chicago), Tom Robitaille (MPIA), Kevin Schawinski (Yale), Grace Wolf-Chase (Adler/Chicago)

Feedback-driven "Triggered" star formation

Fast-growing body of "evidence" of triggering near IR bubbles: W51a (Kang+ 09), RCW120 (Zavagno+ 10), Sh2-217 (Brand+ 11), W49A (Peng+ 10)

MYSOs: Red MSX Source (RMS) Survey

~2000 massive YSOs selected from colours of known objects (Lumsden+ 2002, Urquhart+ 2008); ~1000 'young' sources in GLIMPSE I region.

~complete for > 10^4 L(solar) to ~15 kpc.

Excluding $|I| < 10^{\circ}$

Spatial resolution 18" (0.3')

Follow-up: distances, source types

Two-point correlation function

= excess probability of finding sources at separation theta over what is expected from random distribution

MWP + RMS correlation function

Does size matter?

Conclusions

 $67 \pm 3\%$ of massive young sources in RMS lie within 2 Radii from a bubble

22 ± 2% lie near a bubble rim (triggered?)

Correlation between RMS sources and bubble rims increases with bubble angular size (collect & collapse?)

What do we need?

Distances

Evolutionary stages

Line of sight effects (in 3D!)

Distances & Velocities

Cross-match MWP bubbles with: ullet

•

- HII regions Anderson & Bania (2009), Anderson+ (2012), RMS
- Clusters Morales+ (in prep.)
- (Sub-) mm clumps -----> ATLASGAL, BGPS

With distances & velocities we can....

Place the bubbles in 3D space in the Galaxy - study 3D distribution

Compare bubble distribution with molecular gas

Correlate star formation activity with bubble physical sizes

Disentangle line of sight effects in correlation analyses

... Statistically!

What do we need?

Distances

Evolutionary stages

Line of sight effects (in 3D!)

The evolutionary sequence in triggering

Bubbles - RMS sources: ~ Same evolutionary stage

Can we correlate bubbles with star formation markers at an earlier stage?

ATLASGAL - the inner Galactic Plane at 870 µm

Galactic distribution & catalogue described in Beuther+ 2012

Correlating bubbles + ATLASGAL clumps

To be addressed....

ATLASGAL sources >> # bubbles or RMS sources

Chance alignments much higher than in previous analysis

Examine trends in correlation with bubble size & compare with RMS result

ATLASGAL clump auto-correlation

With ATLASGAL & bubble distances: Correlation in 3D space?

Conclusions

- Bubbles are good tracers of massive young stars to large distances in the Galactic plane
- Bubble correlations with other star formation tracers (HII regions, sub-mm clumps) allow statistical study of triggered star formation on Galactic scales***
 - Bubble + RMS survey catalogue yields ~20% of massive young stars possibly triggered*** (Kendrew+ 2012)
- Using ATLASGAL can break the evolutionary degeneracy of the RMS correlation study
- Bubble distances, velocities & physical sizes will greatly increase their power in such studies
- 3D Line of sight effects are complicated & still need addressing

thanks