#### Molecular Gas and Star Formation at GMC Resolution Lessons from PAWS

HST HII regions & optical light

#### Eva Schinnerer

Max Planck Institute for Astronomy

1 kpc

#### Molecular Gas and Star Formation at GMC Resolution Lessons from PAWS

molecular gas (PAWS)

#### Eva Schinnerer

Max Planck Institute for Astronomy

1 kpc



PdBI Arcsecond Whirlpool Survey

#### CO(1-0) in central 9kpc at GMC resolution (40pc, 10<sup>5</sup>M<sub>sun</sub>)



Dario Colombo Sharon Meidt Adam Leroy Jerome Pety

Eva Schinnerer (PI)

**Annie Hughes** 

Gaelle Dumas Karl Schuster Clare Dobbs Todd Thompson Santiago Garcia-Burillo Carsten Kramer MPIA MPIA MPIA MPIA NRAO IRAM

IRAM IRAM U. Exeter OSU OAN IRAM



### Molecular Gas Disk of M51

#### Schuster et al. (2007)

#### single dish (~ 500 pc)



## Schinnerer et al. (in prep.) Molecular Gas Disk of M51



#### mm-interferometer (~ 40pc)



### Molecular Gas disk of M51





### Molecular Gas disk of M51





## **3** Paradigms on Giant Molecular Clouds

1. most of the molecular gas resides in GMCs

2. GMC properties are universal across environments/galaxies

3. massive star formation and GMCs are closely associated

## Most Molecular Gas Resides in GMCs

Galactic single dish studies in CO line(s) (Sanders et al. 1985)

> 85% of molecular gas (in R < 2 kpc) in GMCs (i.e. discrete structures) with  $H_2$  mass > 10<sup>5</sup> M<sub>sun</sub> size > 22 pc

> > (Casoli et al. 1984, Dame et al. 1986)

But: see recent paper by Sawada et al. (2012)

## **Resolved Emission in Molecular Gas Disk**

D

Pety et al. (in prep.)





Integrated spectrum: PdBI+30m 'missing flux'

~ 50% of emission is resolved

w/typical size of >20", i.e. 750pc

Tuesday, August 7, 12

#### Extra-planar Molecular Gas Disk

Pety et al. (in prep.)





#### Extra-planar Molecular Gas Disk

Pety et al. (in prep.)



#### Extra-planar Molecular Gas Disk

Pety et al. (in prep.)



#### **GMC** Fraction in Molecular Gas Disk





### **GMC** Fraction in Molecular Gas Disk

Colombo et al. (in prep.)



### **GMC** Fraction in Molecular Gas Disk

Colombo et al. (in prep.)





#### **GMC statistics:**

1,507 GMCs identified ~ 55% of total CO flux = M(H<sub>2</sub>) ~ 2x10<sup>9</sup> M<sub>sun</sub>

| # distribution: |     |
|-----------------|-----|
| center          | 23% |
| inter-arm       | 29% |
| spiral arms     | 48% |

fraction of flux contained: center 55% inter-arm 40% spiral arms 60%

~55% of emission is in GMCs, i.e. discrete structures

## **3 Paradigms on Giant Molecular Clouds**

- most of the molecular gas resides in GMCs
  → Only about 50%
- 2. GMC properties are universal across environments/galaxies
- 3. massive star formation and GMCs are closely associated



## **3 Paradigms on Giant Molecular Clouds**

most of the molecular gas resides in GMCs
 → Only about 50%

2. GMC properties are universal across environments/galaxies

3. massive star formation and GMCs are closely associated



## GMCs properties are universal I. MW

Milky Way view (late 1980's):

(e.g. Larson 1981, Solomon et al. 1987)

**1.**  $\sigma_{v} \sim R^{0.5}$ 

2. virial equilibrium :  $M \propto R \sigma_{v^2}$ 3. constant surface density: ~ 100 M<sub>sun</sub>/pc<sup>2</sup>

## GMCs properties are universal II. Local Group

#### Consistent study of 12 nearby galaxies

(Bolatto et al. 2008)



#### GMC properties are universal across galaxies

#### **GMC** Properties I. Galactic Environment

#### **PDF** - Probability Distribution Function

(see poster by A. Hughes)



Hughes et al. (in prep.)

# GMC Properties I. Galactic Environment (Same extraction parameters ) on single data set: CPROPS, Rosolowsky & Leroy 2006)



Colombo et al. (in prep.)

Tuesday, August 7, 12

## **GMC Properties II. Nearby Galaxies**

M33

#### LMC

M51





FCRAO+BIMA (Rosolowsky et al 2007)







#### **GMC** Properties II. Nearby Galaxies

Colombo et al. (in prep.)

Hughes et al. (in prep.)



 --> GMC formation is different in spiral arms (M51 arm, MW) and disks (M51 inter-arm, LMC, M33),
 --> importance of photo-ionization (?) (see poster by D. Colombo)

## **3** Paradigms on Giant Molecular Clouds

- most of the molecular gas resides in GMCs
  Very likely not
- 2. GMC properties are universal across environments/galaxies
   → No, arm/inter-arm, low/high Σ<sub>gas</sub>

3. massive star formation and GMCs are closely associated



## **3** Paradigms on Giant Molecular Clouds

- most of the molecular gas resides in GMCs
  Very likely not
- 2. GMC properties are universal across environments/galaxies
   → No, arm/inter-arm, low/high Σ<sub>gas</sub>

 massive star formation and GMCs are closely associated



#### Star Formation and Molecular Gas Correlate > 10,000 independent data points from 48 nearby galaxies (Leroy et al. subm.)



#### very tight correlation even on 1kpc scale

#### Relation of Gas and Star Formation Leroy, Hughes et al. (in prep.)

inter-arm

CO non-detection

.... OLS fit @ 1kpc

Larger apertures:

scatter decreases

I(CO)

0.8

0.9

1.1

0.9

HI+H

0.9

1.3

0.9

1.0

slope steepens

center

**SFR** 

1.4 GHz

24 µm

 $H\alpha$ 

8 µm

aperture size

















## **GMC & SF Formation in Spiral Density Wave**









molecular gas in arms and spurs/feathers (as expected from models)





molecular gas in arms and spurs/feathers HII regions w/i spurs/feathers, no H $\alpha$  in gas arm (Vogel ea 1988)





molecular gas in arms and spurs/feathers HII regions w/i spurs/feathers, no H $\alpha$  in gas arm no hot dust emission in gas arm

delay between GMC and star formation?







**3** Paradigms on Giant Molecular Clouds

most of the molecular gas resides in GMCs
 Very likely not

2. GMC properties are universal across environments/galaxies  $\rightarrow$  No, arm/inter-arm, low/high  $\Sigma_{gas}$ 

3. massive star formation and GMCs are closely associated
 → Not always, environment is important

