The Shapes of the HI Velocity Profiles from THINGS

Erwin de Blok (ASTRON/UCT)

Roger lanjamasimanana Bradley Frank Moses Mogotsi Anahi Caldu-Primo

THINGS and HERACLES teams

THINGS

- The HI Nearby Galaxy Survey Walter et al (2008)
- VLA B,C,D array of 34 nearby Sa-Irr galaxies
- distance 3-15 Mpc
- ~6" spatial (100-500 pc), 2-5 km/s velocity resolution
- overlap with SINGS (Spitzer infrared) and GALEX NGS (UV)

THINGS

- The HI Nearby Galaxy Survey Walter et al (2008)
- VLA B,C,D array of 34 nearby Sa-Irr galaxies
- distance 3-15 Mpc
- ~6" spatial (100-500 pc), 2-5 km/s velocity resolution
- overlap with SINGS (Spitzer infrared) and GALEX NGS (UV)

HERACLES

- HERACLES Leroy et al. (2009)
- HEterodyne Receiver Array CO Line Extragalactic
 Survey
- HERA multipixel receiver on IRAM 30m telescope
- Maps CO J=2→1 of entire HI disk of 18 THINGS galaxies (+others)
- 13" spatial and 2.6 km/s velocity resolution (~ THINGS)

Outline

- Stacking of THINGS HI profiles
- Broad and Narrow HI components
- Comparison with CO from HERACLES
- Narrow-component HI and SF

HERACLES

NGC 628 (M74)

NGC 2841

NGC 3521

NGC 2903

NGC 2403

 \longleftrightarrow

Needed for star formation

- "Cold" gas a necessary ingredient for star formation
- Neutral \rightarrow cold neutral \rightarrow molecular \rightarrow SF
- Investigate cold neutral component: mass, distribution and velocity dispersion

Phases of the Neutral ISM

- Broad: Warm: $T \sim 10^4 \text{ K}$
- Narrow: Cold: T ~ few 100 K
- but dispersions higher turbulence et al

Phases of the Neutral ISM

- Broad: Warm: $T \sim 10^4 \text{ K}$
- Narrow: Cold: T ~ few 100 K
- but dispersions higher turbulence et al

Phases of the Neutral ISM

- Broad: Warm: $T \sim 10^4 \text{ K}$
- Narrow: Cold: T ~ few 100 K
- but dispersions higher turbulence et al

Stacking the profiles

lanjamasimanana et al. 2012 (accepted AJ: arXiv:1207.5041

Profiles

Dispersions

- Many ways to get a non-Gaussian super profile
 - Inclination and resolution effects
 - Dominant narrow profiles
 - Thick, lagging component
 - Skewed input profiles
 - Inaccurate shuffling
 - Bulk motions (galaxy interaction, starburst)
- Tested and under control: lanjamasimanana et al 2012

- Many ways to get a non-Gaussian super profile
 - Inclination and resolution effects
 - Dominant narrow profiles

- Many ways to get a non-Gaussian super profile
 - Inclination and resolution effects
 - Dominant narrow profiles

 $(\mathrm{A_n/A_b})_{\mathrm{bright}} - (\mathrm{A_n/A_b})_{\mathrm{faint}}$

0.5

-0.5

- Define clean sample of galaxies not obviously affected by these systematic effects (also no star burst, no interaction)
- Example: compare approaching and receding sides

C0

 $|v_{Her3}-v_{IWM}| < 5 \text{ km s}^{-1}$ to identify symmetrical profiles

Velocity Dispersions

But is this relevant for star formation?

Global Properties

Refining the pro

Preliminary

Radial trends

Trend with column density

 A_n/A_b is the flux ratio of the broad and narrow components

Star formation rates

Define SFR masks using Leroy et al (2008) THINGS star formation rate maps (24 μ m Spitzer and GALEX FUX)

Preliminary

all profiles, all galaxies

HERACLES

NGC 628 (M74)

NGC 2841

NGC 3521

NGC 2903

NGC 2403

 \longleftrightarrow

NGC 2403 Example

poster by Bradley Frank

NGC 2403 Example

NGC2403 VELOCITY FIELDS

IWM velocity field Hermite h.

Hermite h3 velocity field

NGC2403 POSITION VELOCITY

major-axis

minor-axis

- HERACLES - THINGS

contours start from $+3\sigma$ in steps of $+3\sigma$

NGC2403 ROTATION CURVES

CO Dispersions

poster by Moses Mogotsi

NGC 3184 Example

CO dispersions

HI-CO comparisons

Stacking the CO

Anahi Caldu-Primo and Fabian Walter

Stacking the CO

Anahi Caldu-Primo and Fabian Walter

Ratio of HI/CO Velocity Dispersion for all Galaxies

Average Ratio is 1.41 ± 0.34

consistent with non-stacked value

Ratio of HI/CO Velocity Dispersion ...

Summary

- Stacking can be used to identify broad and narrow components in THINGS galaxy profiles
- Narrow component: 6.5 \pm 1.5 km s⁻¹
- Broad component: 16.8 ± 4.3 km s⁻¹
- Dispersions decline exponentially
- Narrow component associated with star formation
- CO dispersions ~1.5 times smaller than "single component" HI dispersions, and similar to "narrow component" HI dispersion
- Future work: quantify the "narrow HI"-CO (H₂) connection "narrow HI" SF law
- Increase S/N of individual profiles, more sophisticated stacking, smaller areas, CO super profiles