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Background: Dalcanton et al. (2004)

• Study of 49 edge-on, late-type disk galaxies

• Objects with vcirc > 120 km/s (high mass) show well-defined 
  dust lanes

• Objects with vcirc < 120 km/s (low mass) show no dust lanes

Dalcanton et al. 
(2004)

high masslow mass



Background: Dalcanton et al. (2004)

Q < 1: unstable
Q > 1: stable 

Dalcanton et al. (2004)



Motivation

Is there a transition in star formation efficiency 
at the dust and cold ISM scale height transition 
of vcirc = 120 km/s?



  low-mass     high-mass

Motivation – Mid Plane Pressure Model

= Molecular cloud with constant molecular SFE

• Larger scale height       lower gas volume density      
  lower gas pressure       lower molecular fraction        
  lower SFR surface density



  low-mass     high-mass

= Atomic-molecular complex with constant molecular SFE

Motivation – Krumholz et al. (2009) Model

• No obvious scale height dependence





21'' = 1.5 kpc

Hα IRAC 3.6 μm

IRAC 8 μm PAH HI intensity

NGC 4713 (vcirc = 111 km/s)
IRAC 4.5 μm



Star Formation Relation – Total Gas

Watson et al. (2012)



Star Formation Relation – Total Gas

Watson et al. (2012)



No Star Formation Transition at Any Circular Velocity



Consequences of Star Formation Relation Results

• We find no transition in star formation efficiency at
  vcirc = 120 km/s, or at any circular velocity probed by 
  our  sample

• Differences in the scale height of the dust and cold gas  
  at the level found by Dalcanton et al. (~factor of 2  
  level) do not affect the molecular fraction or star 
  formation efficiency

• Our results suggest that star formation is affected by
  physical processes that act on smaller scales than the
  tens of parsecs probed by dust scale heights



  low-mass     high-mass

= Molecular cloud with constant molecular SFE



Comparison to Mid-Plane Pressure Model 

Leroy et al. (2008)



Comparison to Krumholz et al. (2009) Model 



No Stability Transition at vcirc = 120 km/s

Q < 1: unstable
Q > 1: stable 



Summary
• We find no transition in star formation efficiency or 
  stability at vcirc = 120 km/s, or at any circular velocity
  probed by our  sample

• Differences in the scale height of the dust and cold gas  
  at the level found by Dalcanton et al. do not affect the 
  molecular fraction or star formation efficiency

• Our results may indicate that star formation is affected
  by physical processes that act on smaller scales than
  the tens of parsecs probed by dust scale heights

• Our results are somewhat more consistent with the
  Krumholz et al. (2009)  star formation model than the
  mid-plane pressure model





The Important Players in Star Formation

• What physical processes are important for determining the star  
  formation rate (SFR) in galaxies?

Bigiel et al.  (2008)

HI CO SFR



The Kennicutt-Schmidt Relation
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Star Formation Models

Krumholz et al. (2009)

Balance between the creation and destruction of 
molecular hydrogen:
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Star Formation Models

Leroy et al. (2008)

Mid-plane gas pressure sets the molecular fraction: 



• Sample: 20 nearby, moderately 
  inclined, bulgeless disk galaxies 

• Gas surface density (Σgas):
 - ΣHI  from VLA 21 cm data
 - ΣH2

 from IRAM 30m CO J=1-0 2.6 mm data

• Star formation rate surface density (ΣSFR):
- MDM 2.4m Hα data
- Spitzer IRAC PAH (8 μm) data

• Stellar mass and estimated oxygen abundance:
- Spitzer IRAC 4.5 μm data

The Data



Deriving Circular Velocities

Watson et al. (2011)
 UGC 6446



Star Formation Relation – Atomic Gas



Star Formation Relation – Molecular Gas
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