# Spectroscopic Observations of Bolocam Galactic Plane Survey Clumps

### Yancy Shirley



C Stéphane Guisard



Galactic longitude (degrees)

# The Bolocam Galactic Plane Survey (BGPS)

- 170 sq. deg.
- 1.1mm continuum
- 1 deg high strip



- Complete 1<sup>st</sup> quadrant
- Selected regions of 2<sup>nd</sup> quadrant
- ALL DATA & CATALOGS RELEASED !

Rosolowsky et al. 2010



Aguirre et al. 2011

# What are the properties of these newly discovered sources?



- SIZE, MASS, LUMINOSITY
- ALL DEPENDS ON KNOWING DISTANCE!

# Why Dense Molecular Gas?



# HHT Spectroscopic Survey of Dense Molecular Gas in the BGPS

### Beam matched at 1mm to BGPS continuum Survey

# **Observing Dense Molecular Gas**



### HCO<sup>+</sup>



### ALMA Band 6 (1mm) Prototype Receiver



## N<sub>2</sub>H<sup>+</sup> 3-2 USB





# HCO<sup>+</sup> vs. N<sub>2</sub>H<sup>+</sup> Chemistry

- HCO<sup>+</sup> formed in gas phase from CO
  - $H_3^+ + CO \rightarrow HCO^+ + H_2$
- CO Freezes out of gas phase at low T





- N<sub>2</sub>H<sup>+</sup> destroyed in gas phase by CO abundant in cold dense regions
  - $N_2H^+ + CO \rightarrow HCO^+ + N_2$

# **Molecular Emission Maps**



### HCO<sup>+</sup> 3-2

### $N_2H^+$ 3-2



### Battersby et al. 2010

# Initially Observed 1882 Sources



### Arizona Spectroscopic Followup



# **Detection Statistics**







# **Molecular Correlations**



**Molecular Intensity** 

# Intensity Ratio



# N<sub>2</sub>H<sup>+</sup>/HCO<sup>+</sup> - No Correlation

Shirley et al. in prep.

# Tracing Spiral Arms in Dense Gas



### Initially Resolving Distance Ambiguity



Association w/ (1)VLBA parallax (2) Known region (3) Tangent point (4) IRDC assoc. Total N~ 630

# Typical Size = "Clumps"



### Breakdown of Linewidth-Size Relation



# **Differential Mass Histogram**



(m)gol b/nb

1000.0  $dN/dlogM \sim M^{-\alpha}$ 100.0 ک م. 10.0 **Compressible turbulent** fragmentation: 1.0  $dN/dlogM = M^{-(1-(n-3/3))} \sim M^{-0.78}$ for Kolmogorov (see Hennebelle+) 0.1  $10^{\circ}$  $10^{2}$  $10^{6}$  $10^{4}$ Mass (M<sub>Solar</sub>)

### Monte Carlo Simulations of T<sub>d</sub> variation



### **GBT** Ammonia Survey





Abundance

Conclusions – Initial Analysis

- ¼ of BGPS sources observed HCO<sup>+</sup> excellent unique dense gas tracer
  - Large variation in N<sub>2</sub>H<sup>+</sup>/HCO<sup>+</sup> ratio, but no significant trend with 1.1 mm flux
- Typical clump size (median) ~ 0.75 pc, mass ~ 300  $M_{sun},$  n ~ 2000 cm  $^{-3},$  and  $\Sigma$  ~ 0.02 g cm  $^{-2}$
- Size-linewidth relationship breaks down
  - Linewidth dominated by supersonic turbulence
- dN/d(logM) ~ M<sup>−0.8</sup>
- Median Free-fall time ~ 750,000 yrs

### A probabilistic approach to resolving the distance ambiguity



Bowers et al. 2012 in prep.



### Full Spectroscopic Catalog: Over 6300 sources observed!

Scutur



### Future Plans – Analyzing BGPS

- Completed HHT observations of over 6300
  BGPS sources I > 7.5 deg (Shirley et al.)
  - Catalog publically released Fall 2012 ask Yancy if need in advance
- Release of v2.0 BGPS images and catalog by Ginsburg et al. Fall 2012
- Bowers et al. developing probabilistic method for distance ambiguity resolution to be applied to all BGPS source.
- Ultimately compare BGPS source properties with Galactic environment and evolutionary indicators

### Embedded IR Sources LD SOX 50 40 30 Group 3, C >80% m m m m m Number 20 10 100 80 60 40 20 200 70%< C <80% Group 2, ահահահահա Number 35%< C <70% Group 1, minum Number 150 100 50 0 400 and an address of the second Starless, C <35% Number 300 Identifying a pop. of 200 starless clumps 100 F 0 2 0 Dunham et al. 2011a $\log(S_{\nu})$ [Jy]

### Clump Mass with/without IR Sources



# L' correlates well with Mass



Schenck et al. 2011