Adam Leroy (NRAO) on behalf of the HERACLES and THINGS teams.
HERACLES & THINGS: kpc-Scale People

Frank Bigiel
ITA Heidelberg

Andreas Schruba
CalTech

Fabian Walter
MPIA

Karin Sandstrom
MPIA

Erwin de Blok
Astron

Antonio Usero
OAN

Elias Brinks (Hertfordshire), Alberto Bolatto (UMD), Kelly Foyle (McMaster), Barry Madore (Carnegie), Sharon Meidt (MPIA), Hans-Walter Rix (MPIA), Erik Rosolowsky (UBC), Eva Schinnerer (MPIA), Karl Schuster (IRAM), Michelle Thornley (Bucknell), Axel Weiss (MPIfR), Helmut Wiesemeyer (MPIfR)
Our view of the ISM: HERACLES & THINGS

- IRAM 30m Large Program to map CO J = 2→1 line
- Instrument: HERA receiver array operating at 230 GHz
- 48 galaxies: dwarfs to starbursts and massive spirals
- Very wide-field (~ r_{25}) and sensitive ($\sigma \sim 1-2 \ M_{\text{sun}} \ pc^{-2}$)
- First maps Leroy et al. (2009) ~ 10 papers so far
- Public at www.nrao.edu/~aleroy/HERACLES

H2-HI Transition?

- VLA HI maps of 34 galaxies: Sa - Irr
- Resolution ~ 6-10" (100-500 pc) by 5 km s^{-1}
- Sensitivity ~ $5 \times 10^{19} \ cm^{-2}$ per channel map
- Walter et al. (2008), AJ Special Issue (2008)
- Public at www.mpia.de/THINGS
• **Stars form from molecular gas in nearby disks.**
 SFR tracers correlate \~linearly with CO even where most gas is HI. The “Star Formation Threshold” coincides with/\~an HI-to-H\textsubscript{2} transition.

• **To first order, SFR/H\textsubscript{2} is fixed in big, normal disks.**
 CO and SFR tracers correlate closely and roughly linearly.

• **Second variations of SFR/CO are clearly visible:**
 - Low mass, low metallicity galaxies show depressed CO. *Most sensible explanation are X\textsubscript{CO} variations.*
 - Starbursts in galaxy centers appear more efficient.

• **H\textsubscript{2}–HI ratio depends systematically on local conditions.**
 - Low mass, low metallicity galaxies show depressed CO. *Most sensible explanation are X\textsubscript{CO} variations.*
 - Starbursts in galaxy centers appear more efficient.
A Multiwavelength View of SF in Disks

Molecular Gas
Peak CO intensity
From HERACLES

Kinematics
Here from HI line
Also from CO

Recent Star Formation
Composite of **FUV** (GALEX),
mid-IR (SINGS/LVL),
and **Hα** (SINGS/LVL)

Atomic Gas
VLA 21cm data THINGS +
new & archival

Old Stars
Near infrared intensity
From SINGS and LVL
A Multiwavelength View of SF in Disks
A Multiwavelength View of SF in Disks

- Convolve all targets to “1 kpc distance.”
- Sample CO, HI, IR, Opt., UV on a 500 pc-spaced hexagonal grid.
- For sensitivity, “spectral stacking” to obtain deep profiles (Schruba+ ‘11).
Stars Form From Molecular Gas

- Star formation and different gas types for stacked profiles:

Each Point:
Azimuthal average (ring) in one galaxy, 30 galaxies combined

SCHRUBA+ '11, BIGIEL+ '08
Total gas behavior consistent with previous “thresholds:”

Each Point:
Azimuthal average (ring) in one galaxy, 30 galaxies combined
H$_2$-to-HI Balance and the Star Formation “Threshold”

- “Threshold” a product of changing molecular gas fraction:

Each Point:
Azimuthal average (ring) in one galaxy, 30 galaxies combined

SCHRUBA+ '11
• Stars form from molecular gas in nearby disks.

SFR tracers correlate ~linearly with CO even where most gas is HI. The “Star Formation Threshold” coincides with/is an HI-to-H$_2$ transition.
SFR-per-H$_2$ in Disks: Fixed to First Order

Each Point:
1 kpc resolution line of sight in a galaxy, 30 galaxies combined

BIGIEL+ ‘11, LEROY+ SUBMITTED
Comparison to Literature Measurements

Each Point:
One literature measurement

H$_2$ Surface Density from CO

LEROY+ SUBMITTED
Varying SFR Approach

Each Point:
1 kpc resolution line of sight in a galaxy, 30 galaxies combined

H$_2$ Surface Density from CO

LEROY+ ‘12, LEROY+ SUBMITTED
Each Point:
1 kpc resolution line of sight
30 (top)/22 (bottom) galaxies combined

Σ_{H_2} Surface Density from CO

SFR Surface Density

Varying Conversion Factor

Wolfire+ '10

Sandstrom+ in prep.

Sandstrom+ in prep., Leroy+ Submitted
Swapping CO Tracer

Each Point:
1 kpc resolution line of sight
15 galaxies with BIMA/NRO – repeats allowed

H$_2$ Surface Density from CO
What We Learn From A kpc-Scale View of the ISM

- Stars form from molecular gas in nearby disks.
 SFR tracers correlate ∼linearly with CO even where most gas is HI.

- To first order, SFR/H$_2$ is fixed in big, normal disks.
 CO and SFR tracers correlate closely and roughly linearly.
But SFR/CO Varies With Mass and Metallicity

CO Divided by SFR - Each Point 1 Galaxy

Each Point:
Whole-galaxy average
Trend With Dust-to-Gas Visible Locally

Each Point:
1 kpc resolution line of sight in a galaxy, 30 galaxies combined
But SFR/CO Varies With Mass and Metallicity

Each Point: Whole-galaxy average
Conversion Factor Variations?

Each Point:
Whole-galaxy average
What We Learn From A kpc-Scale View of the ISM

• Stars form from molecular gas in nearby disks.
 SFR tracers correlate \simlinearly with CO even where most gas is HI.

• To first order, SFR/H$_2$ is fixed in big, normal disks.
 CO and SFR tracers correlate closely and roughly linearly.

• Second variations of SFR/CO are clearly visible:
 ○ Low mass, low metallicity galaxies show depressed CO.
 Most sensible explanation are X_{CO} variations.
Efficient Star Formation at Galaxy Centers

Each Point:
1 kpc resolution line of sight in a galaxy, 30 galaxies combined

Log \(H_2 \)/SFR Normalized to Galaxy Average

Radius

Gas Surface Density

\sim ISM Pressure

\text{Fixed } \alpha_{\text{CO}}

\text{log } \frac{\tau_{\text{exp}}}{\langle \tau_{\text{exp}} \rangle_{\text{gal}}}

\text{Galactocentric Radius [kpc]}

\text{log } 10 \, \Sigma_{\text{H}_2} \, [M_\odot \, \text{pc}^{-2}]

\text{log } 10 \, \Sigma_{\text{H}_2} \, \Sigma_{\text{H}_2}^{0.5} \, [(M_\odot \, \text{pc}^{-2})^{0.5}]
Excited Gas at Galaxy Centers

Each Point:
1 kpc resolution line of sight in a galaxy
15 galaxies combined

LEROY+ ‘09, LEROY+ SUBMITTED
Efficient Star Formation NOT Conversion Factor

Each Point:
1 kpc resolution line of sight in a galaxy
22 galaxies combined

LEROY+ SUBMITTED, SANDSTROM+ IN PREP.
What We Learn From A kpc-Scale View of the ISM

• Stars form from molecular gas in nearby disks.
 SFR tracers correlate ~linearly with CO even where most gas is HI.

• To first order, SFR/H$_2$ is fixed in big, normal disks.
 CO and SFR tracers correlate closely and roughly linearly.

• Second variations of SFR/CO are clearly visible:
 1. Low mass, low metallicity galaxies show depressed CO.
 Most sensible explanation are X_{CO} variations.
 2. Starbursts in galaxy centers appear more efficient.
What We Learn From A kpc-Scale View of the ISM

Each Point:
1 kpc resolution line of sight in a galaxy, 22 galaxies combined

LEROY+ IN PREP.
H$_2$-to-HI and Pressure

Each Point:
1 kpc resolution line of sight in a galaxy, 22 galaxies combined

Blitz & Rosolowsky (2006)
Each Point:
1 kpc resolution line of sight in a galaxy, 22 galaxies combined
What We Learn From A kpc-Scale View of the ISM

• Stars form from molecular gas in nearby disks.
 SFR tracers correlate \(\sim \) linearly with CO even where most gas is HI.

• To first order, SFR/H\(_2\) is fixed in big, normal disks.
 CO and SFR tracers correlate closely and roughly linearly.

• Second variations of SFR/CO are clearly visible:
 - Low mass, low metallicity galaxies show depressed CO.
 Most sensible explanation are \(X_{CO} \) variations.
 - Starbursts in galaxy centers appear more efficient.

• \(H_2-\)HI ratio depends systematically on local conditions.
 - First order variations with either total gas column or pressure.
Whence the Scatter in H_2-to-HI?

Color shows dust-to-gas mass ratio.

Each Point:
1 kpc resolution line of sight in a galaxy, 22 galaxies combined

LEROY+ IN PREP.
Residual H_2-to-HI vs. Dust-to-Gas Mass Ratio

Each Point:
1 kpc resolution line of sight in a galaxy, 22 galaxies combined

LEROY+ IN PREP.
Residual H$_2$-to-HI vs. Dust-to-Gas Mass Ratio

Each Point:
1 kpc resolution line of sight in a galaxy, 22 galaxies combined

LEROY+ IN PREP.
What We Learn From A kpc-Scale View of the ISM

• Stars form from molecular gas in nearby disks.
 SFR tracers correlate \(\sim \) linearly with CO even where most gas is HI.
 The "Star Formation Threshold" coincides with/ is an HI-to-H\(_2\) transition

• To first order, SFR/H\(_2\) is fixed in big, normal disks.
 CO and SFR tracers correlate closely and roughly linearly.

• Second variations of SFR/CO are clearly visible:
 o Low mass, low metallicity galaxies show depressed CO.
 Most sensible explanation are \(X_{CO} \) variations.
 o Starbursts in galaxy centers appear more efficient.

• H\(_2\)-HI ratio depends systematically on local conditions.
 o First order variations with either total gas column or pressure.
 o Second order variations with dust-to-gas ratio.