Slide 1

Diederik Kruijssen – Max Planck Institute for Astrophysics

On the fraction of star formation occurring in bound stellar clusters

(JMDK12, submitted)

Diederik Kruijssen MPA Garching

Slide 2

Diederik Kruijssen – Max Planck Institute for Astrophysics

Affects efficiency of galactic scale feedback Strickland & Stevens 99, Hopkins+12, Krause+12

Important when tracing galaxy evolution (e.g. SFH) using clusters Larsen+01, Bastian+05, Smith+07

Crucial in understanding cluster formation and evolution Lada & Lada 03, Gieles+05, Elmegreen 08

Slide 3

Diederik Kruijssen – Max Planck Institute for Astrophysics

QUESTION

How do star clusters form?

Or: what fraction of all stars is born in bound stellar clusters?

Diederik Kruijssen – Max Planck Institute for Astrophysics

Star cluster formation: classical picture

- \diamond Classical picture: bound cluster formation inhibited by gas expulsion Hills 80, Lada+84, Geyer & Burkert 01, Lada & Lada 03, Boily & Kroupa 03, Goodwin & Bastian 06, Baumgardt & Kroupa 07, Parmentier+08, ...
- \diamond All stars form in clusters
- ♦ Gas & stars in virial equilibrium
- \diamond Feedback expels remaining gas

- Because SFE is low: cluster expands, possibly becoming unbound
- \diamond Only ~10% of all star formation ends up in bound clusters

Diederik Kruijssen – Max Planck Institute for Astrophysics

Little observational evidence for gas expulsion as key mechanism

- ♦ NGC 3603 is ~virialised and not expanding Rochau+10
- Westerlund I is ~virialised and not expanding Cottaar+12
- ♦ R136 is ~virialised and not expanding Hénault-Brunet+12

Slide 6

Diederik Kruijssen – Max Planck Institute for Astrophysics

Star cluster formation

Not all stars form in clusters

Bastian 08, Gieles & Portegies Zwart 11

Slide 7

Diederik Kruijssen – Max Planck Institute for Astrophysics

Continuous density spectrum of star formation Bressert+10

Slide 8

Diederik Kruijssen – Max Planck Institute for Astrophysics

Star cluster formation

♦ Gas-poor & bound structure arises at the high-density end of the spectrum Elmegreen 08, JMDK+12, Girichidis+12

Slide 9

Diederik Kruijssen – Max Planck Institute for Astrophysics

Introductior

Model

Applications

Star cluster formation

- \diamond No "infant mortality" by gas expulsion
- ♦ Star clusters are not a "fundamental unit of star formation"
- Star formation process is (initially) globally scale-free

Slide 10

Diederik Kruijssen – Max Planck Institute for Astrophysics

So... what does happen?

Slide 11

Diederik Kruijssen – Max Planck Institute for Astrophysics

Introduction

Can we derive a theoretical framework for the *cluster formation efficiency*?

A "Dutch cheese" model

Slide 12

Diederik Kruijssen – Max Planck Institute for Astrophysics

Model

Slide 13

Diederik Kruijssen – Max Planck Institute for Astrophysics

Introduction

Model

Two important mechanisms

♦ The naturally bound/unbound part of star formation

 $= f_{\text{bound}} f_{\text{cce}}$

Applications

Diederik Kruijssen – Max Planck Institute for Astrophysics

The model in one figure

Overdensity PDF of the interstellar medium Vazquez-Semadini 94, Padoan & Nordlund 97,11

- > Surface density
- > Angular velocity
- > Toomre Q parameter

 \diamond Mean and dispersion set by Mach number $\mathcal{M}(\Sigma_{a},\Omega,Q)$

 \diamond Assuming hydrostatic equilibrium provides mid-plane density $\rho_{ISM}(\Omega, Q)$

Diederik Kruijssen – Max Planck Institute for Astrophysics

Model

The model in one figure

Assume specific SFR per free-fall time Elmegreen 02, Krumholz & McKee 05

- Surface density
- > Angular velocity
- > Toomre Q parameter

Pressure equilibrium between feedback and ISM gives duration of SF

Including the star formation efficiency

♦ Integration of dashed curve: all star formation

Diederik Kruijssen – Max Planck Institute for Astrophysics

 \geq

Surface densityAngular velocity

Toomre Q parameter

del

The model in one figure

Slide 17

Diederik Kruijssen – Max Planck Institute for Astrophysics

♦ Integration of dotted curve: naturally bound part of star formation

Diederik Kruijssen – Max Planck Institute for Astrophysics

The model in one figure

- Cruel cradle effect: Spitzer theory of tidal shocks
- > Surface density
- > Angular velocity
- > Toomre Q parameter

Critical overdensity for surviving tidal disruption by SF environment

♦ Integration gives the total cluster formation efficiency

Model

Slide 19

Diederik Kruijssen – Max Planck Institute for Astrophysics

We now have the global CFE as a function of:

gas surface density angular velocity Toomre *Q* parameter

or locally as a function of:

gas volume density gas velocity dispersion sound speed

Slide 20

Diederik Kruijssen – Max Planck Institute for Astrophysics

Model

CFE as a function of... galaxy

 \diamond Need surface density, angular velocity and Toomre Q

 \diamond Q = {0.5, 1.5, 3} for {starburst, disc, quiescent}

Applications

Dutch cheese revisited: model uncertainties

Slide 21

Diederik Kruijssen – Max Planck Institute for Astrophysics

Model

Parameter (1)	Minimum (2)	Maximum (3)	Impact on CFE (4)
ϕ_P	1	6	+
$\alpha_{\rm vir}$	1	2	+
$t_{ m sn}$	2 Myr	5 Myr	+
t	5 Myr	20 Myr	-
$\phi_{\rm fb}$	$0.032 \text{ cm}^2 \text{ s}^{-3}$	$0.8 \text{ cm}^2 \text{ s}^{-3}$	+
€core	0.25	0.75	_
f	0.5	0.9	_
g	1	2	_
$\phi_{\rm sh}$	2	3	_
Σ_{GMC}^{LG}	$30{M_\odot}{ m pc}^{-2}$	$300 \ {\rm M_{\odot} \ pc^{-2}}$	_

 \diamond Do the holes matter?

Slide 22

Diederik Kruijssen – Max Planck Institute for Astrophysics

Comparison to nearby dwarf, spiral and starburst galaxies

Observations Goddard+10 Silva-Villa+11 Adamo+11 Cook+12

Slide 23

Diederik Kruijssen – Max Planck Institute for Astrophysics

Comparison to nearby dwarf, spiral and starburst galaxies

Spatially resolved cluster formation efficiency

Slide 24

Diederik Kruijssen – Max Planck Institute for Astrophysics

Introduction

Slide 25

Diederik Kruijssen – Max Planck Institute for Astrophysics

Cosmic evolution of the cluster formation efficiency

Model

Slide 26

Diederik Kruijssen – Max Planck Institute for Astrophysics

QUESTION

How do star clusters form?

Slide 27

Diederik Kruijssen – Max Planck Institute for Astrophysics

MODEL ANSWER

Star clusters form at the high-density tail of the ISM density spectrum

We can now predict the fraction of star formation that is clustered versus the fraction that is dispersed

Applications

Slide 28

Diederik Kruijssen – Max Planck Institute for Astrophysics

OBSERVATIONS

Gaia can verify whether gas expulsion acts on substructured (should) or collapsed, spherically symmetric (shouldn't) stellar structure

Galactic ISM surveys should look for protoclusters and compare to the unembedded young cluster population

Slide 29

Diederik Kruijssen – Max Planck Institute for Astrophysics

IMPLICATIONS

The information for the star cluster formation process is already present in the characteristics of the gas

Star clusters are no fundamental unit of star formation, but instead are a possible outcome

Slide 30

Diederik Kruijssen – Max Planck Institute for Astrophysics

Feeling cheesy?

Model

Publicly available Fortran and IDL routines upon paper acceptance <u>http://www.mpa-garching.mpg.de/cfe</u> (don't try, there's nothing there yet)

