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(Abridged) We present an overview of the sample of high-mass star and cluster forming regions observed as part of the Earliest Phases of
Star Formation (EPoS) Herschel Guaranteed Time Key Program. A sample of 45 infrared-dark clouds (IRDCs) were mapped at PACS 70, 100,
and 160 micron and SPIRE 250, 350, and 500 micron. In this paper, we characterize a population of cores which appear in the PACS bands
and place them into context with their host cloud and investigate their evolutionary stage. We construct spectral energy distributions (SEDs)
of 496 cores which appear in all PACS bands, 34% of which lack counterparts at 24 micron. From single-temperature modified blackbody
fits of the SEDs, we derive the temperature, luminosity, and mass of each core. These properties predominantly reflect the conditions in the
cold, outer regions. Taking into account optical depth effects and performing simple radiative transfer models, we explore the origin of
emission at PACS wavelengths. The core population has a median temperature of 20K and has masses and luminosities that span four to
five orders of magnitude. Cores with a counterpart at 24 micron are warmer and bluer on average than cores without a 24 micron
counterpart. We conclude that cores bright at 24 micron are on average more advanced in their evolution, where a central protostar(s) have
heated the outer bulk of the core, than 24 micron-dark cores. The 24 micron emission itself can arise in instances where our line of sight
aligns with an exposed part of the warm inner core. About 10% of the total cloud mass is found in a given cloud's core population. We
uncover over 300 further candidate cores which are dark until 100 micron. These are candidate starless objects, and further observations
will help us determine the nature of these very cold cores.
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EPoS high-mass sample




IRDC GO11.11-0.12

EPoS: Earliest Phases of Star formation

"~ Henning et al. (2010)
Mcloud ~ 5000 Msun




Point source extraction

¥

o N (1) Independent source
f)’; U A 2 extraction in each PACS
f"; ‘ band: require detection in
- . ol all 3 bands
y (2) Construct SEDs
* " (3) Fit modified blackbody
function (Taust, M, L)

Results
*x 496 protostellar cores in
full sample of 45 IRDCs
*x Size ~ 0.05 to 0.3pc
* 65% have 24um
counterparts

IRDC G011.11-0.12



v S, [erg s™' em™®] at 4kpc

Typical core SEDs
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vS, at 4 kpc (erg em™ s7')

What does this flux trace?
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Modeling

Radiative transfer testing relative impact of protostars and external heating

Transphere ID (Dullemond)

Scena,mo 1

* |nternal heating source +
ISRF heating

Conclusions

* Internal heating source
(protostar) dominates SED

* |SRF only marginally
iInfluences the SED at
A> 100 um

iBIack + Dralne ISRF

Soenamo 2

* No internal heating source +
ISRF heating

Conclusions

* Starless cores require
external heating by an
amplified ISRF (>100x) to
exhibit typical PACS SED

* External heating won’t to
produce 24um counterpart
for a core



Modeling

Radiative transfer testing relative impact of protostars and external heating

Transphere ID (Dullemond) iBIack + Dralne ISRF.
| SCGII&PIO 1 : Soena,mo 2 |
* In . f}f _ R . : — ‘; +

S { % 24 um detectlon reqmres presence of protostar

Presence/absence of 24 um counterpart strongly i
' depends on geometry

' 70 um detection can either be due to internal
« Ini heating from a protostar or amplified external

,"; heatlng by |SRF (see J@rgensen+06 Nutter+09)

I i ampllﬁed ISRF (>1 OOx) to
* |SRF only marginally ; 5 exhibit typical PACS SED

iInfluences the SED at »,, * External heating won’t to
A > 100 pm b produce 24um counterpart

for a core



vS, at 4 kpc (erg em™ s7')
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vS, at 4 kpc (erg em™ s7')

What does this flux trace?
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vS, at 4 kpc (erg em™ s7')

What does this flux trace?
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Core temperature distributions
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PACS color-color diagram
Color as a proxy of core dust temperature
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PACS color-color diagram
Color as a proxy of core dust temperature
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PACS color-color diagram
Color as a proxy of core dust temperature

{* PACS SED gives the conditions in cold outer parts of |

| the core

I 24 um counterpart is definite signpost of protostar,
“™ warms core
{ - 70 pm-dark cores good ‘starless core’ candldates ,
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total mass in cores [Mg]

Core formation efficiency
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total mass in cores [Mg]

Core formation efficiency
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IRDC environment

Av contours ~ 8, 10, 20
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Filling factor is very small!

Linz et al.,, in prep.



Summary

I ‘
- !

* Herschel reveals deeply embedded protostellar cores

in a range of evolutionary stages in IRDCs
* External heating by ISRF can play a role
'* IRDCs produce cores with ~10% efficiency
. * IRDGC:s live in environments with a huge reservoir of
Av ~ few
* Pressure confined??

* Filling factor must be quantified!

Linz et al.,, in prep.



