gas flows on GMC scales in M51

Sharon E. Meidt (MPIA)

Eva Schinnerer, Annie Hughes, Dario Colombo, C. Dobbs, S. Garcia-Burillo, J. Pety, A. Leroy, T. Thompson, K. Schuster, C. Kramer

See Posters by Annie Hughes + Dario Colombo

Properties of GMCs in M51 vs two nearby dwarf galaxies (Hughes et al., in prep)

LMC global H2/HI = <0.05 gas/stars = 20%

AGMA, Wong et al 2011

molecular gas properties

After homogenizing the datasets, M51 GMCs:

- are brighter (peak T and surface brightness)
- have larger linewidths

 (especially relative to size)
 than GMCs in M33 and
 the LMC
- •M51 **interarm** clouds more like clouds in the low-mass galaxies

Hughes et al. 2012

GALEX, Gil de Paz et al 2006

MCELS, Smith et al 1999

I. molecular gas is organized differently from galaxy to galaxy
II. overview of dynamical environments
III. GMC properties depend on environment
IV. organization + environment influences global patterns of star formation

gas kinematics in spiral potentials global stability, shear, shocks stellar feedback gas star formation organization

GMC formation + evolution

does the static picture (e.g. Krumholz et al.) apply?

I. molecular gas is organized differently from galaxy to galaxy
II. overview of PAWS environments
III. GMC properties depend on environment
IV. organization + environment influences global patterns of star formation

M51 (NGC 5194) young stars dust

PAWS field

9 kpc

← bar (Zaritsky, Rix & Rieke 1993)

HST/NICMOS Red: Paα, Green:J, Blue: K HST/WFPC2 Red: Hα, Green: V, Blue: B

mm-interferometer (~ 40pc)

Schinnerer et al. (in prep.)

Velocity field

bar twist

~50 km s⁻¹ non-circular streaming motions! 500 pc

Wednesday, August 1, 2012

Colombo et al. (in a

prep.)

Velocity field

ar twist

~50 km s non-circ streamin motions

500 pc

Velocity field

bar twist

~50 km s⁻¹ non-circular streaming motions! 500 pc

Wednesday, August 1, 2012

Colombo et al. (in a

prep.)

 molecular gas is organized differently from galaxy to galaxy
 overview of dynamical environments
 GMC properties depend on environment

IV. organization + environment influences global patterns of star formation

molecular cloud formation in M51

- 50% of CO emission in cloud structures
- GMC properties vary as a function of environment Colombo et al., 2012, in prep

shapes +normalization different!

mass fraction of collapse unstable clouds→SFE I. overview of PAWS environments
II. molecular gas is organized differently from galaxy to galaxy
III. GMC properties depend on environment
IV.organization + environment influences global patterns of star formation

stellar mass surface density

M_{sol} pc⁻²

Meidt et al. (2012a,b) Eskew, Zaritsky & Meidt (2012)

stellar mass surface density

M_{sol} pc⁻²

Meidt et al. (2012a,b) Eskew, Zaritsky & Meidt (2012)

PAWS CO +

interial torques R×∇Φ

outflow inflow

╋

Radius = proxy for environment (bar, spiral)

radial and azimuthal components of velocity reconstructed from within spiral arm frame (assuming v_r and v_Φ ~ constant along spiral segments)

radial and azimuthal components of velocity reconstructed from within spiral arm frame (assuming v_r and v_Φ ~ constant along spiral segments)

- support not from
 - shear (=dln vφ/dlnR; cf. Dib & Helou 2012)
 - turbulent motions (regular σ along spiral)
 - stellar feedback
- + arm shocks regular (Shetty et al. 2008)

- support not from
 - shear (=dln vφ/dlnR; cf. Dib & Helou 2012)
 - turbulent motions (regular σ along spiral)
 - stellar feedback
- + arm shocks regular (Shetty et al. 2008)

Pressure?

Pressure?

ambient P comparable to cloud P

surface pressure important

change in stable mass threshold

change in stable mass threshold

clouds in motion:

- 1). reduced surface pressure (Bernoulli)
- 2). increased (Bonnor-Ebert) stable mass
- 2b). reduced collapse-unstable fraction3). **Iower SFE**

$$\ln \tau_{dep} \approx -(\Upsilon + 1) \frac{V_{stre}}{\sqrt{2}}$$

for $dN/dM \propto M^{\gamma}$

log(alpha)

5.5

5.0

6.0

 $M_{lum}/[M_{sun}]$

6.5

7.0

$\ln \tau_{dep} \approx -(\gamma + 1) \frac{V_{stream}^2}{4\sigma^2} + \ln \tau_{dep,0}$

for dN/dM $\propto M^{\gamma}$

Radius (arcsec)

for $dN/dM \propto M^{\gamma}$

for $dN/dM \propto M^{\gamma}$

for $dN/dM \propto M^{\gamma}$

for dN/dM \propto M^{γ}

for $dN/dM \propto M^{\gamma}$

from slope

cloud mass spectrum index y

direct fits to spectra (Hughes et al. 2012)

fiducial gas depletion time Tdep

from y-intercept

cloud mass spectrum index y

fiducial gas depletion time Tdep

from y-intercept

gas depletion time 1 Gyr?

 comparable to dwarfs with Galactic X_{CO}, starbursts

• are the 'normal' spiral galaxies not normal?

KS diagram

predictions, implications...

- streaming motions higher in looser spirals
 →early type spirals show greater scatter in KS
 relation?
- but global SFR independent of spiral strength (higher gas densities in stronger spirals offset by stronger streaming)
- variation in IMF?
 - low mass clouds disfavored by dynamical pressure
 - early SF in starbursts: no spiral-driven streaming

Summary

Do extragalactic
 GMCs have uniform
 physical properties?

2. Does dynamical environment matter?

3. Do gas flows impact cloud equilibrium ?

Yes.

Summary

Do extragalactic
 GMCs have uniform
 physical properties?

2. Does See Posters by Annie Hughes + Dario Colombo Yes.

3. Do gas flows impact cloud equilibrium ?

No.

Stellar Mass+potential so is it a density wave, or not?

Stellar Mass+potential so is it a density wave, or not?

molecular gas properties

After homogenizing the datasets, M51 GMCs:

- are brighter (peak T and surface brightness)
- have larger linewidths (especially relative to size) than GMCs in M33 and the LMC

_arson's laws

Region	Total			GMC					
	(1)S	(2)LCO	(3)∑	(4) L _{CO} ^{N X}	$^{(5)}L_{CO}^{EX}$	(6)% ^{NX}	(7)%EX	(8)#	(9)N
	$[kpc^2]$	[10 ⁷ K km/s pc ²]	$M_\odot \ pc^{-2}$	[10 ⁷ K k	$cm/s pc^2$]				$[kpc^{-2}]$
Cube	47.00	90.83	84.19	17.81	48.65	19.6	53.6	1507	32.06
NB	1.53	7.48	213.11	1.35	4.01	18.0	53.6	126	82.33
NR	3.15	17.99	248.62	3.37	10.48	18.7	58.2	209	66.28
NS11	2.36	5.50	101.52	1.09	3.32	19.8	60.2	86	36.40
NS10	3.46	10.54	132.64	2.12	6.26	20.1	59.4	155	44.78
NS2	2.56	3.50	59.48	0.98	2.38	28.1	68.0	92	35.90
SS11	2.42	8.21	148.01	1.26	3.98	15.3	48.5	126	52.15
SS10	3.54	10.13	124.64	2.25	6.01	22.2	59.3	167	47.14
SS2	2.23	5.56	108.88	1.44	3.46	25.9	62.2	103	46.27
DNS	7.74	5.96	33.59	0.85	1.87	14.3	31.3	98	12.67
UNS	5.64	4.54	35.13	0.89	2.11	19.6	46.4	116	20.58
DSS	7.93	6.92	38.04	1.41	2.96	20.4	42.7	135	17.02
USS	4.44	4.45	43.70	0.80	1.83	18.1	41.1	94	21.17

CO & SF tracers in M51

Hughes, Leroy et al., in prep

