Star Formation as a Function of Circular Velocity in Bulgeless Disk Galaxies

Linda Watson Harvard-Smithsonian CfA

> In collaboration with: Paul Martini Ute Lisenfeld Man-Hong Wong Torsten Böker Eva Schinnerer

Background: Dalcanton et al. (2004)

- Study of 49 edge-on, late-type disk galaxies
- Objects with v_{circ} > 120 km/s (high mass) show well-defined dust lanes
- Objects with $v_{circ} < 120$ km/s (low mass) show no dust lanes

Dalcanton et al. (2004)

Background: Dalcanton et al. (2004)

$$Q_i = \kappa \sigma_i / \pi G \Sigma_i$$

Q < 1: unstable Q > 1: stable

Dalcanton et al. (2004)

Motivation

Is there a transition in star formation efficiency at the dust and cold ISM scale height transition of $v_{circ} = 120$ km/s?

Motivation – Mid Plane Pressure Model

• Larger scale height -> lower gas volume density -> lower gas pressure -> lower molecular fraction -> lower SFR surface density

low-mass

high-mass

Molecular cloud with constant molecular SFE

Motivation – Krumholz et al. (2009) Model

• No obvious scale height dependence

NGC 4713 ($v_{circ} = 111 \text{ km/s}$) IRAC 4.5 μ m

 $\bigcirc 21'' = 1.5 \text{ kpc}$

 $H\alpha$

IRAC 8 µm PAH

Star Formation Relation – Total Gas

Watson et al. (2012)

Watson et al. (2012)

No Star Formation Transition at Any Circular Velocity

Consequences of Star Formation Relation Results

- We find no transition in star formation efficiency at $v_{circ} = 120$ km/s, or at any circular velocity probed by our sample
- Differences in the scale height of the dust and cold gas at the level found by Dalcanton et al. (~factor of 2 level) do not affect the molecular fraction or star formation efficiency
- Our results suggest that star formation is affected by physical processes that act on smaller scales than the tens of parsecs probed by dust scale heights

low-mass

high-mass

Molecular cloud with constant molecular SFE

Comparison to Mid-Plane Pressure Model

Comparison to Krumholz et al. (2009) Model

No Stability Transition at v_{circ} = 120 km/s

Summary

- We find no transition in star formation efficiency or stability at $v_{circ} = 120$ km/s, or at any circular velocity probed by our sample
- Differences in the scale height of the dust and cold gas at the level found by Dalcanton et al. do not affect the molecular fraction or star formation efficiency
- Our results may indicate that star formation is affected by physical processes that act on smaller scales than the tens of parsecs probed by dust scale heights
- Our results are somewhat more consistent with the Krumholz et al. (2009) star formation model than the mid-plane pressure model

The Important Players in Star Formation

Bigiel et al. (2008)

• What physical processes are important for determining the star formation rate (SFR) in galaxies?

The Kennicutt-Schmidt Relation

Bigiel et al. (2008)

Star Formation Models

Balance between the creation and destruction of molecular hydrogen:

Krumholz et al. (2009)

Star Formation Models

Mid-plane gas pressure sets the molecular fraction:

Leroy et al. (2008)

The Data

- Sample: 20 nearby, moderately inclined, bulgeless disk galaxies
- Gas surface density (Σ_{gas}) :
 - $\Sigma_{\rm HI}$ from VLA 21 cm data
 - Σ_{H_2} from IRAM 30m CO J=1-0 2.6 mm data
- Star formation rate surface density ($\Sigma_{\rm SFR}$):
 - MDM 2.4m H α data
 - Spitzer IRAC PAH (8 µm) data
- Stellar mass and estimated oxygen abundance:
 - Spitzer IRAC 4.5 µm data

Deriving Circular Velocities

UGC 6446

Watson et al. (2011)

Star Formation Relation – Atomic Gas

Star Formation Relation – Molecular Gas

Declination (J2000)

